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INTRODUCTION:During embryonicdevelopment,
the temporal sequence of events is usually con-
served throughout evolution, but it can occur
at very different time scales depending on the
species or cell type considered. The human ce-
rebral cortex is characterized by a considerably
prolonged timing of neuronal development
compared with other species, taking months
to years to reachmaturity compared with only
a few weeks in the mouse. The resulting neo-
teny is thought to be a key mechanism en-
abling enhanced function and plasticity of the
human brain. Human and nonhuman corti-
cal neurons cultured in vitro or xenotrans-
planted into the mouse brain develop along

their species-specific timeline. This suggests
that species-specific developmental timing is
controlled by cell-intrinsic mechanisms, but
these remain essentially unknown.

RATIONALE:Metabolism andmitochondria are
key drivers of cell fate transitions in many
systems, including the developing brain. Here,
we tested whether they could be involved in
the species-specific tempo of cortical neuron
development and human brain neoteny.
We developed a system of genetic birth-

dating to label newly born neurons with high
temporal and cellular resolution, and direct-
ly compared the development of human and

mouse cortical neurons over time. We thus
profiled, across time and species, mitochondria
morphology, gene expression, oxygen consump-
tion, and glucose metabolism. Next, we used
pharmacological or genetic manipulation of
human or mouse neurons to enhance or de-
crease their mitochondria function, and de-
termined the consequences on the speed of
neuronal development.

RESULTS:We found that mitochondria are ini-
tally low in size and quantity in newborn neurons,
and then grow gradually as neurons undergo
maturation following a species-specific time-
line. Whereas in mouse neurons, mitochon-
dria reach mature patterns in 3 to 4 weeks,
they only do so after several months in human
neurons.
We next measured mitochondria oxidative

activity and glucose metabolism in human
andmouse developing cortical neurons. This
revealed a species-specific timeline of func-
tionalmaturation ofmitochondria,withmouse
neurons displaying a much faster increase in
mitochondria-dependent oxidative activity than
human neurons. We also found that human
cortical neurons displayed lower levels of
mitochondria-driven glucosemetabolism than
did mouse neurons at the same age.
Finally,we testedwhethermitochondria func-

tion affects neuronal developmental timing. We
performed pharmacological or genetic manipu-
lation of human developing cortical neurons to
enhance mitochondria oxidative metabolism.
This led to accelerated neuronal maturation,
with neurons exhibitingmoremature features
weeks ahead of time, including complex mor-
phology, increased electrical excitability, and
functional synapse formation. Similar treat-
ments on mouse neurons also led to faster
maturation, whereas inhibition of mitochon-
dria metabolism in mouse neurons led to a
decrease in developmental rates.

CONCLUSION: Our work identifies a species-
specific temporal pattern of mitochondria
and metabolic development that sets the
tempo of neuronal maturation. Accelerated
human neuronal maturation using metabolic
manipulation might benefit pluripotent stem
cell–based modeling of neural diseases, which
remains greatly hindered by protracted neu-
ron development. Tools to accelerate or decel-
erate neuronal development could allow testing
of the impact of neuronal neoteny on brain
function, plasticity, and disease.▪

RESEARCH

Iwata et al., Science 379, 553 (2023) 10 February 2023 1 of 1

The list of author affiliations is available in the full article online.
*Corresponding author. Email: pierre.vanderhaeghen@kuleuven.be
†These authors contributed equally to this work.
Cite this article as R. Iwata et al., Science 379, eabn4705
(2023). DOI: 10.1126/science.abn4705

READ THE FULL ARTICLE AT
https://doi.org/10.1126/science.abn4705

Mitochondria metabolism sets the tempo of neuronal development. Mitochondria dynamics and
metabolism display species-specific timelines during cortical neuron development. In newborn neurons,
mitochondria are small in number and metabolic activity, and then increase gradually during neuronal
maturation. Enhanced mitochondria metabolism in human neurons leads to accelerated maturation, including
increased neurite complexity, excitability, and synaptic function. Decreased mitochondria metabolism in
mouse neurons leads to decelerated neuronal maturation.
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Neuronal development in the human cerebral cortex is considerably prolonged compared with that of
other mammals. We explored whether mitochondria influence the species-specific timing of cortical
neuron maturation. By comparing human and mouse cortical neuronal maturation at high temporal and
cell resolution, we found a slower mitochondria development in human cortical neurons compared
with that in the mouse, together with lower mitochondria metabolic activity, particularly that of oxidative
phosphorylation. Stimulation of mitochondria metabolism in human neurons resulted in accelerated
development in vitro and in vivo, leading to maturation of cells weeks ahead of time, whereas its
inhibition in mouse neurons led to decreased rates of maturation. Mitochondria are thus important
regulators of the pace of neuronal development underlying human-specific brain neoteny.

D
evelopmental processes display species-
specific differences in timeline, or heter-
ochrony,which can lead to divergence in
size, cell composition, or organ function
(1–3).Humanbraindevelopment is char-

acterized by a prolonged timing of maturation
of cortical neurons comparedwith that of other
species (4). Such neoteny may underlie the en-
hanced performance of the human brain (5).
Human and nonhuman primate cortical neu-
rons derived from pluripotent stem cells (PSCs)
and xenotransplanted into the mouse brain
develop along their species-specific timeline

(6–8), pointing to cell-intrinsic develop-
mental timing mechanisms. Metabolism and
mitochondria are drivers of cell fate transi-
tions (9–12) and maturation (13–15) in many
systems, including the brain (16–21). Species
differences in metabolism at the organism
level are linked to developmental growth
(22, 23), but whether metabolism influences
species-specific developmental tempo remains
unclear.

Mitochondria development during
cortical neuronal maturation follows
a species-specific timeline

To test whether metabolism influences the
species-specific timing of neuronal develop-
ment, we used in vitro cultures of cortical py-
ramidal neurons derived from PSCs (human
andmouse) or from embryonic brain (mouse),
which recapitulate species-specific timelines
of corticogenesis (6, 24) (fig. S1A). Given that
neurogenesis is not synchronous, it is chal-
lenging to study neuronal maturation because
populations of neurons born at different time
points coexist at the same stage of brain de-
velopment. To study neuronal development
with optimal temporal resolution, we devel-
oped a neuronal birth-dating system called
neuroD1-dependent newborn neuron (NNN)
labeling. NNN combines the expression of
tamoxifen-inducible CreERT2 (Cre recombinase
fused to a mutant estrogen receptor ligand-
binding domain) under the control of the pro-
moter ofNeuronalDifferentiation 1 (NeuroD1),
together with the Cre-dependent reporters en-
hanced green fluorescent protein (eGFP) and
truncated CD8, enabling the identification or

purification of the labeled cells (Fig. 1A and fig.
S1B). Because theNeuroD1 promoter is turned
on transiently at the time of neuron genera-
tion, a pulse of 4-hydroxy-tamoxifen (4-OHT)
allowed the selective labeling of a cohort of
neurons born at precise time points, as as-
sessed by 5-ethynyl-2′-deoxyuridine nuclear
labeling (fig. S1, C to E), which revealed a timely
progression in growth and complexity (Fig.
1B). To maximize the number of neuronal
cells born at similar time points, the cultures
were treated simultaneously with the gamma-
secretase inhibitorN-[N-(3,5-difluorophenacetyl)-
L-alanyl]-S-phenylglycine t-butyl ester (DAPT),
which inhibits Notch signaling and thereby
increases cortical neurogenesis, and cells were
purified by CD8+ magnetic-activated cell sort-
ing (MACS) purification. The purified NNN-
labeled neurons thus displayed homogeneous
maturation patterns and identity (Fig. 1C and
fig. S1, F and G).
To examinemitochondrial dynamics during

cortical neuron development, we combined
NNN labeling withmitochondria tagging with
emerald-green fluorescent protein fused to
mitochondrial targeting sequence of cyto-
chrome c oxidase subunit 8A (COX8A) (Fig. 1,
D to F). We observed that mitochondria were
initially small and sparse in newly bornmouse
neurons (20) and gradually grew in size and
quantity over 3 weeks during neuronal matu-
ration, and the same was observed in mouse
PSC–derived cortical neurons (Fig. 1, D and F,
and fig. S2). However a similar examination of
PSC-derived human cortical neurons revealed
a more prolonged timeline of mitochondria
development, spanning several months (Fig. 1,
E and F).Wemonitoredmitochondria dynam-
ics in developing cortical neurons in vivo. We
labeled mouse cortical neurons with eGFP by
in utero electroporation at embryonic day 14.5
(E14.5), followed by a time course of correl-
ative light and electron microscopy (CLEM)
analysis (Fig. 1G and fig. S3A). This confirmed
that mitochondria gradually reach maximal
levels of growth and size in 3 weeks in mouse
cortical neurons in vivo (Fig. 1F). We also
xenotransplanted DAPT-treated PSC-derived
human cortical neurons transducedwith eGFP.
In this system, xenotransplanted neurons dis-
play a months-long protracted pattern of mat-
uration (7). CLEM performed on such neurons
revealed slower mitochondria growth than in
their mouse counterparts, taking months to
reach similar mitochondrial development (Fig.
1H and fig. S3B). We used transmission electron
microscopy to visualize mitochondria ultra-
structure in greater detail. In newborn neu-
rons, mitochondria were mostly devoid of
cristae, whereas there were more, better de-
fined cristae as neurons matured, following a
species-specific timeline that was more pro-
tracted in human neurons (fig. S3, C and D).
Thus, mitochondriamorphological development
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Fig. 1. Interspecies differences in mitochondria biogenesis and dynamics
during neuronal development. (A) Schematic of the NNN-labeling system.
(B) Representative images after NNN labeling in human PSC-derived cortical
neurons. (C) Left: Uniform manifold approximation and projection (UMAP)
of MACS-purified NNN-labeled cells. Right: Heatmap of gene expression after
pseudotime analysis. (D and E) Representative images of mitochondrial
morphology in NNN-labeled mouse (D) and human (E) neurons. (F) Quantifica-
tion of mitochondrial length (top) and mitochondria volume (bottom) per cell.
Mouse: 2, 4, 8, 16, and 32 days post (dp) NNN labeling: length: n = 10, 11, 10,
10, and 5 cells, respectively; volume: n = 6, 8, 10, 9, and 5, respectively. PSC-

derived mouse: 4 and 18 dp NNN labeling: length: n = 9 and 9, respectively;
volume: n = 9 and 9, respectively. Human: 13, 31, 45, and 66 dp NNN labeling:
length: n = 20, 15, 17, and 18, respectively; volume: n = 9, 11, 22, and 20,
respectively. (G and H) Schematic of mouse (Ms) or human (Hu) cortical neuron
birth-dating followed by CLEM, and representative images. E, embryonic day;
P, postnatal day. Yellow indicates mitochondria. Bottom images are 20 × 20 mm.
(F) Data are shown as mean ± SEM. Dunnett’s multiple-comparisons test
or unpaired t test were used to compare with first time point. Unpaired t test
or Mann-Whitney test was used to compare mouse and human. **P < 0.01,
***P < 0.001, ****P < 0.0001, and ††††P < 0.0001.
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follows a species-specific timeline that is highly
correlated with neuronal maturation.

Mitochondria metabolic activity is lower
in human than in mouse developing neurons

We examined the functional properties of
mitochondria during neuronal development,
focusing on mitochondrial oxidative phos-
phorylation (OXPHOS) and electron trans-
port chain (ETC) capacity (Fig. 2, A to C). We
measured the mitochondrial oxygen consump-
tion rate (OCR) using oxygraphy (25) on high-
ly enriched preparations (>95% neurons) of

mouse and human cortical neurons at simi-
lar time points after birth (fig. S4, A and B).
From early stages, mitochondrial OCR was
higher in mouse than in human neurons, and
also increased more rapidly, which is con-
sistent with their morphological development
(Fig. 2, A to C, and fig. S4, C to E). As a result,
stimulated OCR was >10 times higher in mouse
than in human counterparts after 2 weeks of
differentiation (Fig. 2, B and C, and fig. S4).
The increased mitochondria ETC activity dur-
ing mouse neuronal development was con-
firmed by mitochondria membrane potential

measurement using tetramethylrhodamine
methyl ester (fig. S5).
We next examined glucosemetabolism using

mass spectrometry–based 13C tracer analysis
(26) of enriched preparations of human and
mouse developing cortical neurons at similar
ages (19 days after neuronal birth) (Fig. 2, D
to F, and fig. S6A). Although this led to sim-
ilar labeling of glycolytic metabolites in the
two species, it revealed a higher enrichment
of lactate from 13C6-glucose and a higher
secretion of lactate in human than in mouse
neurons (Fig. 2, D to F, and figs. S6 and S7).
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Fig. 2. Interspecies differences in mitochondria metabolism during neuro-
nal development. (A to C) Quantification of OCR during neuronal development
from at least two biological replicates. (A) Resting OCR. (B) Maximum OXPHOS
capacity under coupled condition. (C) Maximum ETC capacity under uncoupled
condition. Mouse: 4, 13, and 19 dp DAPT induction: n = 6, 8, and 4, respectively.
PSC-derived mouse: 4 and 18 dp DAPT induction: n = 14 and 16, respectively.
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lactate secretion rate. AU, arbitrary units. All data are shown as mean ± SEM.
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Conversely, the labeling of tricarboxylic acid
(TCA) cycle metabolites was comparatively
lower in human than in mouse neurons, in-
dicating lower mitochondria metabolic activ-
ity (Fig. 2E). Whole-cell oxidized nicotinamide
adenine dinucleotide (NAD+) and reduced
NAD (NADH) measurements revealed that the
amounts of NAD+ andNADHwere both higher
in human neurons, whereas the NAD+/NADH
ratio was similar in both species (fig. S6H). This
may suggest a difference in NAD recovery and
synthesis between the two species. We also
found a higher ratio of reduced glutathione
to oxidized glutathione in human neurons
(fig. S6D), indicating a lower oxidative stress
in human cells consistent with a lower activity
of the mitochondrial ETC (Fig. 2C). Adenosine
triphosphate (ATP) and adenosine diphos-
phate (ADP) levels and ATP/ADP ratios were
higher in human than in mouse neurons,
whereas their fractional labeling from glucose
was lower (fig. S6, E and F), suggesting more
de novo biosynthesis in mouse neurons.
These data indicate that human developing

cortical neuronshave lowermitochondria-driven
TCA cycle and oxidative activity than do their
mouse counterparts at a similar age.
Oxygraphy data point to temporal differences

in mitochondrial metabolism during neuro-
nal maturation. To gain insights into what
might cause such differences and their in vivo
relevance, we examined our single-cell RNA-
sequencing data from in vitro birth-dated
human neurons with those from human and
mouse fetal cortex in vivo (27, 28) (Fig. 3 and
figs. S8 to S11). The in vitro and in vivo pat-
terns of expression of mitochondrial or meta-
bolic genes were similar and correlated (Fig. 3,
E and F), providing in vivo validation of our
in vitro observations. Human and mouse cells
had similar temporal patterning of mitochon-
drial and metabolic genes, with an overall
increase in genes related to oxidative phos-
phorylation and a decrease in genes related
to glycolysis, which occurred earlier in mouse
than in human neurons (Fig. 3, F and J, and
data S2).

Increasing mitochondria activity
in human neurons leads to accelerated
neuronal maturation

We tested whether the species differences ob-
served in mitochondria metabolic functions
could set the speed of neuronal maturation.
Glucose tracer experiments revealed an inter-
species difference in the conversion of pyruvate
to lactate (Fig. 2, D to F), which is catalyzed by
lactate dehydrogenase (LDH). LDH is com-
posed of A and B subunits, both of which were
expressed in both mouse and human cortical
neurons, with higher amounts in human than
in mouse (fig. S12).
LDHA favors the conversion of pyruvate to

lactate, and LDHB favors the conversion of

lactate to pyruvate (29) (Fig. 4A). To enhance
mitochondria activity in developing neurons,
we therefore targeted LDHA. Treatment with
a chemical inhibitor of LDHA, GSK-2837808A
(hereafter referred to as GSK) (30), resulted
in increased mitochondria OCR in human
neurons (Fig. 4B and fig. S13), consistent with
earlier reports (31). Similarly, exposure of cells
to free fatty acids (AlbuMAX), a fuel in addi-
tion to glucose for mitochondrial TCA cycle
activity, led to increased OCR, as did its com-
bination with GSK (referred to as AlbuMAX-
GSK) (Fig. 4B and fig. S13). These treatments,
alone or in combination, led to increased OCR,
but not to the level found in mouse neurons
(compare Fig. 2, A to C, with Fig. 4B), even with
higher concentrations of GSK (fig. S14).
We examined the impact of AlbuMAX-GSK

treatment on mitochondria morphology and
protein composition.Morphology analyses did
not reveal significant effects on mitochondria
length and volume (fig. S16, F to H). Western
blot analyses did not reveal changes in most
tested mitochondria proteins, but some key
components were increased in abundance
after the treatment, specifically COXII, a com-
ponent of complex IV (fig. S17). The effects of
AlbuMAX-GSK treatments on OCR could still
be detected at similar levels of magnitude
1 to 5 days after stopping the treatment (fig.
S15). Thus, there appears to be selective mo-
lecular and metabolic effects of LDH inhibi-
tion leading to increased OXPHOS, rather than
global effects on mitochondria biogenesis or
dynamics. This could contribute to the ob-
served limits of the effects obtained after manip-
ulations of mitochondria function in human
neurons, which never reached the levels found
in mouse neurons. None of the treatments en-
hancing mitochondria appeared to cause
changes in neuronal identity or survival, be-
cause the amounts of apoptosis remained
low and identity marker expression was un-
changed after AlbuMAX-GSK treatments (figs.
S13G and S16, A to E).
We tested the impact of these treatments on

neuronal developmental rates. To determine
the speed of maturation, we assessed neuro-
nal excitability by measuring the response of
neurons to membrane depolarization induced
by the addition of KCl using as a readout the
expression of the activity-dependent immediate-
early gene Neuronal PAS Domain Protein 4
(NPAS4) (32). Few NNN-labeled human corti-
cal neurons responded to KCl shortly after
their birth (9 to 24 days), but most of them
became responsive weeks later (39 days) (Fig.
4C and fig. S13E). We then examined the im-
pact of LDHA inhibitors on human cortical
neuronmaturation by treating the cells from
day 9 to 23, when the neurons were still poor-
ly responsive to KCl (Fig. 4D and fig. S13F).
LDHA inhibitor treatment was stopped for
1 to 5 days before assessing maturation to

distinguish the effects on neuronal develop-
ment from an acute impact on mitochondria
function (Fig. 4, D and E, and fig. S15). Few
untreated neurons responded to KCl treat-
ment, but inhibition of LDHA increased the
proportion of neurons displaying NPAS4 re-
sponses (Fig. 4D), indicating acceleration of
neuronal maturation in response to increased
mitochondrial respiration (Fig. 4B). Increased
neuronal maturation was also observed with
other treatments that enhance mitochondrial
metabolism, including AlbuMAX and PS10, a
pyruvate dehydrogenase (PDH) kinase (PDK1-4)
inhibitor (33) that increases the conversion of
pyruvate into acetyl-CoA. The effects of AlbuMAX
and GSK were additive (Fig. 4, D and E), fur-
ther linking mitochondrial metabolic activ-
ity to the speed of neuronal maturation. These
experiments were performed on human corti-
cal neurons cultured on mouse astrocytes, but
a similar acceleration was observed after the
same treatment on pure neuronal populations
(figs. S13, H to J, S14, C to E, and S15, C to E).
Increased mitochondrial activity appears to

lead to accelerated neuronal differentiation.
We tested this further by performing patch-
clamp recordings of human cortical neurons
after AlbuMAX-GSK treatment. This resulted
in an increased frequency and amplitude of
synaptic currents (Fig. 4, H and I), together
with a decrease of membrane potential (fig.
S18), consistent with a global increase in the
functional maturation of the treated neurons.
We also found an increased number of puncta
containing the presynaptic marker synapsin I
on dendrites of treated neurons (Fig. 4, F and
G). The density of synapsin I puncta in 24-day-
old treated human neurons was still lower than
that in 13-day-old mouse neurons (fig. S16, J
and K).
We examined the consequences of AlbuMAX-

GSK treatment on neuronal morphogenesis,
a crucial parameter of neuronal maturation.
AlbuMAX-GSK–treated human cortical neu-
rons had larger neuronal size and increased
dendritic length and complexity (Fig. 5, A and
B). The morphology of 24-day-old AlbuMAX-
GSK–treated neurons reached the same mat-
uration level as for 58-day-old control neurons
(Figs. 1B and 5A), indicating that enhanced
mitochondrial metabolism could accelerate
neuronal morphological development sev-
eral weeks ahead of time.
To explore the relevance of these observa-

tions across species, we tested the influence of
mitochondria activity on rates of mouse neu-
ron maturation. Treatment of mouse neurons
with AlbuMAX-GSK resulted in increased den-
dritic growth, although to a lesser extent than
in human neurons (Fig. 5, C and D). Reduction
of mitochondria activity using either 2-cyano-
3-(1-phenyl-1H-indol-e-yl)-2-peopenoic acid
(UK-5099) as a mitochondrial pyruvate car-
rier inhibitor or rotenone as an ETC complex I
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inhibitor resulted indecreaseddendritic growth,
consistent with slower developmental rates
(Fig. 5, E and F, and fig. S19).
We tested whether similar effects could be

observed in vivo using xenotransplantation of
human cortical neurons in the mouse neona-
tal cortex (6–8). We performed genetic ma-
nipulation of human neuron metabolism by
lentiviral overexpression of LDHB or eGFP as
a control. LDHB overexpression led to increased
neuronal mitochondria OCR in vitro, as ex-
pected (Fig. 6A and fig. S20). We xenotrans-
planted the transduced neurons, which revealed
an increased dendritic length and complexity
4 weeks after transplantation (Fig. 6, B to
D), corresponding to a pattern found at 2 to
3 months in control conditions (7). Function-
ality was not tested, but these data indicate
that increasing mitochondria metabolic activ-
ity results in the acceleration of morpholog-
ical differentiation of human neurons in vivo.

Discussion

We found that mitochondrial metabolic activity
sets the species-specific tempo of development
of cortical neurons. Enhanced mitochondria
metabolism leads to global acceleration of
morphological and functional neuron matu-
ration, but it remains to be determined how
much it leads to transcriptional, epigenetic,
and proteomic changes in developing neu-
rons. AlbuMAX-GSK–treated neurons were
still less mature than mouse counterparts at
the same age, indicating that other mecha-
nisms contribute to species differences in
neuronal developmental timing, including
human-specific genes (34), RNA or protein
turnover (35, 36), and chromatin remodel-
ing (37, 38).
Our transcriptomic analyses suggest that

at least part of the temporal differences in
mitochondria maturation originate from pat-
terns of mitochondria gene-regulatory mech-
anisms, but the observed species differences
in mitochondria function likely also involve
posttranslational mechanisms such as mod-
ifications of mitochondrial dynamics and as-
sembly of the ETC (39, 40).
Differences in species-specificmetabolic prop-

erties of cortical neurons may influence hu-
man brain neoteny, which is consistent with
previous reports of years-long periods of aer-
obic glycolysis in the developing human cortex
(41). Aerobic glycolysis has long been thought
to constitute a hallmark of cellular prolifer-
ation, as during oncogenesis (42). Here, we
found that mitochondrial OXPHOS activity
influences the speed of postmitotic neuron
morphological and functional development
and displays species differences. However, al-
terations in the TCA cycle or other, yet to be
explored metabolic pathways may also con-
tribute to determine the timing of neuronal
development.
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The temporal patterning of mitochondria
development is likely an important contributor
to the observed species differences in metabolic
activity. However, the differences observed in
mitochondria function at early stages of neuro-
nal development also suggest that mitochondria
from different species may display quantitative
or qualitative differences independently of their
developmental patterns. This will be important
to resolve, because mitochondria and metab-
olism could contribute to developmental timing
in other contexts, from the speed of the somitic
clock (43) to the maturation of cardiac and
pancreas cells (13–15).
Accelerated human neuronal maturation

in vitro might benefit PSC-based modeling of
neural diseases, which remains greatly hindered
by the slowness of human neuron development.
Conversely, human neuronal prolonged de-
velopment has been long proposed to have
a positive role in acquiring human-specific
cognitive features (5). Tools to accelerate or
decelerate neuronal development could allow
testing of the impact of neuronal neoteny on
brain function, plasticity, and disease.

Materials and methods summary

Detailed information on all materials andmeth-
ods performed are provided in the supplemen-
tary materials.

NeuroD1-dependent NN labeling and purification

Human cortical cell culture was performed
as described previously (20). Dissociated cells
were transduced with the following lenti-

viruses: LV-NeuroD1 promoter-CreERT2-WPRE
and LV-CAG-DIO-Reporter (EGFP and/or trun-
cated CD8)-WPRE. For Cre-dependent recom-
bination, 4-OHT (final concentration: 0.25 mM)
was added to the medium for 48 hours. For
purification of newborn neurons, cortical cells
were dissociated using the NeuroCult Enzy-
matic Dissociation Kit (STEMCELL Technolo-
gies) 48 hours after withdrawal of 4-OHT. The
dissociated cells were incubated with magnetic
bead–conjugated antihuman CD8 (Miltenyi
Biotec) in MACS buffer (Miltenyi Biotec). CD8+

selection was performed with LS columns
(Miltenyi Biotec). The sorted cells were plated
on mouse astrocyte–coated or poly-L-ornithine-/
laminin–coated plates.

Oxygraphy

Cells were dissociated using the NeuroCult En-
zymatic Dissociation Kit and resuspended in
MiR05 buffer (Oroboros Ecosystem). The cell
suspension was injected in a chamber of oxy-
graphy O2K with subsequent injections of the
following chemical compounds to final concen-
trations as follows (all fromMerck except for
ADP, which was from Calbiochem): 556 U/ml
catalase, 10 mg/ml digitonin, 5 mM pyruvate,
0.5 mMmalate, 1 mMADP, 10 mM glutamate,
10mMsuccinate, carbonylcyanidem-chlorophenyl
hydrazone (CCCP) D1 mMuntil maximum respi-
ration reached, 75nMrotenone, 10mMglycero-
phosphate, 250 nM antimycin A, 2 mM sodium
ascorbate, 0.5 mM N,N,N′,N′-tetramethyl-p-
phenylenediamine dihydrochloride, 10 mM
cytochrome C, and 200mM sodium azide. The

reported values of maximum OXPHOS (phos-
phorylating) and ETC (nonphosphorylating)
were calculated as succinate minus antimycin
A (nonmitochondrial respiration) and CCCP
minus antimycin A, respectively (25).

Metabolic labeling

One day before the glucose-tracing experiment,
the medium was exchanged with Neurobasal/
B27 (2.5 mM glucose). After one day, the me-
diumwas switched toNeurobasal/B27 (2.5mM
U-13C glucose; Cambridge Isotope Laboratories).
After 30hours of incubation,mediumandplates
were snap-frozen in liquid nitrogen.

Metabolic modulation by chemical compounds

On the first day of the experiment, the cul-
ture medium was removed and replaced by
Neurobasal/B27 (2.5 mM glucose) with the in-
dicated chemical compounds: GSK-2837808A
(1 to 10 mM; MedChemExpress), PS10 (5 mM;
MedChemExpress), AlbuMAX (0.5%w/v; Ther-
mo Fisher Scientific), UK-5099 (2.5 mM; Sigma-
Aldrich), and rotenone (21 nM; Sigma-Aldrich).
Eighty percent of the culture medium was
exchangedwith freshmedium and compounds
every other day.

Xenotransplantation

Human neuron xenotransplantation was per-
formed as described previously (7). On the
day of xenotransplantation, cortical cells were
dissociated using the NeuroCult Enzymatic
Dissociation Kit and resuspended in a solu-
tion containing 20 mM EGTA (Merck) and
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Fig. 6. In vivo maturation of
human cortical neurons is en-
hanced by increased mitochon-
dria function. (A) Quantified OCR
from three biological replicate
experiments. (B and C) Experimen-
tal scheme (B) and representative
images (C) of human neurons
in mouse cortex at 28 to 29 dp
transplantation. (D) Quantification
of total dendritic length (top)
and Sholl analysis of dendritic
branching (bottom). All data are
shown as mean ± SEM by unpaired
t test (A). (D) Unpaired t test
was used for dendritic length.
Two-way ANOVA test was used for
Sholl analysis. ***P < 0.001,
****P < 0.0001.
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0.1% Fast Green (Merck) in phosphate-buffered
saline at 100,000 to 200,000 cells/ml. Approx-
imately 1 to 2 ml of cell suspension was injected
into the lateral ventricles of each hemisphere
of postnatal day 0 or 1 mouse brains. At the
indicated time points, the mice were sacri-
ficed and perfused with the proper fixative.
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