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Abstract—People counting and detection technologies have
shown great versatility in various scenarios and have become an
important tool for event organizers and city planners to optimize
their operations. This paper presents a novel approach for people
counting using Micro-Doppler Signatures (MDS) extracted from
a Frequency-Modulated Continuous-Wave (FMCW) radar oper-
ating at 77GHz. The system utilizes the unique gait model of each
individual , which results in a distinct instantaneous velocity over
time, to generate the MDS that are later used to classify groups
of different sizes with a Convolutional Neural Network (CNN).
Those results are compared with using existing CNNs for image
classification, in a transferred learning approach. The proposed
system overcomes the limitations of existing camera-based people
counting techniques such as the need for a clear line of sight and
being affected by lighting conditions.

Index Terms—group counting, radar signal processing, 77 GHz
FMCW radar, CNN, micro-Doppler signature

I. INTRODUCTION

In recent years, with the increased concern in public safety,
there has been a growth in the demand for crowd surveillance
and safety management systems. The estimation of crowd
dynamics can help in preventing unanticipated accidents or
issues in case of mass events or be of use for city planners
to improve the daily commutes of its citizens. These systems
can be implemented in various ways as, for example, image
or video-based techniques. However, radar-based crowd mon-
itoring systems are being considered due to their non-invasive
properties and ability to work in low lighting conditions, which
the previous systems are lacking.
When it comes to radar-based people counting systems, several
radar types and inputs have been used. Some of the existing re-
search in literature consider an indoor, office-like environment
where a few individuals (less than ten in practice) are mobile.
These systems are based on the impulse-radio ultrawideband
(IR-UWB) waveform, which compared to the Frequency Mod-
ulated Continuous waveform (FMCW) provides a much better
range resolution but poor Doppler resolution. Since people in
this environment move at very low speeds, the radar mostly

relies on the range information to estimate the number of
individuals in the room [1]. Another exploitable input can
be the power spectral density (PSD) for applications with
wider regions of interest (ROI) to improve people counting.
[2]. The use of range-time maps obtained from a single-
channel stepped-frequency continuous wave radar (SFCW)
have also been explored for counting [3]. Passive radars have
also been a growing area of radar research where features
extracted from range-Doppler maps (RDM) have been used
for counting [4] along with spectrograms [5]. However, these
spectrogram estimates are built by observing WiFi signals at a
frequency much lower than what we are considering here and
considering an office-like scenario. Low-accuracy estimates
achieved with a mm-wave FMCW radar can also be improved
by using information coming from other devices like cameras
[6] or by finely observing the vital signs like the heartbeat
or the breathing rates with the radar. [7]. On the contrary to
existing work focusing mainly on indoor environments, we
will target an outdoor pedestrian street scenario where people
are typically walking together in groups. Furthermore, dis-
tinctly in this work we will use the Micro-Doppler Signatures
(MDSs) extracted from a FMCW Radar at 77GHz as input
to a Convolutional Neural Network (CNN). We will compare
these results with a transfer learning approach, using other
pre-trained CNNs trained for image classification.
The rest of the paper is organized as follows : Section II
describes the fundamentals of the FMCW radar. Next, Section
III explains the human gait modelling with the experimental
results and the simulation scenario used. Section IV presents
the CNN architecture along with the transfer learning approach
and the results achieved. Finally, we conclude this paper and
discuss future directions in Section V.

II. SYSTEM ARCHITECTURE

A. FMCW Radar system

Frequency-Modulated Continuous-Wave (FMCW) radar is a
type of radar that operates by transmitting a continuous wave



(a) Single person MDS (b) Two people MDS

Fig. 1: Experimental results

signal that is modulated with a linear frequency ramp. This
ramp causes the transmitted signal to continuously increase
or decrease in frequency over time. This transmitted signal is
called a chirp. The FMCW signal is composed of a finite series
of K chirps, each with an instantaneous frequency linearly
increasing with the time.

When the transmitted signal encounters a target object,
some of the signal is reflected back to the radar receiver. The
received signal is then mixed with the transmitted signal and
low-pass filtered to cancel out replicas at twice the carrier
frequency resulting from the mixing. The resulting frequency
is proportional to the distance between the radar and the
target object. By analyzing the resulting frequency signal, the
FMCW radar can determine the range, speed and, in case of
multiple antennas, Angle of Arrival (AoA) of target objects.
Focusing on chirp k and denoting each chirp duration by T and
the frequency bandwidth swept as B the time can be expressed
as :

t = kT + t′ (1)

where k = 0, · · ·,K − 1 and t′ ∈ [0, T ]. The instantaneous
frequency of the transmitted signal is expressed as :

fi(t) = βt′ (2)

where β = B
T is called the frequency slope. The transmitted

signal is then mathematically expressed as:

s(t) = cos(2πfct+ ϕi(t)) (3)

where fc is the radar carrier frequency and ϕi(t) is the
instantaneous phase resulting from the FMCW modulation,
equal to :

ϕi(t) = 2π

∫ t

u=0

f(u) du

= πkβT 2 + πβt′2
(4)

At the receiver, after mixing, the resulting baseband signal
caused by a single target reflection is :

x(t) ≈ κ exp(j2πfBt
′) exp(j2πfDkT ) (5)

where κ is a complex factor that integrates the gain and all
constant phase terms and fB and fD the so called beat and
Doppler frequency respectively. By measuring fD and fB the
targets speed and range can be resolved respectively since they
are defined as :

fD = 2
vfc
c

(6)

fB = 2
R0β

c
(7)

where v denotes the targets speed , R0 the targets range and
c the speed of light.

B. Radar Signal Processing

A 2D matrix of size M × N is formed by acquiring and
sampling the mixed signal x(t) across consecutive chirps
for a single transmit antenna, with M being the number of
transmitted chirps and N the number of samples per chirp.
Next the Range-Doppler Map (RDM) is computed by first
taking a Fast Fourier Transform (FFT) along the fast time for
all chirps to obtain the so-called Range Profile (RP) containing
the range information of the targets, followed by another FFT
along the slow time to obtain Doppler information. Before
performing the respective 1D FFTs, a mean subtraction is
performed along the slow time to remove contributions from
static objects.
However, in cases of groups walking together it is not possible
in the RDM to distinguish and count the number of people
as they appear as a single peak in the RDM. As discussed
previously the frequency components of the targets will vary
over time. In such way, the standard Fourier Transform is
not suitable since it projects the signal on infinite sinusoids
which are totally not localized in time and thus, it provides
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Fig. 2: Examples of simulated MDS for different classes

the frequency information averaged over the whole signal time
interval. In these cases, it is necessary to move from mono-
dimensional functions to bi-dimensional functions (functions
depending on both time and frequency) such as the Short Time
Fourier Transform (STFT). Thus, our radar processing is as
follows :

• Determine the RDM using a 2-D Fourier Transform.
• In the RMD, detect the group by finding the maximum

power peak.
• Extract and concatenate the resulting peak index across

all chirps in the RP.
• Perform STFT on the concatenated signal to extract the

spectrograms i.e, MDS.

III. HUMAN GAIT MODELLING

A. Experimental Results

This work is based on the Texas Instruments AWR1843
FMCW radar operating at 77GHz. For the purposes of this
work, experimental data were collected to validate the sys-
tem model used in the previous sections. Future work will
include an extensive measurement campaign to validate our
used techniques in real-world data. Experiments were done
using the Texas Instruments AWR1843 FMCW radar operating
at 77GHz [9]. A summary of the selected radar recording
parameters can be seen in Table I.

Waveform parameters Value
Carrier Frequency 77 GHz
Chirp bandwidth 3.5 GHz
Chirp duration 157 µs

Range resolution 0.04 m
Speed resolution 0.09 m/s

Maximum detectable range 21 m
Maximum detectable speed 6 m/s

TABLE I: Recording parameters for the FMCW radar

The experiments were performed in an indoor room with
a single and two targets moving away from the radar. The
resulting Micro-Doppler Signatures (MDS) can be seen in
Fig. 1. It can be observed that in the measurement results
for a single person and for two people, the maximum power
in the measured MDS is observed in the torso, along with the
lower parts of the arms and legs. We will leverage these results
later to model the gait of our targets. Additionally, in cases of

multiple people, it can be observed that their MDS differ in
magnitude and phase, making them a useful tool for people
counting.

B. Simulation

To study how the MDS evolves with an increasing number
of targets in the scene, it is necessary to resort to simu-
lations based on either mathematical or empirical models.
One frequently used empirical model for generating micro-
Doppler gait signatures is the global human walking model
developed by Boulic, Magnenat-Thalman, and Thalman [10].
However, in this work, we do not consider all these points
but instead use the experimental results to select the most
significant points. As discussed previously, the most significant
contributions to the MDS were from the torso, lower legs, and
lower arms. Thus, only these points are used to model the
gait of our targets, superimposed with the average speed of
the groups. Examples of simulated MDSs for different group
sizes are shown in Fig. 2. It should be noted that the simulated
MDS represent targets moving away from the radar, which is
considered as a positive frequency shift.

IV. CNN AND SIMULATION RESULTS

Deep learning is a branch of machine learning that focuses
on automatically generating customized features using a series
of nonlinear operations. Specifically, these algorithms consist
of a sequence of functions that enable the learning of more
intricate concepts by combining simpler functions in a stacked
manner such that :

f l(x) = σ(W lx+ bl),∀l ∈ [0, L] (8)

where x denotes an input vector, σ a piecewise nonlinear
function, W l and bl describe the layer-specific weights and
biases respectively and L the number of layers in the network.
Despite deep neural networks being researched on for several
decades, they have gained significant attention and achieved
impressive performance following a notable breakthrough in
the ImageNet Large-Scale Visual Recognition Competition
in 2012 [11]. The recent success of deep learning can be
attributed to the availability of large datasets, affordable com-
putational power and resources, algorithmic advancements,
and a culture of open innovation. Convolutional Neural Net-
works (CNNs) are specialized neural networks which uti-
lize locally connected neurons with shared weights, allowing



Fig. 3: CNN Architecture

convolutional filters to operate on small receptive fields of
input data in a sliding-window manner. CNNs exhibits a
grid-like topology, where different filters evolve to become
specific feature detectors, starting from low-level color and
edge detectors in early layers and progressing to high-level
object detectors in later layers. The key distinction from a
standard Feed-Forward Neural Network (FFNN) lies in the
use of convolutions instead of plain matrix multiplications. To
formalize, such convolutions are defined as :

Dij = (X ∗K)ij

=
∑
m

∑
n

Xi+m,j+nKmn
(9)

with D representing the resulting feature map, X a 2-D input
and K a filter ∈ Rm×n. Thus, (8) becomes :

f l
j(X) = σ(X ×W l

j + blj),∀l ∈ [0, L] (10)

In addition to weight sharing, a technique called pooling is
utilized to efficiently reduce the number of parameters and data
size. Pooling involves averaging or maximizing the responses
of cells arranged in an n × m grid, preserving essential
information while reducing the overall data size [12]. This
paper focuses on these types of neural networks, applied to
MDSs extracted from a FMCW Radar.

A. Dataset Simulation and Class Lables

We simulate varying group sizes (1-12 people) in a pedes-
trian street. For each group size 100 MDS are simulated
and generated leading to a dataset of 1200 MDS samples.
These MDSs are then fed to a CNN in order to perform a
classification task to estimate the group sizes. Some examples
of the MDSs generated can be seen in Fig. 2. The goal is to
count and classify different groups of people, thus we build our
classes based on intervals of number of people. Considering
3 groups classes, the class labels decided are as follows :

• Class 1 : 1-4 people - Low sized group
• Class 2 : 5-8 people - Medium sized group
• Class 3 : 9-12 people - High sized group

B. CNN Architecture

A classical CNN architecture is implemented here, and
displayed in Fig. 3. The network’s structure was thoughtfully
crafted through thorough experimentation with a wide range
of hyperparameters, including the number of layers (convo-
lutional, pooling, or fully connected), the size and quantity
of filters, and other relevant factors. It consists of a feature
extraction part with NC = 3 convolutional blocks, and a
classification part with NFC = 3 fully connected (FC) layers
followed by a softmax layer. Each MDS is scanned by the
convolutional layers, followed by a rectifier linear unit (ReLU)
layer and a max pooling. After each set of convolutions
followed by the ReLU and the max pooling, the size of the
convolutional filters is decreased and their number is increased.
This is done to scan the MDS at each step with a finer
resolution filter so that the CNN can extract different and finer
features at each step. We start with 16 filters of size 7× 7 in
the first layer, to 32 filters of size 5 × 5 in the second layer
and 64 filters of size 3 × 3 in the last convolutional stage.
The ReLU activation function was chosen for its ability to
handle the vanishing gradient problem [13]. The dataset is split
70%, 20% and 10% between training, validation and testing
respectively.

C. Classification Results

As can be seen in Fig. 4 the proposed CNN architecture
achieves an accuracy of 80% on average for the considered
classes on the testing set. Especially for the low and high sized
groups, the model achieves a better accuracy as the MDS are
quite distinct compared to the medium sized group. Also it is
worth noting that the miss classification errors do not exceed



(a) Custom CNN (b) AlexNet (c) GoogleNet

(d) ResNet-18 (e) ResNet-50

Fig. 4: Confusion matrices for the networks considered

more than one class i.e we never classify the low sized group
and a high sized group and vice versa.

D. Transfer learning

Transfer learning is a machine learning technique that uti-
lizes knowledge gained from one task to improve performance
on a different but related task. Instead of starting from scratch,
transfer learning allows models to benefit from pre-trained
knowledge and adapt it to new tasks. It is particularly useful
when there is limited labeled data available for the target task.
In this paper, we compare the results achieved by our custom
CNN to other networks widely used in image classification
tasks. We will focus on networks pre-trained in the ImageNet
database and fine tune them specifically for our dataset. Since
these networks were trained to classify images into 1000
object categories, such as keyboard, mouse, pencil, and many
animals, they have learned rich feature representations for a
wide range of images. The goal is to leverage these networks
for high-level feature extraction such as edges done in the
early layers and re-train them in the later layers for feature
extraction specific to our counting problem. In this paper, the
networks considered for transfer learning are :

• AlexNet: AlexNet is a pioneering deep convolutional
neural network architecture that revolutionized image
recognition in 2012 by effectively using convolutional
layers [11].

• GoogleNet: Also known as Inception, GoogleNet is a
deep convolutional neural network architecture that intro-
duced inception modules, enabling efficient information

flow and achieving high accuracy with fewer parameters.
[14]

• ResNet18: ResNet18 is a variation of the ResNet ar-
chitecture, incorporating skip connections to address the
challenge of vanishing gradients and allowing the training
of deeper neural networks [15].

• ResNet50: ResNet50 is an extended version of the ResNet
architecture, featuring 50 layers for increased depth and
capacity, resulting in improved accuracy across various
computer vision tasks [15].

A summary of the depth and number of parameters for these
networks is shown in Table II.

Network Depth Number of parameters
AlexNet 8 61 million

GoogleNet 22 6.8 million
ResNet-18 18 11 million
ResNet-50 50 25 million

TABLE II: Networks Considered

Thus, in our proposed solution, we substitute the final
convolutional, fully connected, softmax and classification layer
to match and learn features related to our problem. We re-
train the entire network on our dataset, but we give the newly
added layers a 20 times higher weight and bias learning rate
factor and decrease the initial learning rate significantly. This
is done so that the network learns faster in the new layer and
slow down learning in the transferred layers. In that way we
preserve the high-layer feature extractor while learning new



features relevant to our dataset. A summary of the achieved
results can be seen in Fig 4 and Table III.

Network Input Size Average testing accuracy
AlexNet 224×224×3 ≈ 82%

GoogleNet 224×224×3 ≈ 86%
ResNet-18 224×224×3 ≈ 87%
ResNet-50 224×224×3 ≈ 86%

TABLE III: Networks Considered

V. CONCLUSION AND FUTURE WORK

In conclusion, we investigated the problem of radar based
group counting using micro-Doppler signatures. We proposed
a simulator based on the Boulic, Magenat-Thalman and Thal-
man model to generate micro-Dopper signatures for varying
group sizes and used experimental measurements of the human
gait with a radar to select the relevant body parts. We tackled
counting as a classification problem, and applied a CNN on the
generated MDS. This approach achieved high accuracy results
for counting. We finally used fine-tuning transfer learning on
CNNs used in the ImageNet challenge and achieved better
accuracies than what was previously possible with our custom
CNN.
Future work includes an extensive measurement campaign and
dataset collection, comparing the CNN architecture proposed
to other Machine Learning methods and tackling larger group
sizes.
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