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Abstract
In this paper, we introduce a multi-curve model under the historical probability based upon multi-

plicative relative spreads, inspired by the HJM and affine factor approaches, which implies positive and
ordered spreads. In particular, we focus upon δi-XIBOR relative (instantaneous) forward rates and
appropriate XIBOR HJM drift constraints, and we describe the dynamics of the different forward rates
and spreads under different measure changes (including forward measures). We introduce an explicit
model satisfying both the XIBOR HJM drift constraints as well as the property of positive and ordered
spreads. We demonstrate the flexibility of this model for derivative pricing by focusing upon the price
of a caplet and of options with a payoff based upon XIBOR forward prices with different tenors. We
perform on one hand a calibration of the model based upon cap prices. On the other hand, we do an
estimation of a spread curve in our proposed model under the historical probability by using a Kalman
filter approach. Numerical results are included, and they confirm that the model performs very well.

1 Introduction

The crisis that hit the financial markets in 2008 had an enormeous influence upon interest-rate mod-
elling. Since August 2007, spreads between interbank offered rates, like e.g. LIBOR and EURIBOR rates,
and overnight-indexed swap (OIS) rates have been significant, see e.g. Figure 1 which presents historical
spreads between EURIBOR forward rates and EONIA OIS rates for different tenors from Jan. 2006
to Feb. 2011. In particular, the assumption of a single interest-rate curve that could be used both for
discounting and for generating future cash flows does no longer hold and leads to arbitrage opportunities.
This led immediately after the financial crisis to the introduction of the class of multiple-curve interest-rate
models, taking into account the fact that interbank “long-term” rates (typically one, three or six months)
are riskier than short-term rates (typically one day). In the following, the interbank rates will be refered
to as XIBOR rates (see e.g. [Bianchetti, 2010], [Gallitschke et al., 2017] and [Cuchiero et al., 2019]) and
in Section 2, we will introduce the related notations. In the literature, there exist different modeling
approaches of both the rates and the spreads. The spread can be defined as an additive spread such as in
e.g. [Mercurio, 2010] or as a multiplicative spread such as first proposed by [Henrard, 2007]. When one
first models the OIS and XIBOR rates simultaneously, one easily obtains tractable pricing formulas, but
it is more difficult to guarantee the positivity of the spread.

Figure 1 illustrates that historical spreads are (mostly) positive, are correlated and that they are ordered
in function of the tenors. In this paper, we will present a multiple-curve model starting from a Heath-
Jarrow-Morton (HJM) factor model, based on multiplicative relative forward spreads and affine processes,
which satisfies these constraints, and which can be used both for risk management and for pricing, since
we will model it under both the real-world measure P and the risk-neutral measure Q.
The recent literature on multi-curve models has grown very rapidly since the financial crisis. Differ-
ent modeling approaches can be distinguished in multi-curve modeling, such as short-term interest-
rate models, Heath-Jarrow-Morton (HJM) models, LIBOR market models (LMM) and pricing ker-
nel models. We refer to [Bianchetti and Morini, 2013], [Grbac and Runggaldier, 2015], [Henrard, 2014],
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Figure 1: Historical EURIBOR-OIS spreads in % for different tenors from Jan. 2006 to Feb. 2011. The
EURIBOR forward rates are the 1m-, 3m-, and 6m-EURIBOR (Bloomberg ticker EUR001M INDEX,
EUR003M INDEX, EUR006M INDEX) and the OIS rates are the 1m-, 3m-, and 6m-EONIA OIS rates
(Bloomberg ticker EUSWEA, EUSWEC, EUSWEF). The plotted spreads are the differences between the
corresponding xm-EURIBOR and the xm-EONIA OIS rate for x = 1m, 3m and 6m.

[Cuchiero et al., 2016], [Macrina and Mahomed, 2018] and [Alfeus et al., 2020] for an overview of the lit-
erature on multi-curve models. We mention here only an incomplete list of papers closely related to
our study. As already mentioned, multiplicative spreads for modeling multiple curves have been first
considered in [Henrard, 2007]. In [Grbac et al., 2015] the dynamics of OIS and LIBOR rates are specified
according to the methodology of affine LIBOR models and imply positive spreads. This non-negativity
of the spreads is automatically ensured by using the framework of the affine LIBOR models proposed by
[Keller-Ressel et al., 2013]. [Cuchiero et al., 2016] provide an HJM approach in a general semimartingale
setting to model the term structure of multiplicative spreads between FRA rates and simply compounded
OIS risk-free forward rates and they show how to construct models such that multiplicative spreads are
greater than one and ordered with respect to the tenor’s length. [Zhong, 2018] incorporates the LMM with
a multiplicative basis which can be considered as a continuously compounding version of the excess return
of the forward LIBOR rate over the OIS forward rate for the reset period as modeled in [Henrard, 2010].
[Cuchiero et al., 2019] models a general numéraire process and multiplicative spreads between XIBOR
rates and simply-compounded OIS rates as functions of an underlying affine process. This model ensures
ordered positive spreads and an exact fit to the initially observed term structures. Their general framework
leads to tractable valuation formulas for caplets and swaptions and embeds all existing multi-curve affine
models. Following [Grbac and Runggaldier, 2015] and [Miglietta, 2015], [Konikov and McClelland, 2020]
focus upon fictitious processes playing the role of the spread between the instantaneous forward δi-XIBOR
curve over the δi−1-XIBOR curve or between the δ1-XIBOR curve and the OIS curve, which we call
δi-XIBOR relative (instantaneous) forward rates fi/i−1(t, T ) in this paper (see Definition 4). Whereas
[Grbac and Runggaldier, 2015] and [Miglietta, 2015] used level-independent volatility functions for (Gaus-
sian) spread processes, [Konikov and McClelland, 2020] propose level-dependent volatility functions as a
mean for imposing lower bounds. They state no-arbitrage drift restrictions for the spread curve pro-
cesses in their settings and are able to solve these drift restrictions in an explicit way. They further
specify a multi-curve model in the spirit of [Cheyette, 1996] and derive a Markov representation of the
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relative forward spreads with two state variables which can both be expressed as (stochastic) integrals
of the relative short spreads. Among other results, they derive swaption prices and present a practi-
cal calibration strategy of multi-curve models based upon a mix of historical and implied data. The
main difference between our paper and [Konikov and McClelland, 2020] lies in the fact that we specify
the δi-XIBOR relative (instantaneous) forward rates in our explicit model as affine functions of indepen-
dent Cox-Ingersoll-Ross (CIR) factor processes. The factor structure allows us to significantly simplify the
conditions to ensure positive and ordered relative spreads as well as the pricing and fitting to market data.

In this paper, we consider a filtered probability space (Ω, F , (Ft)t, P) where P is the historical prob-
ability, also called the physical or real-world measure. Notice that we start describing the multi-curve
interest-rate model under the historical probability P, whereas most papers start studying the model
under the risk-neutral probability Q. We concentrate upon a model with multiplicative relative spreads,
inspired by the HJM and affine factor approaches, which allows for positive and ordered spreads, as well
as tractable valuation formulas for some derivatives with optionality features. We will introduce the
notion of δi-positive multi-curve models which summarizes the properties of positive spreads and ordered
relative spreads. We start by formulating an HJM model under P and Q for both the OIS and XIBOR
rates. For the latter, we will focus upon δi-XIBOR relative (instantaneous) forward rates fi/i−1(t, T ) as in
[Konikov and McClelland, 2020]. We derive appropriate XIBOR HJM drift constraints under the measure
P in the presence of correlations and describe the dynamics of the different forward rates and (relative)
spreads under different measure changes (including forward measures). In particular, we introduce the
probability measure under which the relative spreads are martingales. We further propose equivalent
properties to check the δi-positivity, and as a result we explain why level-independent volatilities cannot
lead to ordered spreads. Armed with these insights, we specify an explicit δi-positive model (under P
and Q) based upon affine spread factor processes, which satisfies the XIBOR HJM drift constraint as
well as the δi-positivity constraints. Therefore, we use a Hull-White model for the OIS short rates since
the OIS rate can turn negative, and we assume a constant market risk parameter for the OIS rates for
defining Q. On the other hand, we base the δi-XIBOR relative (instantaneous) forward rates fi/i−1(t, T )
as affine functions upon independent Cox-Ingersoll-Ross (CIR) factor processes, which are assumed to be
independent from the OIS rates as well. Since solutions to CIR processes remain positive and fi/i−1(t, T )
can be interpreted as related to spreads, this choice facilitates to satisfy the δi-positivity. Moreover,
the δi-XIBOR relative (instantaneous) forward rates fi/i−1(t, T ) have a time-dependent mean-reversion
and level-dependent volatilities. Surprisingly, the data allowed us to assume the same dynamics for the
δi-XIBOR relative (instantaneous) forward rates fi/i−1(t, T ) under P and Q, an observation that merits
to be studied in more detail in future research. This feature simplifies the XIBOR HJM drift constraints
in a very practical way. Besides, by the assumed independence of the OIS rates and the XIBOR relative
forward rates, the dynamics of the δi-XIBOR relative (instantaneous) forward rates fi/i−1(t, T ) remain
unchanged under the forward measures or the annuity measure (to price swaptions). In this explicit
model, it is easy to price linear financial products as well as interest-rate derivatives with optionality
features. As an example, we derive the price of a caplet and of options with a payoff based upon XIBOR
forward prices with different tenors1.
We note that our model can be recovered as a special case of the all-encompassing paper [Cuchiero et al., 2019],
in particular it is an affine short rate multi-curve model. The δi-positivity of our model follows by con-
struction and it fulfills their general Proposition 3.7. Our modeling startpoint of relative spreads and δi-
XIBOR relative (instantaneous) forward rates in a multiplicative multi-curve framework leads, however,
in our particular settings to very intuitive proofs, semi-explicit pricing formulae, easy implementation,
and excellent estimation results. Since one of the main contributions of this paper is to focus upon a joint
modeling under P and Q, we detail estimation methods under both measures. We focus on one hand upon
the calibration of a cap, and on the other hand, we do an estimation of a spread curve in our proposed

1Following the lines of [Konikov and McClelland, 2020] and the related SSRN-id6073 version, approximate quasi-explicit
expressions for swaption prices can also be derived using some usual ”freezing” methods and Fourier inversion techniques.
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model under the historical probability by using a Kalman filter approach, see e.g. [Chatterjee, 2005] and
[Filipovic and Trolle, 2013].

Multi-curve research papers usually focus on the risk-neutral Q-measure because of its role in pricing.
However from the point of risk management, which has gained a lot in importance since the financial crisis,
a joint P and Q modeling is important. We refer for a review of research concerned with joint P and Q mea-
sures from a finance-oriented point of view to the papers of e.g. [Hull et al., 2014], [Steinrücke et al., 2015]
or [Stein, 2016], and from an insurance-oriented point of view to the papers of e.g. [Van Dijk et al., 2018],
[Diez and Korn, 2020] and [Berninger and Pfeiffer, 2021]. We summarize here only some of the motiva-
tions.
As an example in credit risk, it is well-known that the credit valuation adjustment (CVA) should be
calculated under the Q-measure, because it is concerned with valuation, whereas exposure at default
(EAD) and potential future exposure (PFE) are concerned with scenario analysis and should be calcu-
lated under the P-measure. As another example, we refer to the derivation of the solvency capital by
using an internal model in the framework of Solvency II, where real-world simulations over a one-year
horizon are performed, which are then for valuation purposes typically combined with risk-neutral pricing
(by using Q) given the real-world realizations under P. Other examples of a joint P and Q modeling
include models for inflation-linked bonds and an integrated market approach of stock and bond markets
(see e.g. [Zagst et al., 2007]), defaultable bond pricing (see e.g. [Antes et al., 2008]), mortgage-backed se-
curities (see e.g. [Kolbe and Zagst, 2007]), and credit derivative pricing with stochastic recovery (see e.g.
[Höcht and Zagst, 2010]).
Finally, we want to underline that an approach for modelling multi-curve yield spreads, both under P and
Q, can be useful in different settings where spreads appear in a natural way. Examples include amongst
others models in default risk, foreign-exchange risk, liquidity risk and inflation risk.

This paper is organized as follows. In Section 2, we start by defining the different rates that will be used
to model a multiple yield-curve model, in particular the multiplicative XIBOR spreads and multiplicative
relative XIBOR spreads, and the notion of δi-positivity. Next, a multi-curve HJM framework is introduced
based upon δi-XIBOR relative forward curves fi/i−1(t, u), the appropriate HJM drift constraints are
derived and the dynamics of the different forward prices and spreads are studied under different measure
changes, including the forward-neutral probability. Finally, some equivalent properties to check the δi-
positivity are obtained in this HJM framework. Section 3 is devoted to the detailed description of the
dynamics of the multi-curve HJM factor model which satisfies the δi-positivity. Section 4 provides pricing
formulae of caplets and options on XIBOR forward prices. Section 5 contains a calibration of the model
under Q. In Section 6, a Kalman filter approach is adapted for the estimation of the spread parameters
under P and for filtering out the spread factor process. The last section concludes the paper. Appendices
contain the proofs of the main results.

2 The Multi-Curve XIBOR Model

2.1 Definitions

We first introduce some notational conventions used throughout the paper. As mentioned above, we
consider a filtered probability space (Ω, F , (Ft)t, P) where P is the historical probability, also called the
physical or real-world measure. We fix T > 0 and some maturities Ti = T +δi (i = 1, . . . , N) with discrete
tenors 0 < δ1 < . . . < δN , where δi is typically 1, 3 or 6 months. We assume that we are given (risk-free)
discount bonds with maturities τ ∈ [0, TN ] and prices P0(t, τ) at time t ∈ [0, T ], and a cash account with
value P0(t).
The risk-neutral measure Q follows as usual from the martingale characterization of discounted bond
prices {P0(t,τ)

P0(t) }t∈[0,τ ]. For some maturity τ ∈ [0, TN ], we further define the τ -forward measure Qτ by its
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(conditional) density with respect to the risk-neutral measure Q:

dQτ

dQ

∣∣∣
Ft

:= P0(t, τ)
P0(t)

P0(0)
P0(0, τ) . (1)

We recall that δi-OIS (simple) forward rates are defined for t ∈ [0, T ] as

LD
i (t, T ) := LD(t, T, Ti) := 1

δi

(
P0(t, T )
P0(t, Ti)

− 1
)

, (2)

and the δi-OIS forward prices are determined by

P D
i (t, T ) := 1 + δi · LD

i (t, T ) = P0(t, T )
P0(t, Ti)

. (3)

It is well-known that LD
i (t, T ) and P D

i (t, T ) are QTi-martingales.

The δi-XIBOR (simple) forward rates follow from the no-arbitrage condition of FRA contracts (see
e.g. [Mercurio, 2010]) and can be determined as follows for t ∈ [0, T ]:

Li(t, T ) := L(t, T, Ti) := EQTi

[
L(T, Ti)

∣∣∣ Ft

]
, (4)

where L(T, Ti) is the spot XIBOR rate with tenor δi at time T .
Furthermore, we focus upon the δi-XIBOR forward prices

P L
i (t, T ) := 1 + δi · Li(t, T ), (5)

and we notice that also Li(t, T ) and P L
i (t, T ) are by definition QTi-martingales.

We further recall the definition of multiplicative XIBOR spreads P S
i (t, T ) for t ∈ [0, T ], namely

P L
i (t, T ) := P D

i (t, T ) · P S
i (t, T ), (6)

and the fact that the spreads P S
i (t, T ) are QT -martingales (see e.g. [Grbac and Runggaldier, 2015] p. 133).

We now introduce the definition of relative XIBOR spreads.

Definition 1 (Relative XIBOR spreads) For time t ∈ [0, T ], we define multiplicative relative XI-
BOR spreads P S

i/i−1(t, T ) through the ‘telescope’ relationship

P S
i (t, T ) =:

i∏
j=1

P S
j/j−1(t, T ), (7)

for i ≥ 1.

Remark 1 For i = 2, . . . , N , the relative XIBOR spreads can be expressed in the following ways:

P S
i/i−1(t, T ) = P S

i (t, T )
P S

i−1(t, T )
=

P D
i−1(t, T )

P L
i−1(t, T )

P L
i (t, T )

P D
i (t, T )

=
P L

i/i−1(t, T )
P D

i/i−1(t, T )
= P L

i (t, T )
P L

i−1(t, T )
P0(t, Ti)

P0(t, Ti−1) (8)

where
P L

i/i−1(t, T ) = P L
i (t, T )

P L
i−1(t, T )

and P D
i/i−1(t, T ) = P D

i (t, T )
P D

i−1(t, T )
(9)

denote respectively the relative XIBOR forward prices and the relative OIS forward prices.
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As mentioned in the introduction, empirical data shows that the additive spread between XIBOR rates
and OIS rates is positive and increasing in tenor, which is equivalent with the facts that both the spreads
P S

i (t, T ) as well as the relative spreads P S
i/i−1(t, T ) should be greater or equal than 1, which we will call

δi-positivity.

Definition 2 (δi-positivity) A multi-curve interest-rate model satisfies the property of δi-positivity if
for all tenors δi = Ti − T

P S
i (t, T ) ≥ 1 (10)

P S
i/i−1(t, T ) ≥ 1 (11)

for all t ≤ T .

Remark 2 It is easy to check that condition (11) implies the condition of (10) if P S
1 (t, T ) ≥ 1. We

however prefer to state both conditions within this definition since we check the first condition (10) as a
first step, and since in literature, different models only satisfy this first condition.

2.2 The Multi-Curve HJM Framework

In the following, we develop an HJM-type multi-curve model and derive the relevant measure changes
and price dynamics. In order to focus upon the main results, the proofs and some intermediate results
can be found in Appendix A.

The model under P

We introduce the OIS forward rates f0(t, T ) with dynamics

df0(t, T ) = µ0(t, T ) dt + σ0(t, T ) dW P(t), (12)

where W P is an (N + 1)-dimensional standard Brownian motion under P, such that the (risk-free) OIS-
bond prices follow from the OIS forward rates

P0(t, T ) = exp
(

−
∫ T

t
f0(t, u) du

)
. (13)

The (OIS) short-rate r(t) is obtained by r(t) = f0(t, t).
We further introduce XIBOR-bonds Pi(t, T ) (pseudo discount bonds) as in e.g. Section 3.2.2.1 of [Grbac and Runggaldier, 2015]
by assuming that these fictitious objects are not traded assets and that

P L
i (t, T ) = Pi(t, T )

Pi(t, Ti)
, (14)

in order to establish the natural relationship between bonds and (simple) forward rates as in (3). We also
introduce the concept of relative XIBOR-bonds Pi/i−1(t, T ) defined by

Pi/i−1(t, T ) = Pi(t, T )
Pi−1(t, T ) . (15)

In the following definition we introduce δi-XIBOR relative (instantaneous) forward rates fi/i−1(t, T ) in
order to capture more easily empirical observations with respect to different tenors.
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Definition 3 (δi-XIBOR relative (instantaneous) forward rates fi/i−1(t, T )) We define δi-XIBOR
relative (instantaneous) forward rates fi/i−1(t, T ) such that the set of relative XIBOR-bonds Pi/i−1(t, T )
introduced in (15) equals

Pi/i−1(t, T ) = exp
(

−
∫ T

t
fi/i−1(t, u) du

)
, (16)

with f0,−1 := f0. We assume that these δi-XIBOR relative (instantaneous) forward rates are determined
by the following dynamics

dfi/i−1(t, T ) = µi(t, T ) dt + σi(t, T ) dW P(t), (17)

for i = 1, . . . , N , where the volatility σi(t, T ) =
(
σi,0(t, T ), . . . , σi,N (t, T )

)
is an (N + 1)-dimensional

row vector of progressively measurable processes and the drift µi(t, T ) is itself a progressively measurable
process.

Note that [Konikov and McClelland, 2020] propose a very similar framework but since they focus rather
immediately upon a model which turns out to be very practical for pricing and calibration, they start
under a risk-neutral measure Q and assume independence between the fi/i−1(t, T ). In our (independent)
work, we start under the historical measure and we allow for a general dependent framework for studying
different measure changes, related HJM-drift conditions and conditions for δi-positivity. In the next sec-
tion where we will present our practical δi-positivity model, however, we will focus upon more restrictive
settings.

The XIBOR-bonds Pi(t, T ) introduced in (14) equal

Pi(t, T ) = exp

−
i∑

j=0

∫ T

t
fj/j−1(t, u) du

 = exp
(

−
∫ T

t
fi(t, u) du

)
, (18)

with fi(t, u) :=
∑i

j=0 fj/j−1(t, u). We further denote for the bond volatilities

vi(t, T ) =
i∑

j=0

∫ T

t
σj(t, u) du (19)

and the drifts

mi(t, T ) =
i∑

j=0

∫ T

t
µj(t, u) du (20)

for i = 0, . . . , N . The integral should be understood componentwise, such that vi is still an (N + 1)-
dimensional row vector. The P-dynamics of the OIS- and XIBOR-bonds are then easily determined.

Changing from P to Q and QT

Let us first define the standard Q-Brownian motion WQ by using Girsanov’s theorem as

WQ(t) =
∫ t

0
γ(s) ds + W P(t), (21)

where γ(t) =
(
γ0(t), . . . , γN (t)

)⊤ is a progressively measurable square-integrable process taking values in
R(N+1). Then, the Q-dynamics of the OIS-bonds and the HJM drift condition

m0(t, T ) − 1
2
∥∥v0(t, T )

∥∥2 = v0(t, T ) γ(t) (22)
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are well-known.
The change from the risk-neutral measure Q to the forward measure QT is also well-known (see e.g.
[Zagst, 2002] p. 119), namely under QT

WQT (t) =
∫ t

0
v0(s, T )⊤ ds + WQ(t), (23)

is a standard Brownian motion. Note that this measure change is defined purely in terms of the OIS-rates
f0(t, T ).

Under the OIS drift condition (22), the dynamics of the OIS forward prices P D
i (t, T ) are easily determined

and confirmed to be QTi-martingales. Because the XIBOR forward prices P L
i (t, T ) must also be a QTi-

martingale, we need to impose a XIBOR drift condition. We summarize these important results in the
following theorem.

Theorem 2.1 (QTi-martingales)

1. The OIS forward prices P D
i (t, T ) are QTi-martingales (for i = 1, . . . , N):

dP D
i (t, T ) = P D

i (t, T )
(
v0(t, Ti) − v0(t, T )

)
dWQTi (t). (24)

2. The XIBOR forward prices P L
i (t, T ) are QTi-martingales under the following XIBOR drift condition

(for i = 1, . . . , N):

mi(t, Ti) − mi(t, T ) = −1
2
∥∥vi(t, Ti) − vi(t, T )

∥∥2 +
(
vi(t, Ti) − vi(t, T )

)(
γ(t) + v0(t, Ti)⊤). (25)

Indeed, then
dP L

i (t, T ) = P L
i (t, T )

(
vi(t, Ti) − vi(t, T )

)
dWQTi (t). (26)

Note that this XIBOR drift condition (25), which we assume to hold in the following, does not determine
the coefficients µi(t, T ) in a unique manner and this in contrast to the classical HJM condition, see also
e.g. [Grbac and Runggaldier, 2015] Section 3.2.2.1 (for i = 1 and for the model determined under Q). We
underline that the XIBOR drift condition (25) is derived under the historical measure P and in a setting
of correlated δi-XIBOR relative (instantaneous) forward rates fi/i−1(t, T ), i = 0, . . . , N , and therefore
includes analogous XIBOR drift conditions as in e.g. [Konikov and McClelland, 2020].

By setting

m̄i(t, T ) =
i∑

j=1

∫ T

t
µj(t, u) du (27)

and

v̄i(t, T ) =
i∑

j=1

∫ T

t
σj(t, u) du, (28)

the XIBOR drift condition can further be rewritten as in the following proposition, which will be useful
below.

Proposition 2.2 (Adjusted XIBOR drift condition)
The XIBOR drift condition (25) can be rewritten for i = 1, . . . , N as

m̄i(t, Ti) − m̄i(t, T )

= −1
2
∥∥v̄i(t, Ti) − v̄i(t, T )

∥∥2 +
(
v̄i(t, Ti) − v̄i(t, T )

)(
γ(t) + v0(t, Ti)⊤). (29)
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The XIBOR drift condition is also useful for deriving the dynamics of the XIBOR spreads P S
i (t, T ) under

QT :

Theorem 2.3 (QT -martingale)
Under the XIBOR drift condition in (25), the XIBOR spreads P S

i (t, T ) in (6) are QT -martingales and
their Q-dynamics are given by

dP S
i (t, T ) = P S

i (t, T )
(
v̄i(t, Ti) − v̄i(t, T )

)
dWQT (t) (30)

for i = 1, . . . , N .

We now define a new probability QT
i/i−1 via the Radon-Nikodym derivative Li(t, T ) with respect to the

forward measure QT :

Li(t, T ) :=
dQT

i/i−1
dQT

∣∣∣
Ft

= exp
(∫ t

0
γ̃i−1

S (s, T )dWQT (s) − 1
2

∫ t

0

∥∥γ̃i−1
S (s, T )

∥∥2
ds

)
=

P S
i−1(t, T )

P S
i−1(0, T )

(31)

where γ̃i
S(t, T ) :=

(
v̄i(t, Ti) − v̄i(t, T )

)
)⊤. Under this probability measure, the relative XIBOR spreads

P S
i/i−1(t, T ) are martingales.

Theorem 2.4 (QT
i/i−1-martingale)

Assuming the XIBOR drift condition in (25), the relative XIBOR spreads P S
i/i−1(t, T ) are martingales

under the probability measure QT
i/i−1 defined by (31) and their dynamics under QT

i/i−1 are given by

dP S
i/i−1(t, T ) = P S

i/i−1(t, T )
[ (

v̄i(t, Ti) − v̄i(t, T )
)

−
(
v̄i−1(t, Ti−1) − v̄i−1(t, T )

) ]
dW

QT
i/i−1(t),

= P S
i/i−1(t, T )

[
γ̃i

S(t, T ) − γ̃i−1
S (t, T )

]
dW

QT
i/i−1(t),

(32)

for all t ≤ T , where γ̃i
S(t, T ) :=

(
v̄i(t, Ti) − v̄i(t, T )

)
)⊤ and where

dW
QT

i/i−1(t) := dWQT (t) − γ̃i−1
S (t, T )dt. (33)

2.3 Properties of δi-XIBOR relative forward rates

From the definition of OIS- and XIBOR-bonds in (13) and (18), it immediately follows that

P S
i (t, T ) = P L

i (t, T )
P D

i (t, T )
=

exp
(∑i

j=0
∫ Ti

T fj/j−1(t, u) du
)

exp
(∫ Ti

T f0(t, u) du
)

= exp

 i∑
j=1

∫ Ti

T
fj/j−1(t, u) du

 = exp
(∫ Ti

T
f̄i(t, u) du

)

with f̄i(t, u) :=
∑i

j=1 fj/j−1(t, u), which shows that the multiplicative spreads are clearly correlated. This
result also indicates that the δi-XIBOR relative forward rates fi/i−1(t, u) can be related to relative forward
spreads.

Since the goal is to describe a model under P satisfying the δi-positivity constraints (10)-(11), we need to
formulate constraints upon the δi-XIBOR relative forward rates fi/i−1(t, u).
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Proposition 2.5 (δi-positivity constraints) The δi-positivity constraints are equivalent to the follow-
ing conditions in function of the δi-XIBOR relative forward rates fi/i−1(t, u):

1) P S
i (t, T ) ≥ 1 ⇔

i∑
j=1

∫ Ti

T
fj/j−1(t, u) du ≥ 0 (34)

2) P S
i/i−1(t, T ) ≥ 1 ⇔ P S

i (t, T ) and therefore
i∑

j=1

∫ Ti

T
fj/j−1(t, u) du are non-decreasing in i,

(35)

for i = 1, . . . , N .

Proof These statements follow immediately from (34) and (8). ■

Using Fubini’s theorem and the XIBOR drift condition in (29), the constraint (34) can be reformulated.
Indeed,

i∑
j=1

∫ Ti

T
fj/j−1(t, u) du

=
i∑

j=1

∫ Ti

T
fj/j−1(0, u) du +

i∑
j=1

∫ Ti

T

∫ t

0
µj(s, u) ds du +

i∑
j=1

∫ Ti

T

∫ t

0
σj(s, u) dW P(s) du

=
i∑

j=1

∫ Ti

T
fj/j−1(0, u) du +

∫ t

0

(
m̄i(s, Ti) − m̄i(s, T )

)
ds +

∫ t

0

(
v̄i(s, Ti) − v̄i(s, T )

)
dW P(s)

=
i∑

j=1

∫ Ti

T
fj/j−1(0, u) du − 1

2

∫ t

0

∥∥v̄i(s, Ti) − v̄i(s, T )
∥∥2

ds +
∫ t

0

(
v̄i(s, Ti) − v̄i(s, T )

)
dWQT (s),

(36)
which must be non-negative for all t ∈ [0, T ].

It is clear that this condition is not satisfied for v̄i(s, T ), v0(s, T ) and γ(s) being deterministic. This can
also be observed from (30) and the fact that the dynamics of the XIBOR spreads P S

i (t, T ) under different
probablities are given by

dP S
i (t, T ) = P S

i (t, T )
(
v̄i(t, Ti) − v̄i(t, T )

)
dWQT (t)

= P S
i (t, T )

(
v̄i(t, Ti) − v̄i(t, T )

)
(v0(t, T )⊤ dt + dWQ(t))

= P S
i (t, T )

(
v̄i(t, Ti) − v̄i(t, T )

)
(v0(t, T )⊤ dt + γ(t)⊤ dt + dW P(t))

(37)

In the case of deterministic v̄i(t, T ), v0(t, T ) and γ(t), the XIBOR spreads P S
i (t, T ) have a lognormal

distribution under P (as well as under Q and QT ) and therefore the constraint (34) does not hold in these
settings.

3 The δi-positive Multi-Curve HJM factor model

In this section, we will present a particular case of the model satisfying explicitly the constraints (34)-(35),
as well as the XIBOR drift condition in (29).

We assume that the (OIS) short-rate r is given by the classical Hull-White model

dr(t) =
(
θ0(t) + η0 λ − κ0 r(t)

)
dt + η0 dW P

0 (t), (38)
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with W P
0 the first component of the (N + 1)-dimensional standard P-Brownian motion introduced in the

previous section; with deterministic function θ0(t), and constants κ0, η0 and λ. The function θ0(t) is
chosen so as to exactly fit the initial term structure of (OIS) interest rates (see e.g. [Zagst, 2002] p. 135).
It is well-known that in this way, (OIS) short-rates are allowed to turn negative as is observed in practice.

The OIS forward rate then has dynamics

df0(t, T ) = µ0(t, T ) dt + σ0(t, T ) dW P(t) (39)

with
σ0(t, T ) =

(
η0 e−κ0(T −t), 0, . . . , 0

)
and

µ0(t, T ) = η2
0

κ0

(
1 − e−κ0(T −t)) e−κ0(T −t) + η0 e−κ0(T −t)λ.

(40)

We further assume the δi-XIBOR relative forward rates fi/i−1(t, T ) to be of the following affine form

fi/i−1(t, T ) = αi(t, T ) + βi(t, T ) si(t) (41)

with deterministic functions αi(t, T ) and βi(t, T ) and with the (independent) factor processes si(t) deter-
mined for all i = 1, . . . , N by the following CIR-processes

dsi(t) =
(
θi − κi si(t)

)
dt + ηi

√
si(t) dW P

i (t), si(0) = s0
i (42)

where s0
i , κi, ηi, θi ∈ (0, ∞). We recall that the solutions to CIR processes remain positive, which will

facilitate to choose the δi-XIBOR relative forward rates fi/i−1(t, T ) to satisfy (34). In the following, we
will refer to the factor process defined in (42) as the δi-relative spread factor process and its parameters
as the spread factor parameters. We have chosen the relative spreads to be independent for technical
reasons, and in particular since the vector of processes (s1, . . . , sN ) is then an afffine process, which are
known to be tractable.

The dynamics of the δi-XIBOR relative forward rates fi/i−1(t, T ) are then given by

dfi/i−1(t, T ) =
(

∂tαi(t, T ) + θi βi(t, T ) +
(
∂tβi(t, T ) − κi βi(t, T )

)
si(t)

)
dt

+ ηi βi(t, T )
√

si(t) dW P
i (t)

= µi(t, T ) dt + σi(t, T ) dW P(t)

(43)

where
σi(t, T ) =

(
0, . . . , 0, ηi βi(t, T )

√
si(t) , 0, . . . , 0

)
,

µi(t, T ) =
(

∂tαi(t, T ) + θi βi(t, T ) +
(
∂tβi(t, T ) − κi βi(t, T )

)
si(t)

)
.

(44)

In the following, we define the change of measure from P to Q by

γ(t) =
(
λ, 0, . . . , 0

)⊤
. (45)

Our numerical results convinced us that this choice seems appropriate for our database. Further research
should confirm whether this choice is always compatible with different data sets, but in any case, this
choice and our framework is very convenient since they have several important implications. Indeed, in
this modeling setup where we assumed above that also the OIS rates and all the δi-XIBOR relative forward
rates fi/i−1(t, T ) are independent from each other, only the OIS rates will be influenced by the changes of
measures from P to Q and QT . The dynamics of the δi-XIBOR relative forward rates fi/i−1(t, T ) remain
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the same under all measures. Furthermore, the XIBOR drift condition (29) simplifies to a more tractable
equality.

By inserting the coefficients above into the XIBOR drift condition (29), we obtain

i∑
j=1

∫ T +δi

T
µj(t, u) du

= −1
2

i∑
j=1

∥∥∥∥ ∫ T +δi

T
σj(t, u) du

∥∥∥∥2
+
( i∑

j=1

∫ T +δi

T
σj(t, u) du

)(
γ(t) +

∫ T +δi

t
σ0(t, u)⊤ du

)

⇔
i∑

j=1

(∫ T +δi

T
∂tαj(t, u) du + θj

∫ T +δi

T
βj(t, u) du + sj(t)

∫ T +δi

T

(
∂tβj(t, u) − κj βj(t, u)

)
du

)

= −1
2

i∑
j=1

(
ηj

√
sj(t)

∫ T +δi

T
βj(t, u) du

)2

(46)

where we used the fact that the vectors γ(t) and σ0(t, T ) are zero in the components i = 1, . . . , N .

By comparing the coefficients of
(
1, s1(t), . . . , sN (t)

)
in (46), we obtain the following system of equations

0 =
i∑

j=1

( ∫ T +δi

T
∂tαj(t, u) du + θj

∫ T +δi

T
βj(t, u) du

)
(47)

for i = 1, . . . , N , and

0 = ∂t

(∫ T +δi

T
βj(t, u) du

)
− κj

(∫ T +δi

T
βj(t, u) du

)
+ 1

2 η2
j

(∫ T +δi

T
βj(t, u) du

)2
(48)

for i = 1, . . . , N and j = 1, . . . , i.

Introducing the notation

Bij(t, T ) ..=
∫ T +δi

T
βj(t, u) du, (49)

one easily notices that equation (48) is a Riccati ODE with solution

Bij(t, T ) = 2 κj

η2
j

(
1

1 + κj Cij(T ) e−κjt

)
≥ 0 (50)

for i = 1, . . . , N and j = 1, . . . , i, where the positive function Cij(T ) can be chosen arbitrarily, but such
that for fixed j it is non-increasing in i (and Bij(t, T ) thereby non-decreasing in i), e.g.

Cij(T ) = 1
e−κjT − e−κj(T +δi)

. (51)

Making the assumption that all terms in (47) are null, we further obtain the equation system

0 = ∂t

(∫ T +δi

T
αj(t, u) du

)
+ θj

(∫ T +δi

T
βj(t, u) du

)
(52)

for i = 1, . . . , N and j = 1, . . . , i.
We notice that this equation system will lead to just one possible solution and that there might be other
solutions of (47), but we will show in the numerical sections that the solution proposed below leads to
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practical estimations and results.

Indeed, a solution of (52) is given by

αj(t, u) = θj

∫ T

t
βj(s, u) ds + ϕj(u), (53)

such that

Aij(t, T ) ..=
∫ T +δi

T
αj(t, u) du

= θj

∫ T

t
Bij(s, T ) ds +

∫ T +δi

T
ϕj(u) du

=..
2 κj θj

η2
j

[
(T − t) + 1

κj
ln
(1 + κj Cij(T ) e−κjT

1 + κj Cij(T ) e−κjt

)]
︸ ︷︷ ︸

=.. Fij(t,T )

+
∫ T +δi

T
ϕj(u) du︸ ︷︷ ︸

=.. Φij(T )

(54)

for i = 1, . . . , N and j = 1, . . . , i. Note that the function Fij(t, T ) is non-negative and non-decreasing in
i, if the function Cij(T ) is chosen as discussed above.
The deterministic functions Φij(T ) can be used to fit the initial term structure of spreads. From (34)
(41), (49) and (54), we conclude that

P S
i (0, T ) = exp

 i∑
j=1

(
Aij(0, T ) + Bij(0, T ) s0

j

) , (55)

and in particular

ln P S
i (0, T ) −

i∑
j=1

Bij(0, T ) s0
j −

i∑
j=1

Fij(0, T ) =
i∑

j=1
Φij(T ) (56)

for i = 1, . . . , N . Note that Φij(T ) needs to be non-negative and non-decreasing in i (for a given j and
T ), such that the spreads P S

i (t, T ) are above 1 and non-decreasing in i as well in order to satisfy the
δi-positivity constraints as stated in (34)-(35). This places constraints on the parameters s0

i , κi, ηi and θi.

We notice that we are not interested in finding an explicit expression of βj(t, u) satisfying (49) nor in an
explicit expression of αj(t, u) in (54) since for derivative pricing on XIBOR and/or XIBOR spreads, the
knowledge of Aij(t, T ) and Bij(t, T ) is enough in this framework.

We conclude our main results about the XIBOR spreads P S
i (t, T ) in the following theorem.

Theorem 3.1 ( δi-positive affine factor model)
In this model, the XIBOR spreads P S

i (t, T ) have the affine form

P S
i (t, T ) = exp

 i∑
j=1

∫ T +δi

T
fj/j−1(t, u) du

 = exp

 i∑
j=1

(Aij(t, T ) + Bij(t, T ) sj(t))

 (57)

for i = 1, . . . , N , with Aij(t, T ) and Bij(t, T ) given in (50), (51) and (54). For appropriate choices of
Φij(T ) such that Φij(T ) is non-negative and non-decreasing in i for all j = 1, . . . , i, the δi-positivity
constraints (10)-(11) are satisfied, namely

P S
i (t, T ) ≥ 1 and P S

i/i−1(t, T ) ≥ 1. (58)

Remark 3 We note that this model is an affine short rate multi-curve model as defined in [Cuchiero et al., 2019],
see their Proposition 13.16(ii) and equation (57) above. We constructed the δi-positivity of our model by
choosing Aij(t, T ) and Bij(t, T ) in (50), (51) and (54) to be non-negative and non-decreasing in i for all
j = 1, . . . , i. Moreover, since P S

i (t, T ) in (57) depends only on the spread factors sj(t) for j = 1, . . . , i, it
is easy to see that the conditions of the general Proposition 3.7 in [Cuchiero et al., 2019] are fulfilled.
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4 Derivatives with optionality features

The pricing formulae of linear products such as swaps and basis swaps, and the related rates such as swap
rates and basis swap rates, follow from the results in e.g. [Cuchiero et al., 2019]. Indeed, these derivations
are based upon the facts that P L

i (t, T ) are QTi-martingales as well as that by the definition

P L
i (t, T ) = P D

i (t, T ) · P S
i (t, T ). (59)

In this section, we therefore concentrate on financial instruments with optionality features such as caps
and some options on spreads. In particular, as an example, we first focus upon semi-explicit pricing
formulae for caplets in the explicit δi-positive affine factor model of Section 3. Section 5 will demonstrate
the applicability of the analytical formulae by carrying out a calibration to market data.
In Section 4.2, we will concentrate upon the pricing of an option with payoff(

P0(U, Ti)P L
i (U, T ) − KP0(U, Ti−1)P L

i−1(U, T )
)

+

to be payed out at U with U ≤ T , which gives protection against increasing relative XIBOR spreads, as
will be explained below.

4.1 Caplet pricing

Let us recall that we fixed T > 0 and maturities Tl = T + δl (l = 1, . . . , N) with discrete tenors
0 < δ1 < . . . < δN .
The caplet price with strike K > −1

δl
, underlying Ll(t, T ) = L(t, T, Tl) and payoff (Ll(T, T ) − K)+ to be

payed out at Tl in this setup reads as

Cpll(0) = δl P0(0, Tl)EQTl

[
(Ll(T, T ) − K)+

]
, (60)

which equals by using (5) and (6)

Cpll(0) = P0(0, Tl)EQTl

[(
P D

l (T, T )P S
l (T, T ) − Kl

)
+

]
, (61)

with strike Kl = 1 + δlK > 0. The caplet price can then be obtained by a Fourier inverse method, see
e.g. [Carr and Madan, 1999].

Theorem 4.1 (Caplet)
The caplet price with strike K > −1

δl
, underlying Ll(t, T ) = L(t, T, Tl) and payoff (Ll(T, T ) − K)+ to be

payed out at Tl equals

Cpll(0) = δl P0(0, Tl) e−ϵkl

π

∫ ∞

0
e−iωkl

Υ0,T,l (iω + ϵ + 1)
(iω + ϵ)2 + (iω + ϵ)

dω, (62)

with kl = ln (1 + δlK), i =
√

−1, ϵ > 1 a dampening factor, and

Υ0,T,l (v) = gl(v, T ) exp
(

−vB0(T, Tl)
(

r0e−κ0T + e−κ0T
∫ T

0
θ̃0(s)eκ0sds

))

× exp
(

v2B0(T, Tl)2η2
0

1 − e−2κ0T

2κ0

)
l∏

j=1
e−Ālj(0,T )−B̄lj(0,T ) sj(0),

(63)

with gl(v, T ) = exp
(
v(A0(T, T ) − A0(T, Tl) +

∑l
j=1 Alj(T, T ))

)
,

Ālj(t, T ) = 2θj

η2
j

ln
(

1 − C̄ljeκjt

1 − C̄ljeκjT

)
, (64)
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and

B̄lj(t, T ) = 2κj

η2
j

(
1

1 − C̄ljeκjt
− 1

)
where

C̄lj =
e−κjT vBlj(T, T )η2

j

2

vBlj(T, T )η2
j

2 − κj

.

Proof See Appendix B. ■

4.2 Option pricing on XIBOR forward prices

In this subsection we focus upon an option with payoff(
P0(U, Ti)P L

i (U, T ) − KP0(U, Ti−1)P L
i−1(U, T )

)
+

(65)

to be payed out at U with U ≤ T . Note that the first term equals the numerator of the relative XIBOR
spreads in (8) whereas the second term equals K times its denumerator. This option can therefore be
useful if one fears an increase in the relative XIBOR spreads (by e.g. an increase of the numerator in
comparison with the denominator). Another economical interpretation of the usefulness of this payoff
(65) can be given by noticing that both the first term and the corresponding factor in the second term
are XIBOR forward prices P L

i (U, T ) and P L
i−1(U, T ) multiplied by resp. a zero-coupon with maturity date

Ti and Ti−1. Indeed, the XIBOR forward prices P L
i (U, T ) and P L

i−1(U, T ) are determined at time U and
represent payments to be done at resp. Ti and Ti−1 (for receiving resp. Li(T, T ) and Li−1(T, T ) at resp.
Ti and Ti−1), and the multiplication with resp. P0(U, Ti) and P0(U, Ti−1) discounts these payments to the
maturity time of the option, namely U . This option gives protection in the situation where discounted
XIBOR forward rates of tenor δi, namely P0(U, Ti)P L

i (U, T ), are larger than KP0(U, Ti−1)P L
i−1(U, T ) cor-

responding with tenor δi−1, and therefore in the situation that the relative XIBOR spreads are increasing.
Theorem 4.2 shows that the price of this option boils down to determining an option on the relative
XIBOR spreads by using the probability measure QT

i/i−1 defined in (31), see Eq. (66).

Theorem 4.2 (Option pricing on XIBOR forward prices)
The price C(t, U, T, i) at time t of an option with payoff(

P0(U, Ti)P L
i (U, T ) − KP0(U, Ti−1)P L

i−1(U, T )
)

+

to be payed out at U with t ≤ U ≤ T equals

C(t, U, T, i) = P0(t, T )P S
i−1(t, T )EQT

i/i−1

[(
P S

i/i−1(U, T ) − K
)

+

∣∣∣ Ft

]
. (66)

Proof See Appendix C. ■

Using the fact that the relative XIBOR spreads P S
i/i−1(t, T ) are martingales under the probability measure

QT
i/i−1 and in particular, by exploiting their dynamics under QT

i/i−1 given in (32), C(t, U, T, i) can be easily
derived using Monte-Carlo simulations.
We notice that if γ̃i

S(t, T ) can be assumed to be deterministic, then P S
i/i−1(t, T ) clearly has a lognormal

law and explicit option pricing formulae can be derived, but then the δi-positivity constraint (34) is not
satisfied (when v0(t, T ) and γ(t) are deterministic, see e.g. (36)).
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5 Calibration to EURIBOR caplets

In the following, we consider a single spread curve (N = 1) with tenor δ1 = 6 months, which is the most
commonly used tenor for derivative products in the EURIBOR market. To estimate model parameters
under the risk-neutral measure Q, we obtained historical values for the necessary discount curves. The
data contains EONIA OIS and EURIBOR discount factors for fixed discrete maturities {τm}M

m=1, where
M = 15 and τm = m years for m = 1, . . . , M . The historical XIBOR spreads P S

1 can be stripped from
the OIS discount curve (P D

1 ) and EURIBOR discount curve (P L
1 ) using the relationship

P S
1 (tk, tk + τm) = P L

1 (tk, tk + τm)
P D

1 (tk, tk + τm)
(67)

for k = 1, . . . , K and m = 1, . . . , M . Discount factors with intermediate maturities τm + δ1 are obtained
from the coarser spaced historical data using the Nelson-Siegel interpolation method. From the historical
spreads, the (δ1-relative) spread factor process s1 is not directly observable, but implicitly depends on the
choice of parameters κ1, θ1 and η1 through the relationship

P S
1 (t, T ) = exp

(
A11(t, T ) + B11(t, T ) s1(t)

)
(68)

with A11(t, T ) and B11(t, T ) in resp. (54) and (50).

We calibrate the model of Section 3 to a 10 year ATM cap on the 6m EURIBOR, where the single
caplets are priced according to the caplet formulas derived in Section 4.1. Due to missing derivative
prices for the EONIA OIS rates and no free of charge access to market cap prices, we calibrate the model
to the following data and parameters. First, caps are quoted in terms of their implied flat volatility by
the market, given the respective configuration setup (tenor, expiration, underlying, strike, etc.). Due to
the restricted availability we exemplarily use an implied volatility of 24.5% (Black lognormal volatility)
reported by [Moreni and Pallavicini, 2014] (Figure 6, p. 209) as of February 15, 2011, for a 10 year ATM
cap on the 6m EURIBOR with nineteen caplets. Similar market quotes for the implied volatility can
also be found in [Hull and White, 2015], [Hull, 2015] or [Crispoldi et al., 2015]. Figure 2 illustrates the
corresponding OIS and EURIBOR spot rate curves.

Figure 2: EONIA OIS and EURIBOR spot rate curves for different maturities as of February 15, 2011.
Source: Bloomberg.

Furthermore, the OIS parameters κ0 and η0 are set to κ0 = 0.10 and η0 = 0.01. This selection almost
coincides with the reported numbers in [Zagst, 2002] or [Russo and Torri, 2019]. Moreover, we impose
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the following constraints on the spread parameters in (42):

10−10 ≤ κ1, θ1, η1, s0
1 ≤ 100. (69)

In particular, all parameters are constrained to be positive. The calibration routine minimizes the mean
squared error (MSE) of the observed market price to the model price.

Following Section 3, we further impose the additional constraint that the function Φ11 must remain
non-negative, i.e.

ln P S
1 (0, T ) − B11(0, T ) s0

j − F11(0, T ) = Φ11(T ) ≥ 0. (70)

The caplet pricing formula implied by the model is implemented via formula (62), and therefore by im-
plementing the inverse Fourier transform of the characteristic function.

The output from the constrained calibration, given the fixed OIS parameters (κ0 = 0.10, η0 = 0.01) which
are not part of the calibration, is

κ1 = 0.2115, θ1 = 0.0004, η1 = 0.9938, s0
1 = 0.0131. (71)

The cap market price to fitted model price ratio is furthermore given by 99.9999990%. This shows that
market prices are thereby adequately reproduced by the model. Moreover, for every caplet we receive a
value for Φ11(T ) that are all positive and do not exceed a value of 0.0009, hence are pretty small and
close to zero. Finally, Table 1 summarizes all relevant calibration input parameters and output results.

OIS: κ0 = 0.1000 η0 = 0.0100

Cap configuration: tenor:
6 months

maturity:
10 years

strike:
ATM

implied vol:
24.5%

Calibration output: κ1 = 0.2115 θ1 = 0.0004 η1 = 0.9938 s0
1 = 0.0131

Cap prices: Market price:
7.9410%

Model price:
7.9410%

Table 1: Caplet calibration input parameters and output results.

6 Empirical estimation under P

In the following, we present an empirical estimation approach based on the Kalman filter for a single
spread curve (N = 1) with tenor δ1 = 6 months. The generalization to the case N > 1 is straightforward.
We refer the reader interested in the use of a Kalman filter approach for the parameter estimation under
P of the OIS Vasicek model to e.g. [Schmid, 2004] (pages 278ff).

6.1 Data

To estimate model parameters under the physical measure P, we obtained historical time series of dis-
count curves from Bloomberg. The data spans the time frame from Jan. 2006 through February 15, 2011
(K = 1336 daily time steps {tk}K

k=1 with tk − tk−1 = ∆t = 1
250 years for k = 2, . . . , K), which was the

date used for the cap calibration in Section 5, and contains EONIA OIS and EURIBOR discount factors
for fixed discrete maturities {τm}M

m=1, where M = 30 and τm = m years for m = 1, . . . , M .
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Figure 3 presents the log-spreads ln P S
1 (tk, tk + 1), ln P S

1 (tk, tk + 3) and ln P S
1 (tk, tk + 5) as implied by the

market data2. In the following subsections we will explain how a Kalman filter approach can be applied to
filter out the (δ1-relative) spread factor process s1(t), which is also called filtered spread, and how optimal
parameters can be estimated. The resulting XIBOR log-spread time series implied by the Kalman filter
approach are also shown in Fig. 3 for maturities m = 1, 3 and 5, which clearly shows that the obtained
results are very consistent with the market data.

Figure 3: Results obtained from the Kalman filter estimation. The top plot shows the filtered spread
factor time series ŝ for the optimal parameter combination (κ1, θ1, η1) = (0.2665, 0.0011, 0.9922). The
bottom three plots show the log-spreads ln P S

1 (tk, tk + 1), ln P S
1 (tk, tk + 3) and ln P S

1 (tk, tk + 5) as implied
by the market data, the optimal parameter combination and the filtered spread factor time series ŝ.

6.2 Empirical Estimation using the Kalman Filter

From the historical XIBOR spread time series, the (δ1-relative) spread factor process s1(t) is not directly
observable, but implicitly depends on the choice of parameters κ1, θ1 and η1 through the relationship

P S
1 (t, T ) = exp

(
A11(t, T ) + B11(t, T ) s1(t)

)
. (72)

Using a Kalman filter approach for CIR processes, it is possible to obtain combined empirical estimates
of both the parameters and the spread factor process time series.

For that matter, we choose
C11(T ) = 1

e−κ1 T − e−κ1(T +δ1) ,

such that,

B11(t, T ) ≡ B11(T − t) = 2 κ1
η2

1

(
1

1 + κ1
(
e−κ1(T −t) − e−κ1(T +δ1−t))−1

)
and

A11(t, T ) ≡ A11(T − t) = 2 κ1 θ1
η2

1

[
(T − t) + 1

κ1
ln
( 1 + κ1

(
1 − e−κ1 δ1

)−1

1 + κ1
(
e−κ1(T −t) − e−κ1(T +δ1−t))−1

)] (73)

2In Figure 3, the notation ln P S
6m and s6m has been used since δ1 equals 6 months.
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by (50) and (54). Here, we have chosen the solution in (54) with Φ11 ≡ 0, which seems to be a good
choice in the context of our data, see Fig. 3.

Measurement and Transition Equations

Using the notation introduced above and following the lines of [Chatterjee, 2005], the Kalman filter
measurement equation is given by

P̃k = Ã + B̃ ŝk + ϵk (74)

with RM -vectors

P̃k
..=

 ln P S
1 (tk, tk + τ1)

...
ln P S

1 (tk, tk + τM )

 , Ã ..=

 A11(τ1)
...

A11(τM )

 , B̃ ..=

 B11(τ1)
...

B11(τM )

 , (75)

and (independent) measurement errors ϵk ∼ N (0, Q), where Q ∈ RM×M is diagonal with components
qj , 1 ≤ j ≤ M . Here, ŝk denotes the filtered factor process s1 at time step tk. Note that A11 and B11
depend on the parameters κ1, θ1 and η1.

Based on the conditional expectation and variance of the CIR process in (42), the Kalman filter state
transition equation is given by

ŝk = E
[
ŝk

∣∣ ŝk−1
]

+ uk = θ1
κ1

(
1 − e−κ1∆t)+ e−κ1∆t ŝk−1 + uk, (76)

where uk ∼ N (0, h2
k) is independent of the measurement error ϵk and has variance

h2
k = V

[
ŝk

∣∣ ŝk−1
]

= θ1 η2
1

2 κ2
1

(
1 − e−κ1∆t)2 + η2

1
κ1

(
e−κ1∆t − e−2 κ1 ∆t) ŝk−1. (77)

We refer the interested reader to [Chatterjee, 2005] for these and the following results.

Prediction and Update Steps

The Kalman filter prediction ŝk|k−1 of ŝk based on the previous state ŝk−1 is given by

ŝk|k−1 = E
[
ŝk

∣∣ ŝk−1
]

= θ1
κ1

(
1 − e−κ1∆t)+ e−κ1∆t ŝk−1. (78)

Similarly, we set
q̂k|k−1 = E

[
(ŝk − ŝk|k−1)2 ∣∣ ŝk−1

]
= e−2κ1∆tqk−1 + h2

k (79)

for the prediction covariance.

The forecast error is then given by
vk = P̃k − Ã − B̃ ŝk|k−1 (80)

with covariance
Fk = q̂k|k−1 B̃ B̃⊤ + Q. (81)

The new state ŝk and covariance q̂k are then given by the update steps

ŝk = ŝk|k−1 + q̂k|k−1B̃⊤F −1
k vk and q̂k =

(
1 − q̂k|k−1B̃⊤F −1

k B̃
)
q̂k|k−1. (82)
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Parameter Estimation

The parameter estimation is carried out using a quasi-MLE approach by maximizing the log-likelihood

log L
(
P̃1, . . . , P̃K | κ1, θ1, η1, Q

)
= −MK

2 log 2π − 1
2

K∑
k=1

(
log |Fk| + v⊤

k F −1
k vk

)
q̂k|k−1. (83)

Note that the forecast error vk and its covariance Fk depend on the process parameters κ1, θ1 and η1
(and the measurement error variances Q) and the filtered factor time series {ŝk}K

k=1. However, the filtered
factor time series can itself be considered a function of κ1, θ1 and η1 (and Q).

Numerical results under P

For the MLE-estimation, parameters were constrained by the lower and upper bounds

10−4 ≤ κ1, θ1, η1 ≤ 100. (84)

The estimation procedure was run 500 times using Matlab’s internal implementation of the sequential
quadratic programming approach with random starting parameter sets (κ1, θ1, η1) satisfying the bounds
above and with the measurement error variance set to Q ≡ 10−8.

Optimal parameter sets cluster around the accumulation point (0.2665, 0.0011, 0.9922), whose correspond-
ing filtered spread factor time series ŝ and implied log-spread time series are shown in Fig. 3. The pa-
rameter combination above implies a theoretical long-term mean of 0.0041 and a standard deviation of
0.0020 for the spread factor process s1 (compared to empirical estimates of 0.0111 and 0.0071, respec-
tively, from the filtered spread process ŝ). The parameters implied by the Kalman filter (κ1, θ1, η1) =
(0.2665, 0.0011, 0.9922) are comparable to the parameters implied by the market (κ1, θ1, η1) = (0.2115, 0.0004, 0.9938)
(cf. Section 5) for the considered date. The deviation is due to the historical backward-looking character
of the Kalman filter implied parameters vs. the forward-looking feature of the market implied parameters.

7 Conclusion

In this paper, we concentrate upon a model with multiplicative relative spreads, inspired by the HJM
and affine factor approaches, which allows for positive and ordered spreads. This model leads to tractable
pricing formulas for typical interest-rate derivatives such as caplets. One of the main contributions of
this paper is that we focus upon a joint modeling under P and Q and consider estimation methods under
both measures. This model is easy to implement under the historical measure as well as to calibrate with
respect to interest-rate derivatives. Numerical results are included.
An interesting topic for future research would be to develop a general term-structure framework taking
stochastic discontinuities explicitly into account, which are for example related to monetary policymeetings
of the ECB, see e.g. [Fontana et al., 2020]. Another interesting topic for future research would be to model
a regime-switching multi-curve model with hidden Markov processes modelling different scenarios of the
market.
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A The Multi-Curve HJM Framework: Results and Proofs

Using the notation introduced in the multi-curve HJM framework of section 2.2, we start by stating the
P-dynamics of the OIS- and XIBOR-bonds.

Theorem A.1 The P-dynamics of the OIS- and XIBOR-bonds are determined by

dPi(t, T ) = Pi(t, T )
((

ri(t) − mi(t, T ) + 1
2
∥∥vi(t, T )

∥∥2)
dt − vi(t, T ) dW P(t)

)
(85)

for i = 0, . . . , N , where ri(t) = fi(t, t).

We next recall the Q-dynamics of the OIS-bonds under the well-known drift condition (22).

Theorem A.2 The Q-dynamics of the OIS-bonds are given by

dP0(t, T ) = P0(t, T )
(
r0(t)dt − v0(t, T ) dWQ(t)

)
(86)

under the HJM drift condition (22), namely

m0(t, T ) − 1
2
∥∥v0(t, T )

∥∥2 = v0(t, T ) γ(t).

Here it is used that the HJM drift condition (22) is equivalent to the following condition in terms of the
coefficients µ0(t, T ) and σ0(t, T ), and this by a differentiation with respect to T :

µ0(t, T ) − σ0(t, T ) v0(t, T )⊤ = σ0(t, T ) γ(t). (87)

We now give a short proof of Theorem 2.1.

Proof of Theorem 2.1 [QTi-martingales]
(i) From (3), (85), (22) and Itô’s formula, the dynamics of the OIS forward prices P D

i (t, T ) are easily
determined under the different probabilities as follows

dP D
i (t, T ) =

(
P0(t, T )
P0(t, Ti)

)[ ((
v0(t, Ti) − v0(t, T )

)
γ(t) +

∥∥v0(t, Ti)
∥∥2 − v0(t, T ) v0(t, Ti)⊤

)
dt

+
(
v0(t, Ti) − v0(t, T )

)
dW P(t)

]
= P D

i (t, T )
[ (∥∥v0(t, Ti)

∥∥2 − v0(t, T ) v0(t, Ti)⊤
)

dt

+
(
v0(t, Ti) − v0(t, T )

)
dWQ(t)

]
= P D

i (t, T )
(
v0(t, Ti) − v0(t, T )

)
dWQTi (t),
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where the last line confirms that the OIS forward prices P D
i (t, T ) are QTi-martingales.

(ii) Similarly, for the XIBOR forward prices P L
i (t, T ), we obtain

dP L
i (t, T ) =

(
Pi(t, T )
Pi(t, Ti)

)[ ((
mi(t, Ti) − mi(t, T )

)
+
∥∥vi(t, Ti)

∥∥2 + 1
2
∥∥vi(t, T )

∥∥2 − 1
2
∥∥vi(t, Ti)

∥∥2

− vi(t, T ) vi(t, Ti)⊤
)

dt +
(
vi(t, Ti) − vi(t, T )

)
dW P(t)

]
= P L

i (t, T )
[ ((

mi(t, Ti) − mi(t, T )
)

+ 1
2
∥∥vi(t, Ti) − vi(t, T )

∥∥2

−
(
vi(t, Ti) − vi(t, T )

)(
γ(t) + v0(t, Ti)⊤)) dt

+
(
vi(t, Ti) − vi(t, T )

)
dWQTi (t)

]
(88)

for i = 1, . . . , N from Itô’s formula. The dynamics (26) then follow under the XIBOR drift conditions
(25). ■

We now concentrate upon the derivations of the useful Adjusted XIBOR drift conditions in Proposition 2.2.

Proof of Proposition 2.2 [Adjusted XIBOR drift condition]
From the well-known HJM OIS drift condition (22), it is easy to show that

m0(t, Ti) − m0(t, T )

= 1
2
∥∥v0(t, Ti)

∥∥2 + v0(t, Ti) γ(t) − 1
2
∥∥v0(t, T )

∥∥2 − v0(t, T ) γ(t)

= −1
2
∥∥v0(t, Ti) − v0(t, T )

∥∥2 +
(
v0(t, Ti) − v0(t, T )

)(
γ(t) + v0(t, Ti)⊤),

(89)

which holds for all Ti and essentially reflects that the XIBOR drift condition (25) also holds for the OIS
rates (i = 0).

Using the notations introduced in (27)-(28), the XIBOR drift condition (25) can further be rewritten as

m̄i(t, Ti) − m̄i(t, T )
=
(
mi(t, Ti) − mi(t, T )

)
−
(
m0(t, Ti) − m0(t, T )

)
= −1

2
∥∥vi(t, Ti) − vi(t, T )

∥∥2 +
(
vi(t, Ti) − vi(t, T )

)(
γ(t) + v0(t, Ti)⊤)

+ 1
2
∥∥v0(t, Ti) − v0(t, T )

∥∥2 −
(
v0(t, Ti) − v0(t, T )

)(
γ(t) + v0(t, Ti)⊤)

= −1
2
∥∥v̄i(t, Ti) − v̄i(t, T )

∥∥2 +
(
v̄i(t, Ti) − v̄i(t, T )

)(
γ(t) + v0(t, Ti)⊤).

(90)

■

We next concentrate upon the dynamics of the XIBOR spreads P S
i (t, T ).

Proof of Theorem 2.3 [QT -martingale]
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From (24), (26) and Itô’s formula, the dynamics of the XIBOR spreads P S
i (t, T ) in (6) are given by

dP S
i (t, T ) = P S

i (t, T )
[ (∥∥v0(t, Ti) − v0(t, T )

∥∥2 −
(
v0(t, Ti) − v0(t, T )

)(
vi(t, Ti) − vi(t, T )

)⊤)
dt

+
((

vi(t, Ti) − vi(t, T )
)

−
(
v0(t, Ti) − v0(t, T )

))
dWQTi (t)

]
= P S

i (t, T )
(
v̄i(t, Ti) − v̄i(t, T )

)
dWQT (t)

(91)

for i = 1, . . . , N , where in the last equality both the XIBOR drift condition (25) as well as the definitions
of QT and QTi are used. ■

Finally, we prove that the dynamics of the relative XIBOR spreads P S
i/i−1(t, T ) are martingales under the

measure QT
i/i−1.

Proof of Theorem 2.4 [QT
i/i−1-martingale]

The relative XIBOR spreads P S
i/i−1(t, T ) in (7) evolve according to

dP S
i/i−1(t, T ) = P S

i/i−1(t, T )
[ (∥∥v̄i−1(t, Ti−1) − v̄i−1(t, T )

∥∥2

−
(
v̄i(t, Ti) − v̄i(t, T )

)(
v̄i−1(t, Ti−1) − v̄i−1(t, T )

)⊤)
dt

+
((

v̄i(t, Ti) − v̄i(t, T )
)

−
(
v̄i−1(t, Ti−1) − v̄i−1(t, T )

))
dWQT (t)

] (92)

for i = 1, . . . , N . The proof now follows immediately from the definition of the Radon-Nikodym derivative
in (31) and the theorem of Girsanov; and in particular from the fact that W

QT
i/i−1 defined by (33) are

Brownian motions under QT
i/i−1. ■

B Proof of the Caplet price in Theorem 4.2

We recall that in the Hull-White model, the zero-coupon prices are given by (see e.g. [Zagst, 2002] Lemma
4.24 on p. 138)

P0(t, T ) = exp (A0(t, T ) + B0(t, T ) r(t)) (93)

with
B0(t, T ) = −1

κ0

(
1 − e−κ0(T −t)) (94)

and
A0(t, T ) = ln

(
P0(0, T )
P0(0, t)

)
− B0(t, T )f0(0, t) − 1

2B0(t, T )2 η2
0

2κ0

(
1 − e−2κ0t). (95)

By using the change of measures in (45) and (23), the dynamics of the (OIS) short-rate r under QTi are
given by

dr(t) =
(
θ̃0(t) − κ0 r(t)

)
dt + η0 dWQTi

0 (t), (96)

with θ̃0(t) = θ0(t)− η2
0

κ0
(1−e−κ0(Ti−t)), where we recall that θ0(t) is well-known from calibrating the initial

yield curve. Therefore, from (3) and (93), we have that

P D
i (t, T ) = P0(t, T )

P0(t, Ti)
= exp (A0(t, T ) − A0(t, Ti) + (B0(t, T ) − B0(t, Ti)) r(t)) (97)
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with the (OIS) short-rate r given under QTi by (96), and A0(t, T ) and B0(t, T ) as in (94) and (95).

We further know from (57) that the XIBOR spreads P S
i have the affine form

P S
i (t, T ) = exp

 i∑
j=1

∫ Ti

T
fj/j−1(t, u) du

 = exp

 i∑
j=1

Aij(t, T ) + Bij(t, T ) sj(t)

 (98)

with Aij(t, T ) as in (54) and Bij(t, T ) as in (50), with the function Cij(T ) chosen as Cij(T ) = 1
e−κj T −e−κj Ti

.
We further recall that for j = 1, . . . , N , the processes sj are defined under QTi (as well as under P) as

dsj(t) =
(
θj − κj sj(t)

)
dt + ηj

√
sj(t) dWQTi

j (t), (99)

with positive constants ηj , κj and θj .

In order to calculate the price of a caplet in (61), we use the well-known Carr-Madan formula (see
[Carr and Madan, 1999]). Therefore we write the underlying in (61) as an exponential, namely

P D
i (T, T )P S

i (T, T ) = eXi(T )

with

Xi(T ) = A0(T, T ) − A0(T, Ti) + (B0(T, T ) − B0(T, Ti)) r(T )

+
i∑

j=1

(
Aij(T, T ) + Bij(T, T ) sj(T )). (100)

It remains to focus on the calculation of the generator function Υ0,T,l (v) = EQTl

(
evXl(T )

)
with v ∈ C.

Hereto, we will make use of the independence between the processes r and sl for l = 1, . . . , N :

EQTl

[
evXl(T )

]
= gl(v, T )EQTl [exp(v(B0(T, T ) − B0(T, Tl)) r(T )]

l∏
j=1

EQTl [exp(vBlj(T, T ) sj(T ))] (101)

with gl(v, T ) = exp
(
v(A0(T, T ) − A0(T, Tl) +

∑l
j=1 Alj(T, T ))

)
. Since

r(T ) = r0e−κ0T + e−κ0T
∫ T

0
θ̃0(s)eκ0sds + η0e−κ0T

∫ T

0
eκ0sdWQTl

0 (s)

follows a normal law, the first factor follows from the fact that

EQTl [exp(v(B0(T, T ) − B0(T, Tl)) r(T )] = (102)

exp(EQTl [v(B0(T, T ) − B0(T, Tl)) r(T )] + 1
2VarQTl [v(B0(T, T ) − B0(T, Tl)) r(T )])

Noticing from (94) that B0(T, T ) = 0, it easily follows that

EQTl [v(B0(T, T ) − B0(T, Tl)) r(T )] = −vB0(T, Tl)
(

r0e−κ0T +
∫ T

0
θ̃0(s)e−κ0(T −s)ds

)

and

VarQTl [v(B0(T, T ) − B0(T, Tl)) r(T )] = v2B0(T, Tl)2η2
0

1 − e−2κ0T

2κ0
. (103)
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Each of the following factors
EQTl [exp(vBlj(T, T ) sj(T ))]

follows from e.g. using Lemma 4.1 of [de Kort and Vellekoop, 2017]. Indeed, this Lemma leads to the
following equality for v ∈ R

EQTl

[
exp(vBlj(T, T ) sj(T ))

∣∣∣ Ft

]
= e−Ālj(t,T )−B̄lj(t,T ) sj(t), (104)

with the functions Ālj(t, T ) and B̄lj(t, T ) defined by the PDE’s

∂B̄lj(t, T )
∂t

= κjB̄lj(t, T ) + 1
2η2

j (B̄lj(t, T ))2, 0 ≤ t ≤ T (105)

B̄lj(T, T ) = −vBlj(t, T )

and

∂Ālj(t, T )
∂t

= −θjB̄lj(t, T ), 0 ≤ t ≤ T (106)

Ālj(T, T ) = 0

and by noticing that these solutions Ālj(t, T ) and ∂B̄lj(t, T ) are bounded functions. By solving the Riccati
equations, one easily finds

B̄lj(t, T ) = 2κj

η2
j

(
1

1 − C̄ljeκjt
− 1

)

with

C̄lj =
e−κjT vBlj(T, T )η2

j

2

vBlj(T, T )η2
j

2 − κj

and
Ālj(t, T ) = θj

∫ T

t
B̄lj(s, T ) ds

= 2θj

η2
j

ln
(

1 − C̄ljeκjt

1 − C̄ljeκjT

)
.

(107)

Next, the result in (104) can be generalized to v ∈ C by techniques as in Chapter 10 of [Filipovic, 2009].
Finally, the by now standard approach of [Carr and Madan, 1999] leads to the result in (62). ■

C Proof of the Option formula on XIBOR forward prices in Theorem
4.2

Using risk-neutral pricing and equation (6), the price of this option equals

C(t, U, T, i) = P0(t)EQ

[ 1
P0(U)

(
P0(U, Ti)P L

i (U, T ) − KP0(U, Ti−1)P L
i−1(U, T )

)
+

∣∣∣ Ft

]
,

= P0(t)EQ

[ 1
P0(U)

(
P0(U, T )P S

i (U, T ) − KP0(U, T )P S
i−1(U, T )

)
+

∣∣∣ Ft

]
,

= P0(t, T )EQT

[(
P S

i (U, T ) − KP S
i−1(U, T )

)
+

∣∣∣ Ft

]
,

(108)
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by the definition of the forward-neutral probability measure QT . In order to perform a change-of-measure
to the probability measure QT

i/i−1 defined by (31) and noticing from (8) that for all t ≤ T

P S
i (t, T ) = P S

i/i−1(t, T )P S
i−1(t, T ), (109)

this can be easily rewritten as

C(t, U, T, i) = P0(t, T )P S
i−1(t, T )EQT

[
P S

i−1(U, T )
P S

i−1(t, T )

(
P S

i/i−1(U, T ) − K
)

+

∣∣∣ Ft

]
,

= P0(t, T )P S
i−1(t, T )EQT

i/i−1

[(
P S

i/i−1(U, T ) − K
)

+

∣∣∣ Ft

]
,

(110)

where we used the Radon-Nikodym derivative in (31) which defines the probability QT
i/i−1. ■
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