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Summary
Background Accurate prediction of side-specific extraprostatic extension (ssEPE) is essential for performing nerve-
sparing surgery to mitigate treatment-related side-effects such as impotence and incontinence in patients with 
localised prostate cancer. Artificial intelligence (AI) might provide robust and personalised ssEPE predictions to better 
inform nerve-sparing strategy during radical prostatectomy. We aimed to develop, externally validate, and perform an 
algorithmic audit of an AI-based Side-specific Extra-Prostatic Extension Risk Assessment tool (SEPERA). 

Methods Each prostatic lobe was treated as an individual case such that each patient contributed two cases to the 
overall cohort. SEPERA was trained on 1022 cases from a community hospital network (Trillium Health Partners; 
Mississauga, ON, Canada) between 2010 and 2020. Subsequently, SEPERA was externally validated on 3914 cases 
across three academic centres: Princess Margaret Cancer Centre (Toronto, ON, Canada) from 2008 to 2020; L’Institut 
Mutualiste Montsouris (Paris, France) from 2010 to 2020; and Jules Bordet Institute (Brussels, Belgium) from 2015 to 
2020. Model performance was characterised by area under the receiver operating characteristic curve (AUROC), area 
under the precision recall curve (AUPRC), calibration, and net benefit. SEPERA was compared against contemporary 
nomograms (ie, Sayyid nomogram, Soeterik nomogram [non-MRI and MRI]), as well as a separate logistic regression 
model using the same variables included in SEPERA. An algorithmic audit was performed to assess model bias and 
identify common patient characteristics among predictive errors. 

Findings Overall, 2468 patients comprising 4936 cases (ie, prostatic lobes) were included in this study. SEPERA was 
well calibrated and had the best performance across all validation cohorts (pooled AUROC of 0·77 [95% CI 0·75–0·78] 
and pooled AUPRC of 0·61 [0·58–0·63]). In patients with pathological ssEPE despite benign ipsilateral biopsies, 
SEPERA correctly predicted ssEPE in 72 (68%) of 106 cases compared with the other models (47 [44%] in the logistic 
regression model, none in the Sayyid model, 13 [12%] in the Soeterik non-MRI model, and five [5%] in the Soeterik 
MRI model). SEPERA had higher net benefit than the other models to predict ssEPE, enabling more patients to safely 
undergo nerve-sparing. In the algorithmic audit, no evidence of model bias was observed, with no significant 
difference in AUROC when stratified by race, biopsy year, age, biopsy type (systematic only vs systematic and MRI-
targeted biopsy), biopsy location (academic vs community), and D’Amico risk group. According to the audit, the most 
common errors were false positives, particularly for older patients with high-risk disease. No aggressive tumours 
(ie, grade >2 or high-risk disease) were found among false negatives.

Interpretation We demonstrated the accuracy, safety, and generalisability of using SEPERA to personalise nerve-
sparing approaches during radical prostatectomy.

Funding None.

Copyright © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 
4.0 license.

Introduction
Accurate identification of extraprostatic extension 
(ie, tumours extending beyond the prostatic capsule) is an 
essential part of surgical planning and counselling in 

patients with localised prostate cancer. Preservation of the 
adjacent neurovascular bundles at the time of radical 
prostatectomy is associated with a lower risk of post­
operative erectile dysfunction and urinary incontinence.1 

http://crossmark.crossref.org/dialog/?doi=10.1016/S2589-7500(23)00067-5&domain=pdf
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However, nerve-sparing, especially in patients with a high 
risk of extraprostatic extension, can increase the likelihood 
of positive surgical margins, cancer recurrence, and 
subsequently worse oncological outcomes.2 To help guide 
decision making of when to safely perform nerve-sparing 
surgery, several nomograms have been developed to 
predict either overall or side-specific extraprostatic 
extension (ssEPE) risk. More recently, the adoption of 
prostate MRI in the preoperative workup has led to the 
inclusion of additional MRI information in several 
models, although with mixed results.3

In recent years, artificial intelligence (AI) has emerged 
as a promising tool to provide accurate and individualised 
risk estimates in medicine and urology.4–6 However, 
AI models to date have been fraught with methodological 
issues including an absence of standardised reporting to 
enhance reproducibility and comparability, limited 
external validation to evaluate generalisability, poor 
evaluation of model bias to identify suboptimal 
performance in clinically relevant subgroups, and an 
absence of in-depth investigations of predictive errors to 
understand model behaviour.7–9 These drawbacks have 
raised concerns regarding the safety and applicability of 
AI models in real-world clinical practice.10

To address these limitations in this study, we aimed to 
comprehensively assemble current AI best practices to 
develop SEPERA (Side-specific Extra-Prostatic Extension 
Risk Assessment tool). Firstly, we developed SEPERA 
using a standardised reporting framework designed for 
AI studies in urology. Secondly, we externally validated 
SEPERA on adequately powered, multi-institutional 

cohorts and compared its performance against contem­
porary nomograms using clinically relevant metrics. 
Finally, we performed an algorithmic audit to assess 
model fairness and to identify common characteristics 
among predictive errors to recognise their implications if 
SEPERA is used in clinical practice.10

Methods
Study design and problem
This study was done in accordance with the STREAM-
URO framework, a standardised reporting framework 
we have previously developed for AI studies in urology.7 
This project is a supervised binary classification problem 
to determine the risk of ssEPE using available clinical, 
pathological, and MRI reported information. Each 
prostatic lobe was treated as an individual case such that 
each patient contributed two cases to the overall cohort.

A total of 611 cases (ie, prostatic lobes) with 184 ssEPE 
cases were required to satisfy the criteria outlined by 
Riley and colleagues,11 assuming a 30% incidence of 
ssEPE and a maximum of 12 features (variables) included 
in SEPERA (appendix p 2).

This study was approved by the Research Ethics Board 
at the University Health Network, Canada (research 
ethics board number 20-6038). The need for consent was 
waived as only de-identified, retrospective data were used, 
which would not affect standard of care for these patients.

Data sources and eligibility criteria
The training cohort comprised 1022 cases treated at 
Trillium Health Partners (Mississauga, Canada) 

Research in context

Evidence before this study
We searched PubMed, Embase, MEDLINE, and the Cochrane 
Library on Apr 24, 2022, for available studies to date. Search 
terms were “extraprostatic extension”, “extracapsular extension”, 
“machine learning”, and “artificial intelligence”. No language 
restrictions were applied. A total of 18 studies investigated the 
application of artificial intelligence (AI) in determining the risk of 
extraprostatic extension. The most common approach was the 
use of radiomics on prostate MRIs. Area under the receiver 
operating characteristic curve of existing AI models ranged from 
0·68 to 0·88 for overall risk and 0·72 to 0·81 for side-specific 
extraprostatic extension (ssEPE). However, 14 (78%) of 
18 studies lacked external validation, 16 (89%) lacked an 
assessment of model bias, and 13 (72%) lacked sufficient 
description of their model development or hyperparameter 
tuning. Only ten (56%) of 18 studies included a reference 
standard for performance comparisons with their AI models. 
Only one (6%) of 18 studies provided a sample size calculation, 
which was our previous work describing our initial experience in 
developing an AI model to predict ssEPE. Collectively, these issues 
raise concerns about the overall safety and generalisability of 
these AI models in real-world clinical practice.

Added value of this study
Our study applied current best practices in AI to thoroughly 
investigate the accuracy, generalisability, and safety of our 
AI model (ie, Side-specific Extra-Prostatic Extension Risk 
Assessment tool [SEPERA]) to predict the risk of ssEPE. Using 
an algorithmic audit, we verified the safety of SEPERA by 
demonstrating that it was less prone to bias than existing 
nomograms and that no aggressive tumours were missed by 
our model. Additionally, we highlighted the clinical utility of 
SEPERA by presenting challenging clinical scenarios 
(ie, predicting contralateral ssEPE in unilateral high-risk disease 
or ssEPE in the context of benign ipsilateral biopsies) in which 
our model outperformed existing nomograms.

Implications of all the available evidence
SEPERA could be used to help inform surgical planning and 
patient counselling for patients with localised prostate cancer. 
Accurate predictions of ssEPE by SEPERA might help 
personalise surgical approach in nerve-sparing, manage 
postoperative expectations in keeping with optimal 
oncological control, and potentially minimise postoperative 
functional decline.

See Online for appendix
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between 2010 and 2020. This data source comes from 
the largest community-based hospital system in 
Canada, which includes two community hospitals, and 
was selected as the training cohort to reflect the average 
risk profile of patients with prostate cancer to improve 
generalisability.

The validation cohorts included a total of 3914 cases 
across three academic centres: Princess Margaret Cancer 
Centre, University Health Network (Toronto, ON, Canada), 
from 2008 to 2020 (validation cohort 1; 2300 cases); 
L’Institut Mutualiste Montsouris (Paris, France), from 2010 
to 2020 (validation cohort 2; 1352 cases); and Jules Bordet 
Institute (Brussels, Belgium), from 2015 to 2020 (validation 
cohort 3; 262 cases). Since validation cohort 1 is a tertiary 
referral centre for robotic-assisted radical prostatectomy, 
this cohort was further subdivided based on where the 
biopsy was done (at the University Health Network vs at a 
community hospital).

Patients were included regardless of preoperative 
imaging (MRI vs no MRI), biopsy method (systematic 
only vs systematic and MRI-targeted biopsy), or surgical 
approach (open vs robotic-assisted radical prostatectomy). 
For all cases, systematic and MRI-targeted biopsy cores 
were assigned to three standardised sites (base, middle, 
and apex). Since multiple cores were often taken at each 
site, the core with the highest International Society of 
Urological Pathology (ISUP) grade—ie, the classification 
system used to grade the aggressiveness of prostate 
cancer—at each site was recorded. All MRIs were 
assessed by dedicated uroradiologists at each institution.

Patients were excluded if they underwent transperineal 
biopsy or previously received radiotherapy or androgen 
deprivation therapy. Patients who did not have any site-
specific biopsy information or available pathology reports 
for the prostatectomy specimen (ie, unknown outcome) 
were excluded (appendix p 14).

Data abstraction, processing, and outcome definition
Data were manually extracted from the electronic 
medical record using a standardised data form, as 
previously described.12 No discrete imputation methods 
were used for missing data in SEPERA, as it was capable 
of handling missing data automatically. Multiple 
imputation was used for missing data for the other 
nomograms (appendix p 3).

The outcome of interest (label) was the presence of 
ssEPE, defined as tumour that has extended beyond the 
ipsilateral prostatic capsule in the radical prostatectomy 
specimen (pT3a disease). All prostatectomy specimens 
were reviewed by dedicated uropathologists at each 
institution. A data dictionary describing all features and 
labels is included in the appendix (pp 4–5).

SEPERA development and explanations 
SEPERA was developed using XGBoost (version 1.5.0). 
We trained this gradient-boosted ensemble machine 
learning model that sequentially builds decision trees 

such that each subsequent tree reduces the misclassi­
fication error of previous trees.13 XGBoost manages 
missing data by using a sparsity-aware split finding 
algorithm to automatically determine the best imputation 
value for missing data. Stratified ten-fold cross-validation 
(based on presence of ssEPE) of the training cohort was 
used for hyperparameter tuning and feature selection 
using mean area under the receiver operating 
characteristic curve (AUROC) as the optimisation metric. 
Additional information about the hyperparameter search 
space is provided in the appendix (p 6). Different 
combinations of features were selected for model 
training based on clinical judgement. The model was 
then retrained on the entire training cohort using the 
final set of hyperparameters and features that yielded the 
highest mean AUROC. The so-called black-box nature of 
SEPERA was interrogated using SHapley Additive 
exPlanations (SHAP) to help understand which features 
were most important overall and the individual effect of 
each feature on the probability of ssEPE.14

Reference standards 
SEPERA was compared against contemporary clinico­
pathological-based and MRI-based models that have 
previously been externally validated. The Sayyid 
nomogram is a biopsy-derived model developed based on 
patients treated at the University Health Network 
(Canada) from 2009 to 2015.15 This nomogram predicts 
ssEPE using age, prostate-specific antigen (PSA), prostate 
volume, palpable nodule on digital rectal examination, 
hypoechoic nodule on transrectal ultrasound, percentage 
of positive cores, maximum core involvement, and 
highest ISUP grade.15 On external validation, the Sayyid 
nomogram has demonstrated an AUROC of 0·74–0·75.12

The Soeterik nomogram refers to several clinicopatho­
logical-based and MRI-based models developed from 
patient data collected at the Canisius Wilhelmina 
Hospital (Nijmegen, Netherlands) from 2014 to 2018.16 
Their clinicopathological model (ie, model 1, herein 
referred to as the Soeterik non-MRI model) predicts 
ssEPE based on PSA density (PSA concentration divided 
by prostate volume), digital rectal examination local 
staging, highest ISUP grade, and percentage of positive 
cores, whereas their best MRI-based model (ie, model 2, 
herein referred to as the Soeterik MRI model) uses PSA 
density, multiparametric MRI-based local staging, and 
highest ISUP grade. On external validation, the non-MRI 
model had an AUROC of 0·77–0·80 and the MRI model 
had an AUROC of 0·77–0·83.16,17

Finally, a separate logistic regression model was 
developed using the same features included in SEPERA 
to determine the iterative improvements provided by an 
AI-based approach (appendix p 7).

Model evaluation 
Model performance was characterised by discrimination, 
calibration, and clinical utility across the training and 
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validation cohorts. Discriminative performance was 
determined by AUROC and area under the precision 
recall curve (AUPRC). The latter compares sensitivity 
(recall) and positive predictive values (precision) across 
various thresholds. Differences in AUROC and AUPRC 

between models were tested using 10 000 bootstrap 
samples with replacement, and results were presented 
with 95% CIs. Calibration was determined by comparing 
the predicted and observed risk of ssEPE by deciles. 
Clinical utility was assessed by decision curve analysis, 

Training cohort Validation 1 cohort Validation 2 cohort Validation 3 cohort p value

Clinical features

Number of patients 511 1150 676 131 ··

Number of prostatic lobes 1022 2300 1352 262 ··

Age at biopsy 62 (57–66) 62 (58–67) 71 (66–73) 66 (61–71) <0·0001

Race <0·0001

White 686 (67·1%) 1802 (78·3%) 1290 (95·4%) 216 (82·4%) ··

Black 76 (7·4%) 114 (5·0%) 30 (2·2%) 32 (12·2%) ··

Hispanic 96 (9·4%) 190 (8·3%) 14 (1·0%) 14 (5·3%) ··

Asian 164 (16·0%) 194 (8·4%) 18 (1·3%) 0 ··

Prostate volume (mL) 34 (26–44) 36 (28–46) 40 (30–50) 35 (28–51) <0·0001

Serum PSA (ng/mL) 7·1 (5·5–9·5) 6·6 (5·0–9·3) 7·7 (5·8–11·4) 7·8 (6·0–11·3) <0·0001

PSA density (ng/mL²) 0·21 (0·15–0·31) 0·18 (0·12–0·27) 0·19 (0·13–0·28) 0·23 (0·13–0·32) <0·0001

Clinical stage <0·0001

T1 642 (62·8%) 1536 (66·8%) 1310 (96·9%) 184 (70·2%) ··

T2 368 (36·0%) 673 (29·3%) 20 (1·5%) 70 (26·7%) ··

T3 12 (1·2%) 26 (1·1%) 20 (1·5%) 6 (2·3%) ··

Unknown 0 65 (2·8%) 2 (0·1%) 2 (0·8%) ··

D’Amico risk group <0·0001

Low 250 (24·5%) 172 (7·5%) 219 (16·2%) 64 (24·4%) ··

Intermediate 600 (58·7%) 1862 (81·0%) 970 (71·7%) 124 (47·3%) ··

High 172 (16·8%) 266 (11·6%) 163 (12·1%) 74 (28·2%) ··

Global biopsy features

Percentage Gleason pattern 4 or 5 12·5 (5·0–55·0) 10·0 (5·0–40·0) 10·0 (0·0–40·0) 20·0 (0·0–63·8) <0·0001

Perineural invasion 462 (45·2%) 938 (40·8%) 348 (25·7%) 95 (36·3%) <0·0001

Periprostatic fat invasion 12 (1·2%) 26 (1·1%) 19 (1·4%) 6 (2·3%) 0·38

Side-specific features (ie, left or right prostatic lobe)

Abnormal digital rectal examination 219 (21·4%) 382 (16·6%) 12 (0·9%) 35 (13·4%) <0·0001

Percentage of positive cores 33·3 (16·7–66·7) 33·3 (16·7–66·7) 33·3 (14·3–61·2) 37·5 (0·0–62·5) 0·61

Highest ISUP grade <0·0001

Benign 221 (21·6%) 490 (21·3%) 315 (23·3%) 62 (23·7%) ··

1 179 (17·5%) 596 (25·9%) 397 (29·4%) 70 (26·7%) ··

2 370 (36·2%) 789 (34·3%) 445 (32·9%) 52 (19·8%) ··

3 145 (14·2%) 256 (11·1%) 145 (10·7%) 22 (8·4%) ··

4 61 (6·0%) 119 (5·2%) 43 (3·2%) 33 (12·6%) ··

5 46 (4·5%) 47 (2·0%) 7 (0·5%) 3 (1·1%) ··

Unknown 0 3 (0·1%) 0 20 (7·6%) ··

Maximum percentage core involvement 20 (5–50) 20 (5–55) 20 (3–44) 37 (0–64) 0·0086

Base findings <0·0001

Benign 531 (52·0%) 1115 (48·5%) 672 (49·7%) 135 (51·5%) ··

1 143 (14·0%) 465 (20·2%) 253 (18·7%) 49 (18·7%) ··

2 207 (20·3%) 482 (21·0%) 303 (22·4%) 24 (9·2%) ··

3 73 (7·1%) 133 (5·8%) 95 (7·0%) 15 (5·7%) ··

4 34 (3·3%) 66 (2·9%) 23 (1·7%) 19 (7·3%) ··

5 34 (3·3%) 32 (1·4%) 5 (0·4%) 0 ··

Unknown 0 7 (0·3%) 1 (0·1%) 20 (7·6%) ··

Base percentage core involvement 14·5 (24·3) 17·3 (26·3) 15·6 (23·2) 11·5 (23·0) <0·0001

(Table 1 continues on next page)
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which measures the net benefit of each model. Net 
benefit is a weighted combination of true and false 
positives, where the weight is derived from the threshold 
probability at which a clinical decision is made (in this 
case, performing nerve-sparing).18

Alternative model development strategies
Additional models were developed to assess the effect of 
different training cohorts and feature sets on model 
performance. Firstly, a separate XGBoost model (named 
Academic SEPERA) was trained on an academic cohort 
(University Health Network) with the same variables as 
the final SEPERA model to examine the effect of model 
training using this dataset. This model was externally 
validated on the remaining cohorts. Secondly, another 
XGBoost model (named MRI SEPERA) was trained on 
the Paris cohort (L’Institut Mutualiste Montsouris). This 
model also included worst Prostate Imaging Reporting 
and Data System (PI-RADS) score and MRI findings 
(ie, normal, lesion but no ssEPE, or ssEPE) to investigate 

the effect of incorporating MRI-specific features on model 
performance. MRI SEPERA was externally validated on 
patients from the remaining cohorts who underwent 
preoperative MRI. The Trillium Health Partners cohort 
was excluded in the MRI SEPERA analysis since PI-RADS 
score was not reported, although the presence of lesions 
and ssEPE on MRI was mentioned.

Algorithmic audit
An algorithmic audit is a systematic approach previously 
described by Liu and colleagues to recognise and 
understand algorithmic errors or inaccurate predictions 
by AI models.10 The purpose of this audit is to identify 
deviations from expected performance to determine the 
overall safety of SEPERA. We focused on the testing 
stage of the audit, which includes patient-specific and 
task-specific subgroup analysis, as well as exploratory 
error analysis. Subgroup analysis was done by com­
paring AUROCs across clinically relevant subgroups to 
ensure that SEPERA was not biased against specific 

Training cohort Validation 1 cohort Validation 2 cohort Validation 3 cohort p value

(Continued from previous page)

Middle finding <0·0001

Benign 450 (44·0%) 977 (42·5%) 610 (45·1%) 120 (45·8%) ··

1 182 (17·8%) 513 (22·3%) 301 (22·3%) 57 (21·8%) ··

2 255 (25·0%) 449 (19·5%) 320 (23·7%) 38 (14·5%) ··

3 87 (8·5%) 144 (6·3%) 87 (6·4%) 11 (4·2%) ··

4 26 (2·5%) 68 (3·0%) 29 (2·1%) 13 (5·0%) ··

5 22 (2·2%) 25 (1·1%) 4 (0·3%) 3 (1·1%) ··

Unknown 0 124 (5·4%) 1 (0·1%) 20 (7·6%) ··

Middle percentage core involvement 16·5 (24·1) 18·0 (25·9) 16·0 (22·8) 12·3 (23·0) <0·0001

Apex findings <0·0001

Benign 581 (56·8%) 1078 (46·9%) 791 (58·5%) 152 (58·0%) ··

1 162 (15·9%) 535 (23·3%) 225 (16·6%) 48 (18·3%) ··

2 168 (16·4%) 372 (16·2%) 235 (17·4%) 21 (8·0%) ··

3 70 (6·8%) 118 (5·1%) 71 (5·3%) 12 (4·6%) ··

4 25 (2·4%) 41 (1·8%) 23 (1·7%) 9 (3·4%) ··

5 16 (1·6%) 21 (0·9%) 6 (0·4%) 0 ··

Unknown 0 135 (5·9%) 1 (0·1%) 20 (7·6%) ··

Apex percentage core involvement 14·4 (24·3) 15·3 (24·0) 12·6 (21·5) 7·5 (18·6) <0·0001

MRI findings <0·0001

Normal 33 (3·2%) 41 (1·8%) 545 (40·3%) 114 (43·5%) ··

Lesion but no ssEPE 15 (1·5%) 69 (3·0%) 724 (53·6%) 122 (46·6%) ··

ssEPE 2 (0·2%) 8 (0·3%) 83 (6·1%) 26 (9·9%) ··

Preoperative MRI not performed 972 (95·1%) 2182 (94·9%) 0 0 ··

ssEPE in the final prostatectomy specimen 327 (32·0%) 660 (28·7%) 375 (27·7%) 47 (17·9%) 0·0001

Benign ipsilateral biopsy but ssEPE 34 (3·3%) 50 (2·2%) 50 (3·7%) 6 (2·3%) 0·037

Data are n, median (IQR), n (%), or mean (SD), unless otherwise specified. PSA density is determined by dividing PSA concentration by prostate volume. D’Amico risk group 
is a classification system to determine overall aggressiveness of prostate cancer based on PSA concentration, clinical stage, and prostate biopsy grade. The ISUP grade is a 
standardised grading system for prostate cancer based on histopathological features. Statistical significance for numerical variables were determined by Kruskal-Wallis test 
or ANOVA, while categorical variables were determined by χ2 test. All p values were based on whether the features for any cohort differed significantly from the others 
(ie, training vs validation 1 vs validation 2 vs validation 3). ISUP=International Society of Urological Pathology. PSA=prostate-specific antigen. ssEPE=side-specific 
extraprostatic extension.

Table 1: Baseline characteristics at the prostatic lobe level for each cohort
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patient populations. The minimum p value for all 
pairwise comparisons in each subgroup was reported. 
Patient-specific subgroups included age group, race, 
and biopsy year. Task-specific subgroups included 
location of biopsy (academic vs community, for 
validation cohort 1), biopsy method (systematic only vs 
systematic and MRI-targeted, for patients with pre-
biopsy MRI), and D’Amico risk group.19 Exploratory 
error analysis of SEPERA was done by comparing 
baseline characteristics of correct predictions, false 
negatives, and false positives on the validation cohorts 
to determine specific clinicopathological features that 
might be more prone to inaccurate predictions. For this 
analysis, SEPERA was set to a threshold probability to 
target a sensitivity of 95% in the training cohort.

Role of the funding source
There was no funding source for this study.

Results 
Overall, 2468 patients comprising 4936 cases (ie, 
prostatic lobes) were included in this study, with the 
prevalence of ssEPE ranging from about 18% to 32% 
(depending on cohort). The baseline characteristics, 
according to cohort of origin, are summarised in table 1. 
These cohorts were diverse and significant differences 
were observed for almost all features. In total, 140 (2·8%) 
of 4936 cases had pathological ssEPE despite benign 
ipsilateral biopsies.

Use of preoperative MRI varied across institutions, 
ranging from 5% to 100%. Of patients who received 
preoperative MRI (1782 [36·1%] of 4936 cases), only 
64 (13·7%) of 468 cases with pathological ssEPE were 
suspected to have ssEPE on MRI (sensitivity of 14%). By 
contrast, 1259 (95·8%) of 1314 cases with organ-confined 
disease did not demonstrate any evidence of ssEPE on 

imaging (specificity of 96%; appendix p 8). Overall, 
ssEPE seen on preoperative MRI corresponded to a 
positive predictive value of 54% for pathological ssEPE.

SEPERA was trained on 11 (55%) of 20 candidate 
features (age, PSA density, highest ISUP grade, 
perineural invasion, percentage of positive cores, percen­
tage of Gleason pattern 4 or 5, maximum percentage core 
involvement, base finding, base percentage core involve­
ment, middle percentage core involvement, and apex 
percentage core involvement). Model explanations using 
SHAP are provided to illustrate which features are most 
important overall (appendix p 15) and the individual 
effect of each feature on the probability of ssEPE 
(appendix p 16). The five most important features are 
base percentage core involvement, maximum percentage 
core involvement, perineural invasion, base finding, and 
percentage of Gleason pattern 4 or 5.

SEPERA performed favourably compared with existing 
nomograms across all cohorts (table 2). Similarly, SEPERA 
outperformed the logistic regression model trained on the 
same features included in SEPERA (appendix p 17). On 
the ten-fold stratified cross-validation of the training 
cohort, SEPERA achieved an AUROC of 0·80 (95% CI 
0·77–0·82) and AUPRC of 0·69 (0·63–0·72). For the 
validation cohorts, SEPERA achieved a pooled AUROC of 
0·77 (0·75–0·78) and AUPRC of 0·61 (0·58–0·63). 
SEPERA was also better calibrated on the validation 
cohorts than the other nomograms (figure 1). Individual 
calibration curves for each validation cohort are provided 
in the appendix (p 18).

Regarding alternative model development strategies, 
Academic SEPERA achieved a pooled AUROC of 0·75 
(95% CI 0·73–0·77) and AUPRC of 0·59 (0·55–0·62), 
with individual validation cohort AUROCs ranging 
from 0·73 to 0·79 (appendix p 10). MRI SEPERA 
achieved a pooled AUROC of 0·72 (0·65–0·79) and 

SEPERA Logistic regression Sayyid Soeterik non-MRI Soeterik MRI

AUROC

Training cohort 0·80 (0·77–0·82)* 0·80 (0·77–0·82)* 0·77† (0·74–0·79) 0·74‡ (0·71–0·77) 0·70‡ (0·66–0·73)

Validation 1 cohort 0·78 (0·76–0·79)* 0·76‡ (0·74–0·79) 0·77‡ (0·75–0·79) 0·74‡ (0·72–0·76) 0·70‡ (0·67–0·72)

Validation 2 cohort 0·75 (0·73–0·78)* 0·75 (0·72–0·78)* 0·71‡ (0·67–0·74) 0·69‡ (0·66–0·73) 0·69‡ (0·66–0·72)

Validation 3 cohort 0·77 (0·71–0·82)* 0·76 (0·68–0·83) 0·76 (0·67–0·84) 0·72† (0·63–0·80) 0·71† (0·62–0·79)

Combined validation cohort 0·77 (0·75–0·78)* 0·75‡ (0·74–0·77) 0·75‡ (0·73–0·76) 0·72‡ (0·70–0·74) 0·69‡ (0·68–0·71)

AUPRC

Training cohort 0·69 (0·63–0·72)* 0·68 (0·63–0·72) 0·65† (0·61–0·70) 0·63‡ (0·58–0·67) 0·53‡ (0·47–0·59)

Validation 1 cohort 0·64 (0·61–0·67)* 0·62‡ (0·59–0·65) 0·63‡ (0·59–0·66) 0·57‡ (0·54–0·61) 0·48‡ (0·44–0·51)

Validation 2 cohort 0·57 (0·52–0·62)* 0·55† (0·50–0·59) 0·51‡ (0·47–0·56) 0·50‡ (0·45–0·54) 0·48‡ (0·44–0·52)

Validation 3 cohort 0·47 (0·34–0·59)* 0·46 (0·32–0·61) 0·42 (0·30–0·55) 0·36 (0·26–0·48) 0·35 (0·24–0·47)

Combined validation cohort 0·61 (0·58–0·63)* 0·58‡ (0·55–0·61) 0·57‡ (0·54–0·60) 0·53‡ (0·50–0·55) 0·46‡ (0·44–0·49)

Data are AUROC (95% CI) or AUPRC (95% CI). Performance metrics for the training cohort were determined based on stratified ten-fold cross validation. Statistically 
significant differences between SEPERA and existing nomograms are shown. All 95% CIs and p values were determined using 10 000 bootstrap samples with replacement. 
AUROC=area under the receiver operating-characteristic curve. AUPRC=area under the precision-recall curve. SEPERA=Side-specific Extra-Prostatic Extension Risk Assessment 
tool. *Best performing models for each cohort. †p<0·05. ‡p<0·01.

Table 2: Discriminative performance of all models based on AUROC and AUPRC
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AUPRC of 0·41 (0·31–0·54), with individual validation 
cohort AUROCs ranging from 0·70 to 0·74 (appendix 
p 11). Given these results, the original SEPERA model 
was selected as the final model for further analysis.

Using the prespecified threshold probability to target a 
sensitivity of 95% in the training cohort, SEPERA 
achieved a sensitivity of 93% in the combined validation 
cohort. Of 106 cases in the validation cohorts with 
pathological ssEPE despite benign ipsilateral biopsies, 
ssEPE was correctly predicted in 72 (68%; SEPERA), 
47 (44%; logistic regression), 0 (0%; Sayyid), 13 (12%; 
Soeterik non-MRI), and five (5%; Soeterik MRI) cases.

Decision curve analysis was done to help contextualise 
the benefits of implementing SEPERA in clinical 
practice. Overall, SEPERA had a higher net benefit for 
clinically relevant thresholds between 15% and 30%, 
which means more patients would safely undergo a 
nerve-sparing approach if SEPERA was used instead of 
other nomograms (figure 2). Individual net benefit 
curves for each validation cohort are provided in the 
appendix (p 19). Using a threshold probability of 20%, 
seven (logistic regression), 23 (Sayyid model), 52 (Soeterik 
non-MRI model), and 75 (Soeterik MRI model) more 
patients would correctly receive a nerve-sparing 
prostatectomy per 1000 cases if SEPERA was used 
instead (appendix p 9).

Patient-specific and task-specific subgroup analysis 
was performed to evaluate model fairness across 
clinically relevant subgroups. SEPERA achieved com­
parable AUROCs across all age groups (0·77 for 
<55 years, 0·79 for 56–65 years, 0·76 for 66–75 years, and 
0·73 for >75 years; p>0·086) and races (0·77 for White, 
0·74 for Black, 0·80 for Hispanic, and 0·78 for Asian; 
p>0·19; figure 3). Furthermore, its performance 
remained stable across biopsy periods (0·78 for 2010 and 
before, 0·74 for 2011–12, 0·80 for 2013–14, 0·77 for 
2015–16, 0·77 for 2017–18, and 0·76 for 2019–20; p>0·13). 
In subgroup analyses of validation cohort 1, patients who 
underwent prostate biopsy at a community site (989 [43%] 
of 2300 cases) had equivalent AUROCs to those biopsied 
at the University Health Network (0·77 vs 0·78; p=0·76). 
For patients who underwent preoperative MRI, no 
difference in AUROC was observed between patients 
who underwent both systematic and MRI-targeted biopsy 
(607 [34%] of 1782 cases) or systematic biopsy alone 
(0·74 vs 0·74; p=0·91). Similarly, no difference in 
AUROC was observed when stratified by D’Amico risk 
group (0·74 for low risk, 0·75 for intermediate risk, and 
0·79 for high risk; p>0·051).

On exploratory error analysis of the combined 
validation cohort, we found that 96% of errors were false 
positives. These cases tended to be older patients with 
higher PSA concentrations, PSA density, percentage of 
Gleason pattern 4 or 5 disease, and either intermediate-
risk or high-risk disease (appendix p 12). Among the false 
negatives, no cases with an ISUP grade of more than 2 
were included.

Discussion
Accurate prediction of ssEPE preoperatively in patients 
undergoing radical prostatectomy is essential to tailor 
nerve-sparing strategy at the time of surgery. New 
AI tools should be clinician-friendly and evaluated 
against existing clinical and logistic regression models.7 
In our study, we have developed and externally validated 
SEPERA—an explainable AI model to predict ssEPE—on 
large, multi-institutional cohorts. SEPERA performs 
favourably, demonstrates better calibration, and provides 

Figure 1: Calibration of all models on the combined validation cohorts by measuring the degree of agreement 
between the predicted and observed risk of ssEPE by deciles
A perfectly calibrated model corresponds to a 45-degree line. ssEPE=side-specific extraprostatic extension. 
SEPERA=Side-specific Extra-Prostatic Extension Risk Assessment tool.
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greater net benefit than contemporary nomograms and 
the logistic regression model, which suggests that 
AI approaches might provide some additional 
performance benefit when applied to the appropriate 
clinical context. SEPERA is an important step towards 
integrating AI into clinical practice at the time of patient 
counselling to better inform clinical decision making 
and operative planning.

SEPERA might also be useful in selecting appropriate 
candidates for contralateral nerve-sparing in the setting 
of unilateral high-risk prostate cancer, which is a 
challenging clinical scenario without clear guideline 
recommendations. Martini and colleagues20 recently 
developed a χ² automated interaction detection (CHAID) 
model to predict contralateral ssEPE in patients with 
unilateral high-risk disease. In a model of 705 patients 
with unilateral high-risk disease, including 88 (12%) with 
contralateral ssEPE, their model achieved an AUROC 

of 0·72 and showed higher net benefit compared with 
the Soeterik MRI model. From our study cohort, 
736 patients met the same eligibility criteria, including 
315 (43%) with ssEPE. In this subgroup, SEPERA 
achieved an AUROC of 0·74, compared with 0·73 
(logistic regression), 0·74 (Sayyid), 0·72 (Soeterik 
non-MRI), and 0·69 (Soeterik MRI; data not shown). 
However, a direct comparison with the CHAID model 
was not possible since data for MRI index lesion diameter 
was not available in our dataset.

To the best of our knowledge, our study is the first to 
apply an algorithmic audit to an AI model in prostate 
cancer to characterise its risks and biases, which are two 
important but understudied metrics to evaluate the 
safety and fairness of prediction models.10,21 SEPERA 
performed well despite the heterogeneity in baseline 
characteristics among the validation cohorts. Further­
more, no differences in performance were observed 

Figure 3: Bias assessment of all models by comparing AUROC across clinically relevant subgroups
Error bars are 95% CIs. AUROC=area under the receiver operating characteristic curve. SEPERA=Side-specific Extra-Prostatic Extension Risk Assessment tool. 
*Significant differences (p<0·05).
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when stratified by age group, race, year of biopsy, 
whether MRI findings were used to perform MRI-
targeted biopsies, and D’Amico risk group. SEPERA also 
performed equally well regardless of whether patients 
underwent their biopsy at academic or community 
hospitals. These findings provide strong evidence for the 
generalisability of this model regardless of practice 
setting.

Predictive errors were also investigated with the 
algorithmic audit to understand model behaviour. We 
found that sensitivity remained stable on external vali­
dation datasets at the prespecified threshold probability 
(93% compared with 95% on training data). Most errors 
were false positives, particularly for older patients with 
high-risk disease. However, older age and preoperative 
erectile function might have a greater effect on potency, 
irrespective of nerve-sparing technique. In a retrospective 
study of 3126 patients who received bilateral nerve-
sparing, erections sufficient for intercourse declined 
with age (70·3% for those <65 years, 54·0% for those 
65–70 years, 49·0% for those 70–75 years, 37·5% for 
those >75 years; p<0·001).22 Furthermore, patient 
preference regarding nerve-sparing might change with 
older age. Lavery and colleagues23 showed that when the 
decision for nerve-sparing was deferred to patient choice, 
those with lower risks of ssEPE who declined nerve-
sparing tended to be older. This finding suggests that 
although nerve-sparing is an individual choice, this 
decision might be less relevant in older patients, as 
maintaining postoperative potency, potentially at the cost 
of margin status, might be less of a concern. However, no 
cases with high-grade disease (ISUP grade >2) were 
included in false negatives. This observation is consistent 
with a previous systematic review that found that 
biochemical recurrence, a surrogate marker for prostate 
cancer progression, was significantly higher in patients 
with ISUP grade 3–5 disease at positive surgical margins 
compared with ISUP grade 1–2.24 The false-positive rate 
of SEPERA should also be placed into clinical context. 
Our previous study and others found that when patients 
were asked to weigh their oncological risk against their 
potency, they chose to decline nerve-sparing when their 
risk of ssEPE is between 15% and 30%, which 
corresponds to accepting a false-positive rate of at 
least 70%.12,16 Taken together, we demonstrated the safety 
of SEPERA by highlighting that the most common errors 
were not deemed clinically significant.

The generalisability of SEPERA might be attributed to 
the use of a multi-institutional community-based cohort 
for model training. By contrast, other nomograms 
included in this study were derived from single tertiary 
referral centres. These cohorts might be less repre­
sentative of the overall prostate cancer population 
because of the inclusion of high-risk and complex 
patients in these academic centres. Indeed, retraining 
SEPERA on an academic cohort (University Health 
Network) resulted in a greater variation in performance 

across external validation sets (AUROC 0·73–0·79) 
compared with training on a community cohort (Trillium 
Health Partners). These findings align with recent work 
by Ötleş and colleagues25 that showed that models trained 
on regional cohorts outperform those developed using 
data from tertiary care centres to predict adverse 
pathological outcomes in patients that have undergone 
prostatectomy.25

In recent years, incorporation of MRI findings into 
newer ssEPE models has become more common, with 
the most robust model to date being the Soeterik MRI 
model (AUROC 0·77–0·83).16,17 However, this model 
underperformed in all metrics in our study. We found 
that MRI had a low sensitivity but high specificity in 
detecting ssEPE. Similarly, Soeterik and colleagues16 
showed that MRI had a sensitivity of 37%, specificity 
of 93%, and positive predictive value of 59%. These 
findings are consistent with a previous meta-analysis 
that reported a pooled sensitivity of 57%.26 Although wide 
variability in MRI use existed across the study cohorts, 
we also retrained SEPERA on validation cohort 2 
(L’Institut Mutualiste Montsouris, Paris) to include both 
worst PI-RADS score and MRI findings. This MRI 
SEPERA model performed poorly on patients in the 
other cohorts with preoperative MRI available (AUROC 
0·70–0·74). Overall, use of MRI alone is inadequate to 
detect ssEPE, particularly focal ssEPE (few extraprostatic 
cancer glands on 1–2 slides27). Interpretation of prostate 
MRIs is also strongly influenced by radiological expertise, 
which might limit its applicability in non-tertiary 
settings. Therefore, although MRI remains an integral 
part of the pre-prostatectomy workup, its role in guiding 
nerve-sparing strategy might be limited and cannot 
replace the use of clinicopathological features.

Our study has limitations that merit discussion. First, 
although SEPERA achieved an AUROC of 0·77 on the 
combined validation cohort and is a step forward 
compared with existing tools, room for further 
improvement exists. Further studies are also needed to 
determine whether the incremental performance benefits 
provided by SEPERA translates to clinically meaningful 
improvements in oncological and functional outcomes. 
Second, MRI use was variable and MRI features included 
in our dataset were limited, which might impact 
SEPERA’s utility in current practice. This use of simple 
MRI features was done for several reasons: to standardise 
data capture across multiple institutions over a long study 
period, to ensure consistency of MRI features with the 
Soeterik MRI model, and to decrease model complexity to 
improve applicability. With the widespread use of MRI in 
prostate cancer assessments, future models would benefit 
from incorporating more granular MRI features such as 
tumour capsular contact length, irregular or spiculated 
margins, bulging prostatic contour, or even deep-learning 
analysis of the MRI images to improve predictive 
accuracy.28,29 Third, our study lacked standardisation of the 
type of biopsy (ie, systematic only vs systemic and MRI 
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targeted), which provider performed the biopsy 
(ie, urologists vs radiologists), and central histopathological 
review, which might affect the quality of the biopsy itself 
and pathological reporting. These factors probably lead to 
more conservative performance estimates. Despite this 
limitation, we demonstrated that SEPERA performed 
well across multiple clinically relevant subgroups, 
including type of biopsy. Furthermore, SEPERA out­
performed existing nomograms across several diverse 
validation cohorts, which strengthens its use in real-world 
clinical settings. Fourth, inclusion of MRI-targeted 
biopsies might influence the value of percentage positive 
cores because of additional sampling of suspicious 
regions. However, we specifically did a bias assessment to 
examine this issue and found that among patients who 
received preoperative MRI, no difference was observed in 
performance between those who underwent systematic 
biopsy only versus systematic and MRI-targeted biopsy. 
These results suggest that heterogeneity in biopsy 
approaches did not affect performance of SEPERA. Fifth, 
we did not specify location of ssEPE (ie, base, middle, or 
apex) or distinguish between focal versus established 
ssEPE, and whether the former correlates with positive 
surgical margins is unclear. Sixth, our study only included 
patients who had transrectal prostate biopsies, thus its 
performance on patients undergoing transperineal biopsy 
remains unknown. Because of differences in directionality 
of the biopsy needle, regions sampled transperineally are 
different from those sampled through the transrectal 
approach. As transperineal biopsies are increasingly 
being adopted worldwide, we are currently developing 
AI models using both approaches to investigate any 
performance differences compared with SEPERA, which 
was trained on exclusively transrectal biopsies. Seventh, 
our data for race are imperfect as they were either 
abstracted from clinical notes or determined based on 
first and last names (appendix p 4). However, the 
evaluation of racial bias in predictive models is a major 
unmet need in the medical literature.30 Therefore, to 
ensure that SEPERA did not systematically disadvantage 
against specific patient populations, we believe that it was 
clinically important to report an estimation of model 
performance when stratified by race. Finally, our overall 
cohort was predominantly White, which is comparable to 
other national cancer databases (appendix p 13). However, 
we attempted to address this limitation by training 
SEPERA on the most racially diverse cohort of the group 
(Trillium Health Partners). Additional work is being done 
to further evaluate SEPERA on a more diverse group of 
patients.

In summary, we developed and externally validated an 
AI-based Side-specific Extra-Prostatic Extension Risk 
Assessment tool (SEPERA). This study is also the first to 
compare the fairness and safety of a prostate cancer 
model with existing ssEPE models using an algorithmic 
audit. We showed that SEPERA performs favourably and 
is less prone to bias compared with existing nomograms 

on diverse multi-institutional cohorts. Furthermore, we 
demonstrated that MRI has poor sensitivity in detecting 
ssEPE and overreliance on this imaging modality might 
miss focal ssEPE cases. Taken together, we provide 
strong evidence to support the use of SEPERA to person­
alise a side-specific nerve-sparing approach during 
radical prostatectomy. Future work to understand the 
model’s effect on clinical decision making and patient 
outcomes in real-world practice are underway. 
Additionally, we plan to apply this model on patients who 
underwent transperineal biopsies, as this approach is 
increasingly used to minimise complications compared 
with the conventional transrectal route.
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