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Highlights: 

• Fraud detection models must be updated continually to handle new fraud strategies. 
• They must balance plasticity (learn new patterns) and stability (remember old ones). 
• We show how to quantify both and discuss the trade-off for fraud detection. 
• We provide an extensive comparison of six strategies and 13 different models. 
• We present a real case study based on more than 50 million e-commerce transactions. 
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Abstract

The volume of e-commerce continues to increase year after year. Buying

goods on the internet is easy and practical, and took a huge boost during the

lockdowns of the Covid crisis. However, this is also an open window for fraud-

sters and the corresponding financial loss costs billions of dollars. In this paper,

we study e-commerce credit card fraud detection, in collaboration with our

industrial partner, Worldline. Transactional companies are more and more de-

pendent on machine learning models such as deep learning anomaly detection

models, as part of real-world fraud detection systems (FDS). We focus on contin-

ual learning to find the best model with respect to two objectives: to maximize

the accuracy and to minimize the catastrophic forgetting phenomenon. For the

latter, we proposed an evaluation procedure to quantify the forgetting in data

streams with delayed feedback: the plasticity/stability visualization matrix. We

also investigated six strategies and 13 methods on a real-size case study includ-

ing five months of e-commerce credit card transactions. Finally, we discuss how

the trade-off between plasticity and stability is set, in practice, in the case of

FDS.

1. Introduction

Fraud Detection Systems (FDS) are expert systems that are confronted with

streams of credit card transactions and aim to discriminate between fraudulent

and genuine transactions. Conventional FDS rely on slowly evolving expert

rules Kou et al. (2004); Whitrow et al. (2009) which require important human

resources and risk missing complex fraud patterns. Recent FDS evolved towards

hybrid configurations combining expert knowledge and machine learning algo-

rithms, notably batch algorithms based on decision trees or neural networks.
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ber of transactions to process is in millions per day, (ii) the genuine and the

fraudulent class are strongly unbalanced (fraud detection can also be seen as an

instance of supervised anomaly detection Chalapathy & Chawla (2019); Pang

et al. (2020)), (iii) feedback from human investigators Dal Pozzolo et al. (2015)

must be integrated, but have a delay of several days or weeks, and (iv) such

systems require adaptive strategies to deal with fraud nonstationary issues.

This paper focus on this last constraint, without discarding the three oth-

ers. As examples of nonstationnarities, think about the following: the set of

cardholders and terminals evolves over time Alazizi et al. (2019), the customer

behavior is prone to drift (change of habits, seasonality, and events occurrence)

and, last but not least, fraudsters adapt their criminal strategies. It is therefore

crucial for FDS to include some strategies to be adaptive (to integrate new fraud

patterns), but also avoid forgetting the already observed patterns of fraud.

Learning systems in nature are inherently incremental and robust to forget-

ting Cichon & Gan (2015); Losing et al. (2018). They acquire knowledge over

time by experiencing novel situations and use biological mechanisms to retain

it for later use. A similar functionality is also desirable in artificial learning

systems, and a lot of attention has been put into research over the past few

years Kirkpatrick et al. (2017); Li & Hoiem (2017); Parisi et al. (2019); Shin

et al. (2017); Zenke et al. (2017).

The simplest strategy to make batch algorithms adaptive consists of period-

ically retraining them with a fixed-size sliding window of transactions Dal Poz-

zolo et al. (2017); Ditzler & Polikar (2012). This strategy is expensive in time

and storage (a single month of data requires tens of RAM Gigabytes) and has

a legal drawback since data protection regulations (e.g. the European Gen-

eral Data Protection Regulation (GDPR)) impose time limits for the storage

of transactional data. An alternative consists in adopting incremental learning

machines (e.g. neural networks) and updating them as soon as new transactions

are made available Sahoo et al. (2018). Unfortunately, neural networks (NN)

are prone to the catastrophic forgetting Kirkpatrick et al. (2017); Li & Hoiem
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not appear in the training examples for a long time. This problem is of prime

importance in credit card fraud detection since decisive events (e.g. holidays or

leakage on social media) occur rarely or randomly throughout the year.

To mitigate this catastrophic forgetting issue, research works in continual

and lifelong learning Parisi et al. (2019); Shin et al. (2017); Zenke et al. (2017)

investigates the trade-off between plasticity (learning new tasks) and stability

(remembering old knowledge) Mermillod et al. (2013) by regularizing the model

or replaying old memories. However only a few papers deal with other tasks

than image recognition, and none of them address the fraud detection case.

One of the goals of this paper is to bridge this gap and quantify the catas-

trophic forgetting in the case of a massive, non-stationary, real data fraud detec-

tion scenario. Indeed, while the assessment of plasticity is quite common in the

literature about concept drift, no well-established procedure for assessing the

stability of fraud detection learning techniques is available. In literature, most

papers rely on artificial splits of well-known datasets (e.g. MNIST) Goodfellow

et al. (2013),Zenke et al. (2017),Kirkpatrick et al. (2017) or data permutation

experiments Kemker et al. (2018). In fact, none of those assessment strategies

is convenient for the time-varying/streaming nature of fraud detection.

In this paper, in order to address the lack of results and methodology for

addressing continual learning in a realistic fraud detection setting:

1. we design and run several of incremental learning strategies (based on

neural networks) over a massive, unbalanced, drifting, dataset of credit-

card transactions provided by the industrial partner,

2. we summarize and assess the performance of those algorithms through a

matrix visualization, designed for fraud detection, able to decompose the

impact of plasticity and stability on the final precision,

3. we explore one solution to the plasticity/stability trade-off in the case of

fraud detection based on a set of requirements provided by domain experts

(other trade-offs are of course possible).
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ground and related work on continual learning. Section 3 introduces important

peculiarities of real-world FDS. Section 4 describes the investigated methods.

Section 5 details the plasticity/stability visualization matrix. Section 6 presents

the experimental assessments we conducted. Finally, Section 7 concludes the

paper.

2. Continual learning background

Continual Learning (CL) Goodfellow et al. (2013); Parisi et al. (2019) aims

to learn from a stream of data by ensuring: (i) adaptability, i.e. models are

updated (e.g. with backpropagation) as soon as new data are available and (ii)

scalability, i.e. the ability to cope with high-dimensional data streams. Unfor-

tunately, adaptability may occur at the cost of catastrophic forgetting French

(1999); McCloskey & Cohen (1989); Ratcliff (1990), which can be seen as a

lack of stability. Multiple solutions to catastrophic forgetting have been pro-

posed Kemker et al. (2018); Maltoni & Lomonaco (2019); Zenke et al. (2017).

One of the main contributions of this paper is that it screens all families of

approaches, in the particular case of fraud detection, and investigates the five

following directions:

• Rehearsal strategies periodically replay past observations to reinforce model

connections encoding old concepts McCloskey & Cohen (1989); Ratcliff

(1990). A simple approach is to store a portion of the past training data

and interleaving them with fresh ones during training. Several variants

have been proposed: recency rehearsal (based on time), random rehearsal,

and sweep rehearsal (dynamic rather than fixed buffer). An important

distinction exists between rehearsal strategies and pseudo-rehearsal strate-

gies Robins (1995). In the latter, previous training data are unavailable

(e.g. because of data protection regulations) and replaced by syntheti-

cally generated samples Hayes et al. (2019); Riemer et al. (2018); Shin

et al. (2017) (e.g. by GAN). More recently, the authors of van de Ven
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ological reactivation of neuronal activity patterns, in which internal or

hidden representations are replayed that are generated by the network’s

own, context-modulated feedback connections. Our Generative Replay

(GenRE ) approach is closely related to this approach.

• Regularization strategies modify the loss function to promote selective con-

solidation of the weights which are important to retain past memories

Kirkpatrick et al. (2017). They use standard regularization techniques

such as weight sparsification, dropout, or early stopping. Well-known

regularization-based strategies are elastic weight consolidation (EWC) and

incremental moment matching (IMM) Kemker et al. (2018). Other exam-

ples are Learning without Forgetting (LwF) Li & Hoiem (2017)), knowl-

edge distillation Parisi et al. (2019) and synaptic intelligence (SI) Zenke

et al. (2017). Recently, authors of Li et al. (2021) propose a Sketched

Structural Regularization leveraging linear sketching methods as an alter-

native approach to compress the importance matrices used for regularizing

in Structural Regularization methods.

• Architectural strategies use specific architectures, layers, activation func-

tions, model expansions, and/or weight-freezing strategies (e.g. CWR Lomonaco

& Maltoni (2017)) to mitigate catastrophic forgetting Polikar et al. (2001);

Sun et al. (2018). Progressive Neural Networks (PNN) combine parameter

freezing and network expansion Rusu et al. (2016).

Another important distinction can be made between multi-task and single-

task problems Maltoni & Lomonaco (2019).

• MT: Multi-Task problems have to deal with a succession of isolated tasks

(for example, if we want to learn an additional task on top of a pre-trained

network) and avoid forgetting the previous ones. Though this approach is

intuitive, it is difficult to adopt in real-life incremental settings where the

decomposition in separate concepts/tasks is not always straightforward.
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task evolving with three possible kinds of updates:

– New Instances (NI): new training patterns of the same classes be-

come available in subsequent chunks with new environment condi-

tions. For instance, in FDS this occurs when new behaviors appear

(e.g. increased e-commerce activity during the lockdown or a new

fraudster strategy)

– New Classes (NC): new training patterns belonging to different classes

become available in subsequent chunks. This is an example of class-

incremental learning Rebuffi et al. (2017).

– New Instances and Classes (NIC): new training patterns belonging to

both known and new classes become available in subsequent training

chunks.

A more recent categorization of the contribution in the literature and review

the existing benchmarks is proposed in Cossu et al. (2021). Authors also provide

two new benchmarks for CL with sequential data based on existing datasets, as

well as a broad empirical evaluation of CL and Recurrent Neural Networks in

class-incremental scenario. They show that key factors are the sequence length

and a clear specification of the CL scenario. Additionally, authors of Ramasesh

et al. (2021) show that pretrained models such as ResNets and Transformers are

significantly less prone to forgetting with respect to models that are randomly

initialized and trained from scratch. The resistance to forgetting is proportional

to the scale of the model and the pretraining dataset size, which are, together

with a diverse pretraining dataset, useful ingredients in mitigating the problem.

This paper focuses on a detection task which belongs to the SIT-NI case since

the number of classes is fixed (fraudulent vs. genuine) and most variability is

due to concept drift.
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τ − 7 τ0 60

1 day

training set
Gap set

Test set

Time

Initialization set

61 day

Figure 1: Splitting strategy for the initialization/training/gap/test sets. In

this paper, the labeled training set is composed of chunk of one day and the

unlabeled transactions of the gap set are simply discarded. After each update

of the model, the training, gap, and test sets slide one day to the right (τ is

increased by one).

3. Real-world FDS

This paper focuses on real-world FDS dealing with streams of credit card

transactions. A FDS raises alerts on the basis of a risk score computed as the

conditional probability of a fraudulent transaction. The raised alerts are sub-

sequently checked by human investigators who decide about the most relevant

action (e.g. the card is blocked, the card holder is contacted,...) Dal Pozzolo

et al. (2014). Given that human investigators are an expensive and scarce re-

source, the FDS assessment is done with respect to the accuracy of a limited

number (typically k = 100) of high risk alerts. Measures like Pr@k, the pre-

cision over the first k alerts, are commonly used Dal Pozzolo et al. (2014).

Accuracy measures of the entire ranking like the area under the precision-recall

curve (AUPRC) have been considered in litterature as well Davis & Goadrich

(2006); Saito & Rehmsmeier (2015); Siblini et al. (2020).

Real-world FDS Carcillo et al. (2018) typically group transactions into chunks

according to a size or temporal criterion. In our experiments we consider chunks

at daily level for the following reasons: (i) it is the production setting adopted

by the industrial partner, since performance metrics make more sense at daily

level, (ii) a preliminary study Lebichot et al. (2020) shows daily updates are

competitive in terms of performance, and (iii) higher frequency could be detri-

mental for the model since the sub-daily (e.g. hourly) distribution of frauds is
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Note that a specific peculiarity of real-world FDS is the delayed feedback Dal

Pozzolo et al. (2014), due to the fact that transaction labels are available sev-

eral days later, once customers have reported unauthorized transactions. This

is very detrimental in a concept-drifting environment since the supervised in-

formation is delayed by several days or weeks. In our experiments, the delay is

modeled by a gap period (7 days) during which transactions are considered as

non annotated yet (Figure 1). Indeed, the supervised information, frauds and

genuine transactions, comes from two sources:

• the feedback provided by investigators. It is limited in number since only

a few hundred transactions can be investigated per day.

• the delayed supervised transactions. It is the vast majority of the labels

but they become available only after several days (e.g., one week, one

month). After this delay, all unreported transactions are, in practice,

considered genuine and can integrate the training dataset.

For more details about these two sources of feedback, see Dal Pozzolo et al.

(2017).

Recent works include Abakarim et al. (2018), proposing a live credit card

fraud detection system based on a deep neural network technology, specifically

on on an auto-encoder, and comparing it with four different binary classification

models. The proposed Deep NN Auto encoder has promising results in terms

of F1 score.

3.1. How the plasticity/stability trade-off is set in practice ?

After many duscussion with our industrial partner, it turns out that, for

transactional companies, accuracy in terms of Pr@100 is the main objective, but

this should not be pursued at the cost of low stability. High Pr@100 is the most

important criterion to be considered for model selection yet, for similar Pr@100

performances, low forgetting should be preferred. In Section 6, it appears that

some methods perform well according to one criterion but not the other.

9
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Batch Batch batch (never) Batch learning 1 -

Retrain Retr batch (1day) Batch retraining 1 -

Incremental Incr CL (1day) Baseline 1 -

Incremental (Ens) IncrE CL (1day) Baseline 10 -

Experience Replay ExpR CL (1day) Rehearsal, baseline 1 r = .5, b = .01

Generative Replay GenR CL (1day) Pseudo rehearsal 1 r = .5, b = .01

Generative Replay (Ens) GenRE CL (1day) Pseudo rehearsal 10 r = .5, b = .01

Negative Correlation (Ens) NCE CL (1day) Diversity 10 λ = 1

Elastic Weight Consolidation EWC CL (1day) Regularization 1 λ = 0.01

Incremental Moment Matching IMM CL (1day) Regularization 1 λ = 0.1

Increm. Moment Matching (Ens) IMME CL (1day) Regularization 10 λ = 0.1

Frozen network Frz CL (1day) Architectural 1 -

Frozen network (Ens) FrzE CL (1day) Architectural 10 -

Table 1: This table summarizes all the considered methods in this paper. More

details can be found in Section 4. CL stands for continual learning, with

the frequency of update in the brackets. Best values for the hyperparame-

ters are reported. (Ens) indicates an ensemble version of the algorithm. The

full considered parameters values are the following : r = [.01, .05, .1, .2, .5, 1, 2]

(the replay ratio), b = [.01, .5, .99] (the generated proportion of frauds), λ =

10[−6,−3,−2,−1,0,1,2,3,6] (the regularization parameter value)

4. Continual learning for fraud detection

This section introduces a number of approaches (summarized in Table 1)

to deal with continual learning in FDS. We consider some baselines and sev-

eral state-of-the-art strategies which are relevant in the fraud detection context.

Weight-transfer Lee et al. (2017) is the default transfer mechanism in our ex-

periments: parameters for a new chunk are initialized with the parameters of

the previous chunk. The initialization set (used for the first chunk) is composed

of 61 days, taken just before the main data stream.

The objective is not to be exhaustive but to explore the potential of some ap-

proaches and define a sound strategy to assess specifically their stability/plasticity

performance in a fraud detection setting. As an additional architectural strat-

egy, we also test most of the following approaches in an ensemble setting.

In order to allow a statistically meaningful comparison between strategies all

of them are implemented by adopting the same underlying classifier: a multi-

10
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to be effective in the FDS setting.

4.1. Baselines

We consider three baseline approaches:

1. Batch (Batch): the classifier is learned on the training initialization dataset

and never updated.

2. Retrain (Retr): a new classifier learned every day using the most recent

available chunks (same size as initialization set).

3. Incremental (Incr): the classifier is initialized as Batch and updated as

new daily chunks arrive. No strategies are applied to tackle catastrophic

forgetting.

4.2. Experience Replay (ExpR)

Experience Replay implements the simplest rehearsal strategy, using a train-

ing dataset merging (uniformly sampled) past and recent transactions (current

data chunk). The r parameter is the ratio of old transactions with respect to

new data. Note that such approach is not feasible in a FDS pipeline as it is not

compliant with the GDPR requirements.

4.3. Generative Replay (GenR)

This is the pseudo-rehearsal version of ExpR which uses a conditional gener-

ative adversarial neural network (CGAN, Mirza & Osindero (2014)) to generate

past synthetic transactions Shin et al. (2017) and then comply with the GDPR

issue. CGAN generation relies on two condition variables, representing the class

(fraud/genuine) and the time of the transaction. The approach needs the set-

ting of two hyperparameters; the proportion b of frauds and the proportion r

of old transactions. The GAN is composed of a generator and a discriminator

with the following structure: four layers of 256 nodes with leaky Relu activation

functions. The input of the generator is compose of random noise of size 10 and

the two condition variables.

11
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This is an incremental learning approach Liu & Yao (1999) aiming to encode

the largest number of concepts in an ensemble of M NN classifiers (see Brown

et al. (2005a) for a review). The rationale consists in introducing a correlation

penalty term in the error function of the mth NN in the ensemble

Em =
1

N

N∑

n=1

1

2
(Fm(n)− t(n))2 +

λ

N

N∑

n=1

pm(n), m = 1, . . . , (1)

where Fm(n) is the output of the mth NN for the nth sample, t(n) is the nth

target value. The first term is the empirical loss function of the mth NN while

the second term

pm(n) = (Fm(n)− F (n))
∑

m′ 6=m

(Fm′(n)− F (n)) (2)

is the correlation penalty function, with F (n) being the ensemble output. This

term accounts for the diversity of the classifiers and is controlled by the param-

eter λ Brown et al. (2005b).

4.5. Elastic Weight Consolidation (EWC)

This is a regularization strategy which aims to constrain the variability of

the NN parameters over the learning horizon Kirkpatrick et al. (2017) by adding

a term to the loss function:

LEWC(wt) = L(wt) +
∑

i

λ

2
Fi(wt,i − wt−1,i)

2 (3)

where LEWC(wt) is the EWC loss, wt,i is the ith weight after the t chunk,

L(wt) is a well-suited loss function for the problem at hand (here, classification).

Notice our EWC implementation uses chunk-specific importance parameters.

Online versions of EWC Chaudhry et al. (2018); Schwarz et al. (2018) exist but

were not considered in this work. λ (to be tuned) sets how important the L2

constraint on the parameters is and Fi is the inverse of the importance indicated

by the Fisher information matrix. The parameters associated with higher Fisher

diagonal elements are considered to be more important for the previous tasks

12
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this matrix is quite expensive in our case. For that reason, the ensemble version

of EWC was not considered.

4.6. Incremental Moment Matching (IMM)

In IMM Lee et al. (2017), Gaussian distributions are used to approximate

the posterior distribution of the NN weights. Mean-IMM reduces to

µt+1 =
t∑

j=1

αjµj (4)

where µt is the mean value (and optimal weigth value) for a given NN weight

after t chunks, and αj are weighting factors that we set to 1/t. Therefore, Each

NN weight takes the new and old µj into account.

Mode-IMM is a variant where the covariance information of the posterior of

Gaussian distributions is used. Also, the authors suggest three transfer param-

eter mechanisms: (i) weight-transfer, L2-transfer (similar to the procedure of

EWC, but without the Fisher Matrix), and Drop-transfer (µt is used to initialize

the dropout procedure). All in all, there are six variants for this algorithm.

We tried the mean/weight-transfer and mean/L2-transfer. The latter gave

better results, so we did not report the former for the sake of simplicity. The

parameter to tune is λ (from the L2-transfer part): the lower λ, the more the

weights are free to evolve.

4.7. Frozen network (Frz)

This approach (also known as “fine-tuning” in NLP Howard & Ruder (2018))

consists of learning a multi-layer neural network on a large quantity of train-

ing data (in our case, the initialization set) and then making only the last layer

trainable. The idea is that a large part of the past behavior will therefore be pre-

served. For example, the Copy Weight with Re-init (CWR) algorithm Lomonaco

& Maltoni (2017) uses this strategy with a re-initialization at each new data

chunk. In this work, we did not use re-initialization: chunks are relatively small

so we can benefit from transferring last weights from previous chunks.

13
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This section introduces the plasticity/stability matrix, an original visualiza-

tion technique, adapted for fraud detection, which represents in a compact way

the accuracy of a continual learning algorithm in terms of its plasticity and

stability components. The rationale consists in constructing a square matrix

M(ti, tj) where the (ti, tj) term denotes the accuracy of a model trained up to

day tj and tested on the day ti. Figure 2.a. shows the plasticity/stability matrix

for two methods over 85 days. Note that the lower (upper) triangle shows the

accuracy of a model trained up to a day t and tested on a day > t (< t). This

implies that the main diagonal (upper triangular) part summarizes the plastic-

ity (stability) properties of the model. In other words, the better the accuracy

in the main diagonal, the higher is the capability of the model to fast on recent

concepts (plasticity). The better the accuracy in the higher triangular part, the

higher is the resilience (stability) of the model to catastrophic forgetting.

In Figure 2.c. and 2.d., three portions can be identified : (i) this portion

summarizes how the model is able to anticipate future distant drifts in the

data distribution. This task is the harder the lower we go (i.e. the larger is

the difference between the last training day and the test day) and it is not

realistic to expect high accuracy in that region. For this reason we discard it in

our final assessment. (ii) this portion between the main diagonal and the 7-th

diagonal (which is the gap duration in days) is a more appropriate measure of

the plasticity in the delayed feedback setting. This part refers indeed to the

performance of the algorithm during the gap interval. (iii) The top triangle

above the 7-th diagonal can be referred as the catastrophic triangle since it can

be used to quantify to what extent the updating classifier is forgetting. We can

also use the 7-th diagonal as a proxy of an ideal model, as the model was just

updated with the labels he is supposed to predict.

In Fig 2.b., we plot the accuracy values of the same row from the catas-

trophic triangles of two considered methods. This comparison shows a very

different behavior in terms of catastrophic forgetting. The first method (in red)

14
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i

ii

iii

ii iii

Figure 2: By comparing the rows of the upper triangular matrices (see 2.a),

we compare the forgetting behavior for each chunk. The catastrophic triangle

(portion (iii) on 2.c and 2.d) is obtained by considering pairs of model updates

and testing days. It also takes the gap (portion (ii) on 2.c and 2.d) and temporal

behavior into account. The ideal behavior is rows with constant accuracy in all

the part (iii) of the matrix. The contrast could be enhanced using calibrated

accuracy measures Siblini et al. (2020). 2.b.: Horizontal dashed lines represent

an optimal behavior, for a classifier with no forgetting at all.
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curacy the farther we go with respect to the peak. This is not the case of the

blue method characterized by a more stable accuracy.

To quantify the degree of catastrophic forgetting of a generic model, we

define a regret term

R(ti, tj) = −[M(ti, tj)−M(ti, ti + lg)]/M(ti, ti + lg), tj > ti (5)

where M(ti, tj) is the ti, tj entry of the plasticity/stability matrix and lg is the

length of the gap (in days). Remember M(ti, tj) means the model was trained

until day tj , saw labels until day tj − lg, and is evaluated on ti. M(ti, ti + lg) is

the optimal accuracy for ti since the labeled chunk corresponding to day ti just

becomes available.

It is then possible to run a Friedman/Nemenyi test Demsar (2006) to find the

method with the lowest regret distribution. Note that the plasticity/stability

matrix is not then only a qualitative way to illustrate the catastrophic forgetting

but it allows the implementation of a statistically sound procedure to compare

two methods in terms of their plasticity/stability properties.

6. Experimental assessment

This section details the experimental session in terms of streaming assess-

ment procedure, dataset characteristics, implemented code and quantifies the

plasticity and stability performance using the methodology discussed in the pre-

vious section.

6.1. The assessment setting

The pseudo-code (Algorithm 1) sketches the assessment procedure used to

compare the different approaches. Given a continual learner cl, once a new daily

chunk is available at time t, the procedure updates the online model, predicts

the fraud probability and computes the accuracy. Keep in mind that the data

from the gap set are considered as not labeled (Section 2). We refer the reader
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Initialize cl using classical batch learning (I = 61 chunks);

lg ← length of the gap set (in days);

for t = (I + lg) : T do

% update the model, ignoring the gap set

Dt−lg ← new training chunk (one day);

Update cl with Dt−lg using backpropagation;

% compute accuracy for this day

Dt ← test chunk (one day);

Rank all transactions of Dt according to cl risk scores;

Update Pr@100 and AUPRC statistics;

end

to Lebichot et al. (2017) for semi-supervised strategies which allow to exploit

the gap set in real-time.

6.2. Data and code

The experimental dataset is an extract from a real e-commerce transaction

stream provided by the industrial partner. It is made of 50M e-commerce trans-

actions over 153 days (61 for models initialization, 7 gap days, 15 validation

days, to set the hyperparameters, and 70 test days). Validation days are used

to tune the hyperparameters detailed in Table 1. Each experiment is replicated

five times with different random seeds, and the average and std are reported.

The fraud ratio is 0.201% and each transaction is described by 23 features.

Though data cannot be made available for confidential reasons, a public, short,

anonymized version of the data can be found here Machine Learning Group -

ULB. The data collections is similar to our previous work Dal Pozzolo et al.

(2014). The dataset was just updated with more recent transactions. All ex-

periments were carried out on a server with 10 cores, 256 GB RAM, and an

Asus GTX 1080 TI. Keras Chollet et al. (2015), and code from the original

EWC paper Kirkpatrick et al. (2017) was used for the NNs implementation and
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Figure 3: Friedman-Nemenyi test based on the card-based Pr@100 (70 days with

one score per day, the large the better). The plot compares various approaches

and baseline approaches. A method is considered as significantly better than

another if its mean rank is more than the critical difference CD higher (the

higher, the better). Each of the 70 results is averaged on five runs. The averages

over the 5x70 individual results are reported on Table 2.

training. The code is not made publicly available as the content would disclose

some of the industrial secrets of our private partner. Overall times provided

in Table 1 give an idea of the relative time-intensive steps of the 13 methods:

Ensemble versions are longer to obtain, Retrain is quite slow compare tho the

rest, and EWC ’s Fisher Matrix is long to obtain (faster estimates exists, but

we did not implement them).

6.3. Overall accuracy assessment

Table 2 presents the results on the main diagonal of the plasticity/stability

matrix in terms of accuracy and processing time (to process the full stream).

Figure 3 and Figure 4 present the results under the form of a Friedman-Nemenyi

test, for the Pr@100 and AUPRC metric, respectively.

First of all, the results appear to be coherent from the two metrics perspec-

tive. If we take the best method and the ones which are significantly the closest,

we obtain a set of three methods: NCE, FrzE, IncrE. The most accurate strate-

gies in terms of Pr@100 and AUPRC are therefore Diversity, Architectural, and
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Figure 4: Friedman-Nemenyi test based on the card-based AUPRC. See Figure 3

for more details.

Mean Pr@100 Std Pr@100 Mean AUPRC Std AUPRC Overall time

Batch 20.54 % 5.95 % 6.97 % 2.36 % 0 s*

Retrain 22.64 % 6.17 % 10.11 % 2.83 % 182 min

Incremental 23.04 % 6.15 % 10.31 % 2.85 % 19 min

Incremental (Ens) 24.28 % 6.83 % 11.20 % 3.20 % 106 min

Experience Replay 23.38 % 6.65 % 9.54 % 2.79 % 20 min

Generative Replay 24.03 % 7.23 % 10.16 % 3.00 % 23 min

Generative Replay (Ens) 24.32 % 7.11 % 10.05 % 3.01 % 71 min

Negative correlation (Ens) 26.24 % 7.96 % 11.66 % 3.69 % 126 min

Elastic Weight Consolidation 24.19 % 7.00 % 10.59 % 3.05 % 657 min

Incremental Moment Matching 23.15 % 6.78 % 9.90 % 2.89 % 31 min

Increm. Moment Matching (Ens) 24.02 % 7.25 % 10.72 % 3.00 % 249 min

Frozen network 25.03 % 6.43 % 10.92 % 2.87 % 18 min

Frozen network (Ens) 25.36 % 6.49 % 11.28 % 2.90 % 89 min

Table 2: This table summarizes the results in terms of AUPRC and Pr@100.

Overall time is an indicative execution time to process the whole data stream (3

months of data). Each result is averaged on five runs. Notice that since the NN

training is performed on GPU and data manipulation on CPU, the training part

is not necessarily the most time-consuming part of the update. * This model is

never updated.

19



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofEnsemble. GenRE (IMME ) is also significantly equivalent to the top-3 if we

limit to consider Pr@100 (AUPRC). Also, As observed in Lebichot et al. (2020),

batch approaches are sub-optimal. This supports the hypothesis of the presence

of concept drift and the necessity for plasticity mechanism.

We see that superior accuracy can be obtained in various ways (as it is often

the case in real case studies). (i) the ensemble version of the algorithms outper-

forms their single counterpart (with little surprise). (ii) NCE does not address

catastrophic forgetting but instead optimizes diversity among its ensemble. It

means that diversity can be as important as minimizing forgetting. (iii) FrzE

(and Frz ) takes advantage of a fixed layer, trained on the (large) initialization

dataset, and a trainable layer which allows to adapt to the transactions stream.

After investigation, we found that some chunks can mislead the baseline model

persistently. With FrzE, the untrainable part is unaffected and the trainable

part can be corrected more quickly afterwards.

6.4. Stability assessment

On the basis of the regret terms R(ti, tj) (Eq. 5), we may quantify the

degree of catastrophic forgetting of the benchmarked methods. We perform

a Friedman/Nemenyi test Demsar (2006) on all R(i, j) corresponding to the

catastrophic triangle (portion (iii)). Figure 6 and 7 reports the results in terms

of Pr@100 and PRAUC, respectively.

From these two figures, methods can be discussed, per decreasing order :

• IMME and IMM comes among the firsts. Because they keep track of all

the weights for all previous chunks, the model is strongly stabilized but

at the end of the dataset, it turns detrimental: regrets are better at the

beginning of the stream than at the end.

• ExpR explicitly replays old transactions, so its good ranking is not a sur-

prise. In addition GenR and GenRE performs similarly, which shows that

our GAN is able to replicate realistic transactions.

• FrzE and Frz are also quite stable for the reason we discuss in Section 6.3.
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Figure 5: Typical behavior inside a row of the catastrophic triangle (portion

(iii)). The plot shows how the successive update of the model affect its ability

to classify the transactions of chunk 07-18-2018. The ideal behavior is suggested

by the dashed lines. In this illustration, EWC exhibits a large forgetting.

• NCE performs less efficiently: it is not surprising as it does not focus on

addressing catastrophic forgetting: it manages diversity instead.

• Incr and IncrE have no strategies to alleviate the forgetting. They per-

form quite poorly.

• EWC has the largest performance peaks after the gap (see Figure 5), and

the accuracy strongly decreases afterward. These two drawbacks lead to

large regrets.

We can also conclude that the ensembles help to increase the accuracy, but do

not change the intrinsic behavior regarding catastrophic forgetting, as methods

are close to their ensemble counterpart.

6.5. Take-home message

Given our main objectives (recall Section 3), we reached the following con-

clusions, after discussing with the industrial domain experts:
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selection yet, for similar Pr@100 performances, low forgetting should be

preferred.

• A method without any anti-forgetting mechanism can be efficient in terms

of accuracy, but highly inadequate in terms of stability: Incr, IncrE, NCE.

• Methods with anti-forgetting mechanisms, like ExpR, GenR, IMME, and

Frz, may trade adaptability for stability and consequently can have low

accuracy.

• By changing their hyperparameters, some methods can passe from a high

plasticity/low stability setting to the symmetric situation. For example,

EWC was initially designed to avoid forgetting (by increasing stability

but lower adaptability) so it should be better than Incr on stability and

worse on plasticity. But we observe the opposite behavior in this work

because the primary objective is Pr@100 and hyperparameters tuning was

performed in this sense.

Overall, we reached the conclusion that the best trade-off is attained by the

adoption of FrzE. This conclusion is only true for our particular plasticity/stability

trade-off. Of course, another trade-off (for example maximizing stability) can

lead to other hyperparameters, and therefore to other conclusions.

7. Conclusion and Future Work

The paper assesses the plasticity/stability trade-off in the context of contin-

ual credit card fraud detection. The experimental assessment does not limit to

consider which methods are the most accurate but aims to return a quantitative

measure of their degree of catastrophic forgetting. This is made possible thanks

to an original procedure to visualize and quantify the catastrophic forgetting in

data streams with delayed feedback.

We also discuss the fact that addressing catastrophic forgetting is a trade-off

between plasticity and stability. Having quantify both, we include and discuss
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Figure 6: Friedman-Nemenyi test based on the regrets built on the card-based

Pr@100 from the catastrophic triangle (portion (iii)). The larger the better.

Acronyms are reported on Table 1.

Figure 7: Friedman-Nemenyi test based on the regrets built on the card-based

PRAUC. See Figure 6 for more details.
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FrzE, an ensemble of frozen neural networks because it performs well in terms

of Pr@100, PRAUC, and achieve satisfactory reduced forgetting.

We believe our conclusions may be broadened to other single incremen-

tal task learning applications or Fintech domains. For example, the plastic-

ity/stability matrix is also relevant when no delayed feedback is present. On

the basis of this study, the industrial partner is now considering continual learn-

ing for production FDS.

Further work will include testing the catastrophic triangle on longer streams,

to see if recurrent patterns (e.g. Christmas e-shopping) are effectively preserved

by the methods, and more investigations on the accuracy and the properties of

the generative methods. A last research direction will be to explore different

plasticity/stability trade-offs.
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