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Abstract: Vaping electronic cigarettes (e-cigarettes) has become a popular alternative to smoking
tobacco. When an e-cigarette is activated, a liquid is vaporized by heating, producing an aerosol that
users inhale. While e-cigarettes are marketed as less harmful than traditional cigarettes, there are
ongoing concerns about their long-term health effects, including potential lung damage. Therefore, it
is essential to closely monitor and study the composition of e-liquids. E-liquids typically consist of
propylene glycol, glycerin, flavorings and nicotine, though there have been reports of non-compliant
nicotine concentrations and the presence of illegal additives. This study explored spectroscopic
techniques to examine the conformity of nicotine labeling and detect the presence of the not-allowed
additives: the caffeine, taurine, vitamin E and cannabidiol (CBD) in e-liquids. A total of 236 e-liquid
samples were carefully selected for analysis. Chemometric analysis was applied to the collected data,
which included mid-infrared (MIR) and near-infrared (NIR) spectra. Supervised modeling approaches
such as partial least squares-discriminant analysis (PLS-DA) and soft independent modeling of class
analogy (SIMCA) were employed to classify the samples, based on the presence of nicotine and the
targeted additives. This study demonstrates the efficacy of MIR and NIR spectroscopic techniques in
conjunction with chemometric methods (SIMCA and PLS-DA) for detecting specific molecules in
e-liquids. MIR with autoscaling data preprocessing and PLS-DA achieved 100% classification rates
for CBD and vitamin E, while NIR with the same approach achieved 100% for CBD and taurine.
Overall, MIR combined with PLS-DA yielded the best classification across all targeted molecules,
suggesting its preference as a singular technique.

Keywords: e-liquids; spectroscopic techniques; chemometric techniques; data analysis

1. Introduction

In the early 2000s, Hon Lik, a Chinese chemist, developed and obtained patents for
the technology behind e-cigarettes. He developed it as an alternative to traditional tobacco
cigarettes, with a reduced risk of cancer. As worldwide cigarette consumption declined
due to anti-smoking regulations, large multinational tobacco companies recognized the
potential of e-cigarettes to generate substantial profits in the future. They initiated global
marketing campaigns promoting e-cigarettes as healthier alternatives to smoking, effective
tools for smoking cessation, or as a means to reduce overall cigarette consumption. As
a result, the use of e-cigarettes has significantly increased on a global scale over the past
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decade, with current estimates suggesting that there are more than 55 million individuals
who use e-cigarettes, commonly referred to as “vaping products” [1,2].

The primary mechanism of an e-cigarette involves the vaporization of an e-liquid
through an atomizer, resulting in the formation of an aerosol. This aerosol comprises
microscopic particles derived from the e-liquid and the atomizer. The composition of the
e-liquid primarily consists of propylene glycol, (vegetable) glycerin, and nicotine, with the
addition of food-grade flavorings as supplementary additives.

E-cigarettes have gained popularity as a potential substitute for smoking cessation,
primarily due to their resemblance to traditional cigarettes and the perception of delivering
nicotine in a more realistic manner. Some research studies, such as the one conducted by
Hajek et al. (2019) [3], suggest that e-cigarettes could be helpful in aiding individuals to
quit smoking. However, there is an ongoing debate surrounding the safety of e-cigarettes,
primarily due to the limited availability of long-term safety data. Several studies have
raised concerns about the general safety of e-cigarettes. One significant risk associated with
using e-cigarettes as a smoking cessation aid is the possibility that individuals may replace
traditional cigarettes with e-cigarettes and continue using them for an extended period,
believing them to be harmless. This is particularly of concern among young individuals
who have never smoked before, as it may make e-cigarettes more appealing, create a false
sense of security, and potentially serve as a gateway to other substances, as suggested by
Wadgave and Nagesh (2016) [4].

Legislation regarding these e-liquids varies from country to country. In some countries
they are considered as consumer products, while at the European level, the Tobacco
Products Directive 2014/40/EU (TPD) was revised by the European Parliament in 2014
to ensure the quality and safety of products. It has since added a set of rules governing
e-cigarettes, considering nicotine-containing e-liquids as tobacco products in the European
Union (EU). A number of stricter regulations regarding e-cigarette product promotion,
packaging, and warning labels, as well as capped maximum amounts for cartridges and
e-liquids, are included in the amended TPD. Additionally, in some countries like Belgium,
legislation does not allow the sale and purchase of e-liquids through the internet. Indeed,
in the new Royal Decree, nicotine-free products are also not allowed to be sold online. A
problem with e-liquids is the label conformity for the nicotine content and the additives, like
caffeine, taurine, vitamins and CBD (when combined with nicotine), which are banned by
the authorities [5–8]. Control of manufacturer claims regarding nicotine concentration and
delivery is particularly glaring in this regard. Before putting their items on the EU market,
manufacturers must also notify the relevant authorities. Moreover, more stringent criteria
are proposed for the substances found in e-liquids, making chemical characterization of
these compounds necessary to monitor compliance with the TPD and to regulate the quality
of the goods on the market (European Parliament and the Council of the European Union,
Directive 2014/40/EU) [5].

Nowadays, nicotine and additives in e-liquids are determined using techniques such
as polarographic analysis [9], atomic absorption spectrometry, liquid chromatography
UV [10], UV spectrophotometry [11], and gas chromatography [12]. These techniques have
some disadvantages, like cumbersome processing of the samples, high cost and the need to
be performed in a laboratory. However, for inspectors to know which samples to seize, a
convenient on-site method for characterizing e-liquids, i.e., nicotine content and additive
content, is necessary. Due to its distinct benefits, (near-)infrared spectroscopy technology
has recently been widely used in various industries [13]. It has demonstrated already its
efficacy in the identification of active pharmaceutical ingredients in medications [14–16], as
well as illicit ingredients in cosmetics and nutritional supplements [16]. Up till now, there
are not many reports on its usage for e-cigarettes.

FTIR (Fourier-Transform Infrared) spectroscopy is a powerful technique that oper-
ates in the infrared region of the electromagnetic spectrum. It utilizes an interferometer
to measure the spectrum simultaneously, providing high-resolution data. This makes
FTIR spectroscopy well suited for structural characterization and the identification of com-
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pounds. Its ability to provide detailed information about chemical bonds and functional
groups makes it valuable in various fields such as organic chemistry, materials science, and
pharmaceutical analysis. Additionally, FTIR spectroscopy allows for quantitative analysis,
making it useful for determining the concentration of components in a sample. It requires
minimal sample preparation and can provide accurate results, even with small sample
sizes [17–20]. Mid-Infrared (MIR) spectroscopy operates in the mid-infrared region. It
focuses on the fundamental vibrations of chemical bonds, which occur in this region [21,22].
Near-Infrared (NIR) spectroscopy on the other hand, covers the near-infrared region of the
electromagnetic spectrum. It involves measuring the absorption and reflection of NIR light
by samples. The NIR region contains overtone and combination bands, which provide
information about the chemical composition of a sample. NIR spectroscopy is commonly
used in the pharmaceutical industry, agriculture, and food analysis [23]. It is valuable
for assessing chemical properties like moisture content, protein, fat, and sugar levels in
samples. Additionally, NIR spectroscopy can be used for qualitative and quantitative
analysis, making it a versatile tool for composition analysis [24].

In this research, the use of MIR and NIR spectroscopy was explored, in combination
with chemometric modeling, which allowed for the identification and detection of nicotine
and different additives in the e-liquids.

2. Materials and Methods
2.1. E-Liquid Sample Set

A total of two hundred and thirty-six (236) samples were collected for analysis. These
samples were obtained from inspections conducted by federal government authorities at
various vaping shops in Belgium, as well as from the interception of post packages ordered
online. To maintain sample integrity, all collected samples were stored under controlled
conditions. Specifically, they were stored at room temperature (15 to 25 ◦C) and protected
from light.

The samples were all screened for the presence of nicotine and illegal additives, using
accredited gas chromatography—mass spectrometry and liquid chromatography—high-
resolution mass spectrometry approaches [25]. These results can be found in Supplementary
Table S1.

2.2. Reagents and Chemicals

USP Grade Nicotine 99.9% was purchased from Vaping Zone (Columbia, SC, USA).
α-Tocopherol (≥96%) and taurine (≥99%) were obtained from Sigma Aldrich (St. Louis,
MO, USA). Caffeine and CBD (100.0% purity) were purchased from Fagron (Nazareth,
Belgium) and ethanol (99.9%) from Biosolve (Valkenswaard, The Netherlands).

2.3. Sample Preparation

For this study, a series of e-liquids were spiked with pure taurine, CBD, vitamin E and
caffeine, following the subsequent steps. Firstly, stock solutions of each compound were
prepared individually, as shown in Table 1. To spike the e-liquid, the desired amount of
the e-liquid sample was brought, in a clean vial. Spiked samples were prepared by spiking
zero-liquid samples with the required volumes of additive stock solutions to achieve the
desired spiked concentrations in the e-liquid, as shown in Table 1. The spiked e-liquid was
thoroughly mixed using a vortex mixer or gently shaken to ensure uniform distribution of
the compounds. Control samples were prepared by adding the corresponding volume of
solution, but free of additive.
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Table 1. Concentrations of stock solutions and spiking concentrations from each stock solution for
the different additives.

Additive Compounds Solvent Concentrations of Stock Solutions Spiking Concentrations

CBD Ethanol (100%) 5 mg/mL 3.5–19.5% m/m [26]
Vitamin E Ethanol (100%) 15 mg/mL 500–2000 mg/kg or ppm [27]

Taurine Milli Q water 20 mg/mL 100 mg/L–10,000 mg/L [28]
Caffeine Milli Q water 0.25 mg/mL 20–100 ppm [29]
Nicotine e-liquid matrix 100 mg/mL 0–25 mg/mL

2.4. Data Acquisition
2.4.1. MIR

Utilizing a Nicolet iS10 FTIR spectrometer (ThermoFisher Scientific, Waltham, MA,
USA) with a Smart iTR accessory and a deuterated triglycine sulphate (DTGS) detector,
MIR spectra were acquired. The Smart iTR attachment, employing a singular-bounce
diamond crystal, underwent a weekly calibration procedure involving a polystyrene film
standard. Subsequent to the instrumentation setup, infrared (IR) spectra spanning the
wavenumber range from 4000 to 400 cm−1 were systematically recorded. Each spectrum
entailed 32 accumulative scans at a spectral resolution of 4 cm−1. The acquired spectral
datasets underwent processing using OMNIC software version 8.3, developed by Ther-
moFisher Scientific, Madison, WI, USA. Post data acquisition, the employed diamond
crystal underwent meticulous cleaning through a sequential procedure involving methanol-
soaked soft-tissue cleaning and subsequent air drying. Prior to evaluating each analyte, a
blank measurement was executed to assess the crystal’s susceptibility to contamination and
carry-over effects. Criteria for contamination, as defined by the European Directorate for
the Quality of Medicines and HealthCare (EDQM) (2007) [30] were rigorously adhered to.
Furthermore, in the pursuit of sustained instrument precision, hourly background spectra
against ambient air were consistently recorded and accounted for.

2.4.2. NIR

All samples underwent scanning, utilizing a Frontier MIR/NIR Spectrometer™
(PerkinElmer, Waltham, MA, USA). Reflectance mode was employed to measure spec-
tra using the NIR Reflectance Accessory, employing an 8 cm−1 resolution within the
10,000–4000 cm−1 range. These spectra were generated by averaging 16 scans. For each
replicate, background spectra were gathered with the assistance of a diffuse reflector
from PerkinElmer. The background was captured between individual samples. To cap-
ture the spectra, background subtraction was conducted, and arithmetic functions were
employed to correct for background influences.

3. Chemometric Methods

The general steps of the procedure followed during the data or chemometric analysis
of the collected (N)IR data are represented in Figure 1.

3.1. Data Preprocessing

Data preprocessing in chemometrics for IR spectroscopy involves a series of steps,
undertaken to enhance the quality and reliability of the spectral data. Figure 1 illustrates
the main steps involved in the data analyses. Baseline correction was performed in the MIR
and NIR software to address baseline drift or curvature caused by instrumental or envi-
ronmental factors, ensuring accurate representation of the spectral features. Wavelength
range selection was carried out in NIR spectroscopy using its software (Frontier MIR/NIR
Perkin Elmer, Waltham, MA, USA), which focused on relevant regions of the spectrum that
contained the most meaningful chemical information for the specific analysis. Then the
other steps were carried out in Matlab. Normalization methods were used to eliminate
intensity variations arising from sample concentration or instrumental factors, allowing for
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fair comparisons between spectra. In this study, autoscaling and standard normal variate
(SNV) were explored. Derivative transformations were employed to enhance spectral fea-
tures and resolve overlapping peaks, enabling better characterization and analysis [31,32].
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Figure 1. General steps involved in the application of chemometrics methods to treat near- and
mid-infrared spectral data.

3.2. Selection of Training and Test Set

For model validation, an external test set needs to be chosen to assess the performance
of the models developed. In this study, the Duplex algorithm was utilized (Figure 1). This
method is designed to ensure that the test set represents the entire original dataset and is
uniformly distributed across the data space [33]. The Duplex algorithm relies on Euclidean
distances to select samples in pairs. It starts by identifying the two samples with the highest
Euclidean distance between them, and assigns them to the first set. Subsequently, another
pair of samples with the highest Euclidean distance is chosen and added to the test set.
This iterative process continues until the desired number of samples is obtained for the test
set. The first set and the remaining samples that were not selected form the training set [33].
Approximately 20% of the total samples were allocated to the test set for external model
validation, while the remaining 80% (the training set) were used to construct the models.
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3.3. Soft Independent Modeling of Class Analogy (SIMCA)

SIMCA is a supervised classification technique that focuses on emphasizing the sim-
ilarity within classes, rather than the discrimination between classes. This approach is
known as disjoint-class modeling. In SIMCA, each class is modeled separately, using
principal component analysis (PCA) [34]. The modeling process involves constructing a
space around the training samples of each class. This space is defined using two distance
measures: Euclidean distance towards the SIMCA model and the Mahalanobis distance
determined in the space of scores. The Euclidean distance measures how close a new
sample’s projection is to the SIMCA model of a particular class, while the Mahalanobis
distance takes into account the correlations between variables and calculates the distance
relative to the covariance structure of the class [35]. When a new sample is analyzed, its
projection is compared to the defined spaces around the training samples of each class.
If the projection falls within the space defined around the training samples of a specific
class, the new sample is assigned to that class. The advantage of SIMCA is its ability to
handle complex datasets with multiple classes, by building separate models for each class.
This approach allows for the capture of the inherent variability within each class, and for
making reliable predictions or classifications based on the proximity of new samples to the
existing class models [36,37].

3.4. Partial Least Squares (PLS)

PLS is a supervised projection technique that shares similarities with PCA. In PLS,
latent variables are derived as linear combinations of the observed variables, defined to
maximize the covariance with a specific response variable. PLS is commonly used for
regression tasks, where the response variable is continuous, such as dosage or concentra-
tion. PLS-discriminant analysis (PLS-DA) is a variation of PLS, specifically designed for
classification tasks. It allows working with categorical response variables, enabling the use
of PLS as a classification technique. PLS-DA is widely employed for pattern recognition
and classification problems [38,39].

3.5. Software

In this study, all data treatments were performed using Matlab version R2019b,
a software package for scientific and numerical computing. The ChemoAC toolbox
version 4.1, developed by the ChemoAC Consortium in Brussels, Belgium, was used
for the SIMCA and PLS algorithms, and PCA was conducted utilizing the PLS toolbox
from Eigenvector Research, Inc., Manson, WA, USA.

4. Results and Discussion
4.1. Qualitative Models

Qualitative models were constructed using the spectra of all samples in the sample
set. Initially, PCA was applied to explore the potential discriminatory capability between
samples containing the targeted compound and other samples within the dataset (results
not shown). Subsequently, binary supervised classification models were developed, using
both SIMCA and PLS-DA. The sample set was categorized into five distinct groups of
samples, i.e., nicotine-containing samples, caffeine-containing samples, taurine-containing
samples, vitamin E-containing samples and finally CBD-containing samples. The objective
of these models was to effectively classify and distinguish samples, based on the presence
of the targeted molecules. Tables 2 and 3 and Figures 2 and 3 show for each combination of
spectroscopic technique, chemometric technique and target molecule, the performance of
the best model obtained and their sensitivity, precision and specificity. For the ideal model,
values for sensitivity, precision and specificity would be 1.00.
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Table 2. Comprehensive overview of the performance of MIR and NIR, data pretreatment methods, and SIMCA in the classification of various target molecules.

Spectroscopic
Technique

Data
Pretreatment

Chemometric
Technique Target Molecule Samples in

External Test Set

Correctly
Classified Samples
(External Test Set)

Samples in
Training Set

Correct
Classification Rate
(Cross-Validation)

2nd derivative Nicotine 48 83% (40/48) 188 81% (153/188)
Autoscaling CBD 48 98% (47/48) 188 95% (178/188)

MIR 1st derivative SIMCA Vit E 48 92% (44/48) 188 97% (182/188)
Autoscaling Taurine 48 96% (46/48) 188 88% (166/188)

1st derivative Caffeine 48 92% (44/48) 188 93% (175/188)

SNV Nicotine 48 92% (44/48) 188 95% (178/188)
Autoscaling CBD 48 100% 183 93% (170/183)

NIR Autoscaling SIMCA Vit E 48 96% (46/48) 183 93% (170/183)
Autoscaling Taurine 48 100% 188 93% (175/188)

SNV Caffeine 48 83% (40/48) 183 95% (173/183)

Table 3. Comprehensive overview of the performance of MIR and NIR, data pretreatment methods, and PLS-DA in the classification of various target molecules.

Spectroscopic
Technique

Data
Pretreatment

Chemometric
Technique Target Molecule Samples in

External Test Set

Correct
Classification Rate
(External Test Set)

Samples in
Training Set

Correct
Classification Rate
(Cross Validation)

1st derivative Nicotine 48 92% (44/48) 188 82% (155/188)
Autoscaling CBD 48 100% 188 94% (177/188)

MIR 2nd derivative PLS-DA Vit E 48 100% 188 94% (177/188)
Autoscaling Taurine 48 96% (46/48) 188 100%

2nd derivative Caffeine 48 94% (45/48) 188 93% (175/188)

Autoscaling Nicotine 48 83% (40/48) 183 95% (173/183)
Autoscaling CBD 48 100% 183 93% (170/183)

NIR Autoscaling PLS-DA Vit E 48 96% (46/48) 183 95% (173/183)
1st derivative Taurine 48 100% 188 93% (175/188)
Autoscaling Caffeine 48 83% (40/48) 183 91% (167/183)
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4.1.1. SIMCA

MIR and NIR spectra were obtained for all 236 samples. Prior to modeling, various
data preprocessing methods such as auto scaling, SNV, and 1st and 2nd derivative were
explored. These preprocessing techniques aimed to optimize the data and to improve
their interpretation. The target molecules analyzed in the study were nicotine, CBD,
vitamin E, taurine, and caffeine. These molecules were chosen based on their relevance
from a public health and legal point of view [5]. The total number of samples was always
236, but the number of samples positive for the target compound changed, since for
some compounds more positive samples were present in the data set than for others.
After the data preprocessing steps were completed, SIMCA was applied to both the MIR
and NIR data and to each compound separately (binary modeling). Subsequently, the
dataset was divided into two distinct sets: the training set and the test set. The training
set played a dual role, serving to construct and build the models and the subject for
internal validation, employing 10-fold cross-validation. After model construction and
internal validation, the selected test set, which remained completely separate from the
training data, was dedicated to external validation. This external validation allowed
for an unbiased evaluation of the models’ performance on new, unseen spectral data,
ensuring the reliability and robustness of the developed models when predicting spectra
from unknown samples. The models provided a means to identify the similarities and
dissimilarities between the spectra of the known classes, allowing for the classification
of unknown samples, based on their spectral characteristics.

Globally, SIMCA, with various data pretreatment methods, achieved correct classifi-
cation rates ranging from 83% to 100% for the external test set and from 81% to 97% for
cross-validation, as shown in Table 1.

For nicotine, the most effective model based on MIR was achieved through utilizing
the 2nd derivative as a data pretreatment technique. This model yielded a 83% correct clas-
sification rate on the external test set, while six samples were classified as false positive and
two as false negative. There was a cross-validation correct classification rate (CCR) of 81%,
with 35 samples misclassified. Among these misclassifications, one was a false negative,
while the rest were false positives. Although the specificity during cross-validation was
observed to be relatively low (0.45), the precision values (as shown in Figure 2) remained
acceptable. Upon a closer examination of misclassifications for the test set and training set,
it was determined that the false negative could be attributed to the low nicotine dosage in
this sample (2 mg/mL). Regarding the other false positives, no definitive explanation could
be identified, and they might be attributed to random modeling errors. It is important to
note that the current focus is on minimizing false negatives, as false positives would be
detected by inspectors and subsequently examined in a laboratory setting, to confirm their
status. Shifting to NIR spectroscopy with SNV data pretreatment and the SIMCA technique
for nicotine classification, the external test set achieved an accuracy of 92%, with only four
samples misclassified as false positive. Cross-validation accuracy was notably higher at
95%, with 10 misclassified samples. Among these misclassifications, eight samples were
categorized as false positives and two as false negatives. Notably, these false negative
samples exhibited concentrations of 6 mg/mL and 25 mg/mL, indicating potential contri-
butions from factors such as sample matrix or instrumental variations. Explanations are
currently unavailable for the instances in either the test set or the cross-validation set that
were incorrectly identified as positives, but are actually negative.

Moving on to CBD, the use of autoscaling of MIR spectra led to the most successful
SIMCA model, achieving a cross-validation CCR of 95%, with only 10 misclassified samples.
The test set performance reached an impressive 98%, with one sample being misclassified,
which was classified as false negative, having a lower concentration of 0.05 mg/mL. Espe-
cially for the external validation, very good features for precision, specificity and sensitivity
(Figure 2) could be obtained. The slightly lower performance during cross-validation could
potentially be attributed to the relatively limited number of positive samples within the
dataset. Delving into misclassifications, it became evident that seven samples were inaccu-
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rately categorized as false negatives, and three as false positives. Intriguingly, there were
six instances where both low- and high-concentration samples were misclassified, spanning
from 0.05 mg/mL to 0.2 mg/mL. This highlights the presence of errors within the generated
model. False classifications in the model are often due to the fact that samples show a
difference towards the samples used for training. This is called deviation from the model.
Otherwise, the model looks for the best fit of the training samples and allows margins of
mistakes called random modeling errors. Or, the sample can also be an outlier, in which case
it is not the model causing the error, but the sample or the measurement (e.g., spectral error
due to changes in settings, temperature variation etc. . .). For CBD classification using NIR
spectroscopy and autoscaling data pretreatment, a perfect classification rate of 100% was
achieved on the external test set, accurately categorizing all 48 samples. Cross-validation
yielded a CCR of 93%, with 170 out of 183 samples correctly classified. An analysis of
misclassifications showed that seven samples were misclassified as positive, while the rest
was falsely categorized as negative. The concentration of misclassified samples ranged
from 0.05 mg/mL to 0.2 mg/mL.

Regarding vitamin E, external testing revealed misclassification in merely four
samples, in which two samples were misclassified as positive and two as negative; the
highest CCR of 97% during cross-validation was attained using the 1st derivative of
Mid-IR spectra. This indicated that the model accurately identified vitamin E in 182
out of 188 training set samples. An examination of misclassification patterns for each
class unveiled an estimated three samples erroneously categorized as false negatives
and three as false positives. No evident explanation could be discerned for these
instances for both the test set and cross-validation, as the concentration of misclassified
samples ranged from 0.15 mg/mL to 0.6 mg/mL. Utilizing NIR spectroscopy with
autoscaling data pretreatment and the SIMCA technique, the classification of vitamin
E demonstrated an impressive external test set classification rate of 96%, accurately
identifying 46 out of 48 samples, while 2 samples were misclassified as negative,
having a concentration of 0.15 mg/mL. Cross-validation maintained model reliability,
with a correct classification rate of 93%, yet 13 samples were misclassified as false
negatives and 5 as false positives. The concentration of misclassified samples ranged
from 0.1 mg/mL to 0.25 mg/mL, suggesting misclassification of low-dose samples as
negatives. No definitive explanations were found for the false-positive classifications,
indicating potential modeling errors.

In the classification scenario for taurine, the application of MIR spectroscopy with
autoscaling data pretreatment and SIMCA resulted in an external test set accuracy of 96%,
with only two misclassified samples; these were misclassified as negative, both having a
lower concentration of 0.187 mg/mL. The cross-validation accuracy, slightly lower at 88%,
accurately classified 166 out of 188 samples. A closer examination of misclassifications
revealed that eight samples were misclassified as negatives, with concentrations ranging
from 0.187 mg/mL to 0.4 mg/mL. Additionally, around five samples were erroneously
classified as positive. These misclassifications might stem from modeling errors. Taurine
classification involving NIR spectroscopy with autoscaling data pretreatment and the
SIMCA technique resulted in a perfect classification rate of 100% for the external test set,
but thirteen samples were misclassified during cross-validation. Misclassifications included
eight samples categorized as false negatives and five as false positives. No conclusive
explanations were identified, suggesting they could be random modeling errors.

The study aimed to classify caffeine, using MIR spectroscopy with 1st-derivative
data pretreatment and SIMCA. The external test set exhibited a classification accuracy
of 92%, accurately identifying 44 out of 48 samples; 3 samples were identified as false
positive, for which no explanation was found, and 1 as false negative, having a concen-
tration of 0.07 mg/mL. Cross-validation demonstrated a similar accuracy rate of 93%,
with 175 out of 188 samples correctly classified. While scrutinizing the misclassifications,
it was observed that four samples were misclassified as false negatives and nine as
false positives. The false-negative instances were associated with low concentrations,
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ranging from 0.06 mg/mL to 0.1 mg/mL. Lastly, for caffeine classification involving
NIR spectroscopy, the external test set achieved a correct classification rate of 83.3%,
accurately identifying 40 out of 48 samples, with only 4 samples misclassified as nega-
tive. Cross-validation maintained a similar level of accuracy, at 95%, with two samples
misclassified as negative and eight as positive. No clear explanations emerged for these
misclassifications for both test set and cross-validation.

Analyzing the overall results, the combination of NIR spectroscopy and SIMCA
produced robust models for identifying the majority of additives, showcasing superior
performance across the targeted molecules. However, when examining caffeine, MIR
proved to be the preferred method. Consequently, comprehensive screening for the five
targeted molecules mandates the incorporation of both MIR and NIR techniques, to ensure
the best approach.

4.1.2. PLS-DA Model

PLS-DA was employed. PLS-DA is a specialized variant of PLS, designed for classifi-
cation tasks, enabling the use of multivariate analysis techniques to classify samples based
on their spectral characteristics.

The study evaluated the classification performance of different target molecules using
two different spectroscopic techniques: MIR and NIR, as shown in Table 3 and Figure 3.

Employing MIR spectroscopy alongside 1st-derivative data pretreatment, the PLS-DA
chemometric technique achieved a 92% correct classification rate on the external test set
for nicotine. This achievement involved the precise classification of 44 out of 48 samples,
while 4 samples were misclassified as positive. However, a clarification could not be
located within the available information. The process of cross-validation yielded a correct
classification rate of 82%, with 155 out of 188 samples being accurately categorized. Delving
deeper, the analysis unveiled that 31 samples were misclassified as positive, whereas 2 were
inaccurately identified as false negatives. This classification challenge seemed to revolve
around specific high-dosage nicotine samples, with instances such as a 10 mg/mL and
a 25 mg/mL sample erroneously labeled as false negatives. Contrarily, the utilization of
NIR spectroscopy, coupled with autoscaling data pretreatment, showed an external test
set classification rate of 83%, accurately categorizing 40 out of 48 samples, while 8 samples
were misclassified as positive. The available data did not yield an explanation for these
misclassifications. However, cross-validation demonstrated good proficiency, having a
rate of 95%, ensuring the correct classification of 173 out of 183 samples. Among these,
nine samples were unfortunately classified as false positives, and a sole sample was falsely
labeled as negative. The variance in success rates underscores the role of spectroscopic
techniques and data preprocessing methods in nicotine classification.

Shifting the focus to CBD classification, the implementation of MIR spectroscopy in
tandem with autoscaling data pretreatment exhibited remarkable robustness, boasting a
perfect 100% classification rate on the external test set, and appropriately categorizing
all 48 samples. Further, cross-validation attained a commendable 94% correct classi-
fication rate, successfully classifying 177 out of 188 samples. However, six samples
were categorized as false negatives, with concentrations spanning from low to high,
ranging from 0.05 mg/mL to 0.25 mg/mL. Moreover, an additional five samples were
falsely identified as positive. Conversely, the application of NIR spectroscopy revealed
equally impressive results, achieving a 100% external test set classification rate and a
93% rate during cross-validation. Notably, 13 samples were misclassified during cross-
validation, comprising 8 false negatives, primarily associated with low concentrations
(0.05 mg/mL–0.1 mg/mL), and 5 false positives. Despite scrutiny, a concrete explanation
for the false-positive classifications remained elusive.

For the assessment of vitamin E, MIR spectroscopy employing 2nd-derivative
data pretreatment yielded compelling outcomes. Remarkably, the external test set
showcased a flawless classification rate of 100%, expertly categorizing all 48 samples.
For cross-validation, maintaining a good 93.6% correct classification rate, 177 out of
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188 samples could be correctly identified. The misclassification analysis divulged that
nine samples were falsely labeled as negatives, their concentrations spanning from
0.1 mg/mL to 0.6 mg/mL, while four samples were inaccurately identified as false
positives. In contrast, when NIR spectroscopy with autoscaling data pretreatment was
employed, the external test set achieved a respectable 96% classification rate, resulting
in only two misclassified samples, with one identified as false positive and one as
false negative. The false-negative sample was found to have a low concentration of
0.1 mg/mL. Yet, during cross-validation, the performance remained noteworthy, at
95%, although 10 samples fell into the category of misclassification. These instances
comprised seven false negatives, ranging from 0.1 mg/mL to 0.4 mg/mL, and three false
positives. Notably, plausible explanations for these classifications remained elusive.

For taurine with MIR spectroscopy and autoscaling data pretreatment, PLS-DA at-
tained a 96% correct classification rate during the external test set evaluation, precisely
identifying 46 out of 48 samples, with 2 samples being misclassified as false negative.
An absence of clarification was evident from the information regarding the misclassifica-
tion. Cross-validation achieved a remarkable 100% accuracy, underscoring the model’s
dependability in classifying taurine samples. Alternatively, utilizing NIR spectroscopy in
conjunction with 1st-derivative data pretreatment, the model achieved a 100% classification
rate on the external test set. During cross-validation, the model’s prowess remained evident,
with a 93% correct classification rate, yet 13 samples were misclassified. Among these,
nine samples were inaccurately labeled as false negatives, featuring concentrations ranging
from 0.187 mg/mL to 0.6 mg/mL, while four samples were wrongly categorized as false
positives. Despite exploration, definitive explanations for these misclassifications remained
elusive, pointing towards potential modeling discrepancies.

For the classification of caffeine, MIR spectroscopy, in conjunction with 2nd-derivative
data pretreatment of the external test set, achieved 94% correct classification rate,
categorizing 45 out of 48 samples, which were identified as false positives; no expla-
nation could be discovered within the information provided for this misclassification.
Cross-validation demonstrated a slightly reduced accuracy of 92.5%, expertly classify-
ing 175 out of 188 samples. Closer inspection of misclassification patterns unveiled
five samples misclassified as false negatives and eight as false positives. Turning to
NIR spectroscopy, alongside autoscaling data pretreatment, the model garnered an
83% correct classification rate on the external test set, while six samples were classified
as false positives and two as false negatives, with concentrations of 0.06 mg/mL and
0.08 mg/mL. Remarkably, cross-validation yielded a 91% accuracy rate, accurately
classifying 167 out of 183 samples. Among these, 10 samples were wrongly classified
as false positives, and 6 as false negatives. Evidently, the misclassification of false nega-
tives in both spectroscopic techniques could be attributed to the low dosage of caffeine
in these instances, with concentrations ranging from 0.06 mg/mL to 0.1 mg/mL. Due
to the intricate matrix composition, the model encountered challenges in accurately
discerning caffeine presence in these particular samples. Conversely, the false-positive
classifications suggested a possible connection with modeling inaccuracies.

Based on the results in Table 3, it can be said that, in general, very good performing
models were obtained with both MIR and NIR, as correct classification rates were almost
all above 90%. However, NIR combined with PLS-DA resulted in a correct classification
rate of only 83% for both nicotine and caffeine, which is not bad, but clearly less performant
than the nicotine and caffeine models based on MIR. From these results, it is clear that MIR
is the preferred technique for characterizing the five targeted additives in e-liquids when
PLS-DA is used for modeling.

4.2. Quantitative Models for Nicotine

Since problems were reported with sample conformity concerning the nicotine content
of nicotine containing e-liquids, it was explored as to whether a quantitative PLS model
could be constructed for the nicotine content.
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Only the samples containing nicotine (real + spiked ones) were retained to create
quantitative models. In a first step, an attempt was made to build PLS regression models
using only the spiked samples and using the real samples as test set (results not shown).
Although these models showed promising results based on cross-validation, the prediction
of the real samples was not satisfactory, pointing at a lack of variability in the training set.
Therefore, all nicotine-positive samples (real + spiked ones) were mixed, resulting in a
sample set of, in total, 176 samples. This sample set was then split into training and test
sets, using the duplex algorithm, resulting in a training set of 147 samples and a test set of
29 samples. Both sets contained spiked, as well as real, samples, and the whole range of
nicotine content was covered in the sample set (1–25 mg/mL).

Based on the NIR spectra, no meaningful regression models could be obtained. This
is probably due to the high variety of the matrices, and especially the differences in color
between the samples. It is generally known that NIR suffers from interference due to
coloring agents. Therefore, it was decided to focus on MIR.

PLS models were constructed using the MIR spectral data and exploring different
data pretreatment techniques. The most optimal was obtained using 10 PLS factors and a
combination of SNV and the 1st derivative as data pretreatment. However, when predicting
the 29 samples in the test set, a root-mean-square error of prediction (RMSEP) of 5.23
and an R² between real and predicted values of only 0.46 was obtained. These results are
insufficient to allow MIR to be used as a quantitative tool for nicotine-content determination.
This is probably due to the complexity and the high variability in matrices represented by
the e-liquids. Indeed, even though the basis of most samples is a mixture of propylene
glycol and glycerol, the ratio in which they are present can differ. Also, the different
e-liquids contain a huge range of different additives, especially colorants and aromatic
molecules. This hypothesis is confirmed by the fact that good predictive models (results
not shown) could be obtained using only the spiked samples, so with a sample set with
limited variability in the matrix. Further, more complex chemometric techniques like
orthogonal-PLS, artificial neural networks and support vector machines were explored, but
no significant improvement towards the PLS model could be observed.

This research points to the fact that quantification using classical FTIR spectroscopy
might not be feasible, due to the high variety in the samples in a real-life setting, like for
example, in the case of inspections.

5. Conclusions

Spectroscopic techniques (MIR and NIR) with chemometric techniques (SIMCA and
PLS-DA) can be highly effective in detecting different target molecules in e-liquids. Pre-
vious research suggests that both MIR and NIR spectroscopy can distinguish between
nicotine and non-nicotine e-liquids without sample preparation. These methods have po-
tential applications in custom screening and label-compliance checks, enhancing consumer
information on nicotine content [40]. In this research, MIR and NIR spectroscopy was
explored in combination with chemometric modeling which allowed for the identification
and detection of nicotine and different additives in the e-liquids. This study shows the
potential of spectroscopic analysis in the preliminary screening of e-liquids. In the case of
MIR spectroscopy, using autoscaling data pretreatment with PLS-DA yielded exceptional
classification rates of 100% for CBD and vitamin E, indicating that this combination is well
suited for accurately identifying these particular target molecules in the samples. Similarly,
for NIR spectroscopy, autoscaling data pretreatment with PLS-DA achieved perfect classifi-
cation rates of 100% for CBD and taurine. This underscores the robustness and reliability of
the autoscaling data pretreatment combined with PLS-DA in NIR spectroscopy. For the
other targeted molecules in this study, optimized classification rates could be obtained.

Overall when looking to all targeted molecules together, MIR combined with PLS-
DA resulted in the best classification. Therefore, if only one technique should be chosen,
MIR is to be preferred. It should also be highlighted that at this stage of initial screening,
false-negative samples are the major issue, since false-positive samples will be seized and
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send for further analysis to a laboratory where they will be declared compliant with the
legislation, while false-negative samples would be released to be sold to consumers.

However, quantification using classical FTIR spectroscopy might not be feasible,
due to the high variety in the samples in a real life setting, like for example in the case
of inspections.

In practice, the presented approach could be used by inspectors and custom services
to quickly check if nicotine is present (comparison with the label) or non-allowed additives
are present in the e-liquids sold at the different selling points, especially when the approach
is transferred to portable devices.
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