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Abstract

Understanding the impact of mutations on protein–protein binding affinity is a key objective for a wide range of biotechnological
applications and for shedding light on disease-causing mutations, which are often located at protein–protein interfaces. Over the
past decade, many computational methods using physics-based and/or machine learning approaches have been developed to predict
how protein binding affinity changes upon mutations. They all claim to achieve astonishing accuracy on both training and test
sets, with performances on standard benchmarks such as SKEMPI 2.0 that seem overly optimistic. Here we benchmarked eight well-
known and well-used predictors and identified their biases and dataset dependencies, using not only SKEMPI 2.0 as a test set but
also deep mutagenesis data on the severe acute respiratory syndrome coronavirus 2 spike protein in complex with the human
angiotensin-converting enzyme 2. We showed that, even though most of the tested methods reach a significant degree of robustness and
accuracy, they suffer from limited generalizability properties and struggle to predict unseen mutations. Interestingly, the generalizability
problems are more severe for pure machine learning approaches, while physics-based methods are less affected by this issue. Moreover,
undesirable prediction biases toward specific mutation properties, the most marked being toward destabilizing mutations, are also
observed and should be carefully considered by method developers. We conclude from our analyses that there is room for improvement
in the prediction models and suggest ways to check, assess and improve their generalizability and robustness.

Keywords: protein complex structure; protein–protein interactions; machine learning; protein–protein binding affinity; symmetry
principle; prediction biases

INTRODUCTION
Proteins interact with each other to form complexes that perform
a wide range of biological functions in the intra- and extracel-
lular media, and are involved in key processes such as signal
transduction, cell growth and proliferation and cell apoptosis. It
is therefore of fundamental interest to understand how amino
acid substitutions impact on the ability of proteins to bind to their
interacting partners. Such insights would shed light on pathogenic
mechanisms since aberrant protein–protein interactions (PPIs)
caused by deleterious variants are often central to Mendelian
disorders and complex diseases such as cancer [1–4]. From a
biotechnological perspective, it would improve the design of drugs
that modulate PPIs, as targeting these is an established strategy
in the treatment of disease [5, 6].

There are several experimental methods for estimating the
impact of mutations on PPIs. Biophysical methods such as isother-
mal titration calorimetry allow in-depth estimation of protein
binding thermodynamics [7]; in contrast, high-throughput screen-
ing assays such as yeast-two-hybrid systems only allow identifi-
cation of binary PPIs but have the advantage of being applicable at
a large scale [8]. However, given that all experimental approaches

remain challenging, costly and time-intensive, there is room for
computational methods which provide effective alternatives to
predict and achieve better understanding of PPIs.

Over the last decade, many studies have been dedicated to
the development of bioinformatics tools to predict the impact
of mutations on protein–protein binding affinity (�Gb), which
is the thermodynamic descriptor of PPIs [9–21]. These tools are
mainly based on structural features derived from experimentally
characterized protein complexes and/or evolutionary data. These
features are usually combined using standard machine learning
techniques, but deep learning algorithms are starting to be used
in predictor construction [20].

The first attempts to predict protein–protein binding affinity
changes upon mutations (��Gb) were based on physical energy
functions [22], with predictors such as Rosetta [9] (2002), FOLDEF
[10] (2002) and DComplex [11] (2004). The lack of sufficiently
large and standardized datasets of experimental ��Gb values
prevented them from being trained directly on such data. For
this reason, some of them (e.g. DComplex) were completely unsu-
pervised, while others (e.g. Rosetta and FOLDEF) were trained on
experimental values of protein stability changes upon mutations
(��G) reported in the ProTherm [23] dataset, with the assumption
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that physical properties of intraprotein interactions are trans-
posable to interprotein interactions at the interface. In this case,
experimental data were used only to parameterize the energy
functions and to weight their individual contributions.

Now, the SKEMPI dataset [24, 25] fills this gap. It is considered as
the gold standard for training and testing ��Gb predictors. Its first
release in 2012, SKEMPI 1.0 [24], collected, curated, selected and
standardized entries from literature searches and from already
existing datasets (ASEdb [26], PINT [27] and [28]). This first release
allowed the development of a generation of ��Gb predictors
such as BeAtMuSiC [12] (2013), mCSM [13] (2014), MutaBind [14]
(2016) and BindProfX [15] (2017). The large amount of collected
experimental values enabled a more extensive use of machine
learning methods (e.g. in mCSM), as well as leveraging other non-
physical information to predict energy values. For instance, evo-
lutionary information was extracted from homologous structures
(in BindProfX) and sequences (in MutaBind).

The second SKEMPI release in 2019, SKEMPI 2.0 [25], increased
the number of entries by more than a factor of two by adding
new entries from literature and some more recent datasets (AB-
Bind [29], PROXiMATE [30], dbMPIKT [31] and [32]). Moreover, it
provided a more diverse set of mutations on a more diverse set
of protein complexes. SKEMPI 2.0 allowed an even more extensive
use of machine learning techniques and the development of a
wider range of features, leading to a new generation of predictors,
such as mCSM-PPI2 [16] (2019), MutaBind2 [17] (2020), SSIPe [18]
(2020), SAAMBE-3D [19] (2020), NetTree [20] (2020) and mmCSM-
PPI [21] (2021).

While these tools achieve good prediction accuracy on their
respective training sets, the extent to which these results are
generalizable to unseen data is one of the open issues in the
field. Indeed, like all supervised machine learning methods, they
are likely to suffer from undesirable biases toward the learning
set, which often hinder the generalization of their predictions.
One example of this problem is the bias toward destabilizing
values of the folding free energy change upon mutations (��G),
which has been thoroughly analyzed in a series of investigations
[33–35]. In summary, it has been shown that training protein
stability predictors on the common experimental datasets that
are dominated by destabilizing mutations leads to much better
performance on destabilizing than on stabilizing mutations.

Although prediction biases have been studied for predictors of
stability changes caused by mutations, they have not been for
protein–protein affinity changes; yet having accurate and unbi-
ased prediction tools of ��Gb values is crucial for a wide range
of biotechnological applications. In this paper, we have systemati-
cally quantified possible biases in state-of-the-art protein–protein
��Gb prediction methods. More precisely, we evaluated their
predictions on a set of mutations with experimentally measured
��Gb values taken from [25], and on high-throughput data on
the binding between the human angiotensin-converting enzyme 2
(ACE2) and the receptor binding domain (RBD) of the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein
taken from [36]. After an analysis of the methods’ performances,
we suggest strategies to limit and correct possible biases and thus
to further improve the methods’ generalizability and scores.

METHODS
Protein–protein binding affinity change upon
mutations
The thermodynamic protein–protein binding affinity �Gb is a
measure of the strength of a PPI and is defined using the Gibbs

free energy:

�Gb := RT ln KD, (1)

where R is the Boltzmann constant, T the absolute temperature
(in K) and KD the equilibrium dissociation constant of the PPI. We
use the convention that the stronger the interaction, the more
negative the value of �Gb, and express it in kcal/mol.

Under the action of a mutation, we define the binding affinity
change as

��Gwt→mt
b := �Gmt

b − �Gwt
b = RT ln

Kmt
D

Kwt
D

, (2)

where wt refers to the wild-type complex and mt to the mutant.
Thus, positive ��Gb values correspond to mutations that desta-
bilize the complex and negative values to stabilizing mutations.
Since binding affinity is a thermodynamic state function, mutat-
ing from a wild-type complex to a mutant complex and then
mutating back results in no change in ��Gb, which is expressed
by the following equation:

��Gwt→mt
b + ��Gmt→wt

b = 0. (3)

We will refer to this property as the symmetry property.
In what follows, we will call ‘direct mutation a mutation that

goes from the wild-type to the mutant complex. Conversely, we
will call ‘reverse mutation’ a mutation that goes from the mutant
to the wild-type complex. Note that the terms wild-type, mutant,
direct and reverse are defined with respect to the proteins that
are part of our datasets and do not necessarily have a biological
interpretation.

Defining protein–protein interfaces
The relative solvent accessibility (RSA) of a residue in a three-
dimensional (3D) structure is defined as the ratio (in %) of
its solvent-accessible surface area in the structure and in an
extended tripeptide Gly-X-Gly [37]. We calculated them using
our in-house software MuSiC [38] (which uses an extension of
the DSSP algorithm [39]), available on the dezyme.com website.
We distinguished between interactant-RSA (iRSA) and complex-
RSA (cRSA), which correspond to the RSA calculated from the
structure containing solely the considered interactant and from
the structure containing the complex with both interactants,
respectively. We defined the RSA change upon binding as �RSA :=
iRSA − cRSA; it measures how much the PPI changes the solvent
accessibility of a residue. A residue is considered to be in the
protein–protein interface if its �RSA is greater than 5%.

Datasets of binding affinity changes upon
mutations
We considered two datasets. The first is based on the SKEMPI sets
[24, 25], containing mutations in different protein–protein com-
plexes of known 3D structure available in the Protein Data Bank
(PDB) [40], whose ��Gb values have been measured experimen-
tally using biophysical methods, performed by various laborato-
ries. The number of characterized mutations in each protein typ-
ically ranges from a few to a few dozen, and reaches in rare cases
a few hundred [41, 42]. These datasets yield relatively accurate
��Gb values but have the disadvantage of being unsystematic
and of reflecting the specific interests of the authors in the choice
of proteins and mutations.
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The SKEMPI 2.0 dataset [25] contains 7085 entries and is the
most comprehensive, well-curated and diverse dataset of its
kind. First, we discarded entries without ��Gb value and entries
describing multiple mutations. We then aggregated all redundant
entries (with the same mutation in the same PDB structure) by
taking their average ��Gb value. To withdraw the dependency
on the quality of the structures, we also dropped all mutations
in low-resolution X-ray structures (resolution > 2.5Å) and in
structures obtained by nuclear magnetic resonance spectroscopy.
This defines our first benchmark dataset called S2536 which
contains 2536 mutations in 205 different PDB structures.

The second dataset we considered contains affinity values
obtained through deep mutagenesis experiments that systemati-
cally characterized all possible mutations in the RBD of the SARS-
CoV-2 spike glycoprotein in interaction with the human ACE2
receptor [36]. This dataset has the advantage of being systematic
and therefore less biased. However, the measured values are not
exact ��Gb but close correlates. From this set, we first discarded
the mutations of the few residues located in the N- and C-terminal
tails of the spike protein, as they are absent from the reference
PDB structure 6M0J. We then identified the ACE2–RBD interface
residues, of which there are 20, using the above RSA criterion.
We focused on all 380 possible mutations of these 20 residues,
to define our second benchmark dataset C380.

For both the S2536 and C380 datasets, considered by definition
as direct mutations, we constructed the datasets of reverse muta-
tions using the symmetry property Eq. (3) to assign a ��Gb value
to each reverse mutation. When the distinction is required, we
append the suffix -D to the name for a dataset of direct mutations,
the suffix -R for a dataset of reverse mutations and the suffix -DR
for a dataset of both direct and reverse mutations (e.g. S2536-D,
S2536-R and S2536-DR).

The datasets S2536 and C380 are available at https://github.
com/3BioCompBio/DDGb_bias.

Protein 3D structures
For predicting direct mutations in the S2536 set, we used the PDB
structures of the protein complexes that have been collected in
the SKEMPI 2.0 database, as they were curated to be as close as
possible to the protein complexes on which the measurements
were made. For direct mutations in the C380 set, we used the
experimental 3D structure of the ACE2–RBD complex with PDB
ID 6M0J [43], as referenced in [36].

For reverse mutations, we modeled the mutant complexes
using the comparative modeling software MODELLER [44] with
default parameters and the wild-type structures as templates.
MODELLER reconstructs the side chain of the mutated residue,
then slightly rearranges the backbone and the side chains of the
complex to avoid steric clashes and to optimize atomic inter-
actions with the new mutated residue. Since the template and
mutant structures differ by only one mutation, the resulting
model remains very close to the initial structure.

All wild-type (experimental) and mutant (modeled) structures
can be downloaded at http://babylone.3bio.ulb.ac.be/DDGb_bias_
structures/.

Prediction methods tested
We benchmarked the eight best-known, available and widely used
��Gb predictors published in recent years. We briefly describe
their characteristics.

mCSM-PPI2 [16] is a machine learning predictor that uses
graph-based structural signatures of the inter-residue interaction
network, evolutionary information, complex network metrics and
energy terms.

MutaBind2 [17] uses seven features including protein-solvent
interactions, evolutionary conservation and physics-based ther-
modynamic stability.

BeAtMuSiC [12] is our in-house predictor. It estimates the ��Gb

as a linear combination of the stability changes upon mutations
(��G) of the protein complex and of the individual interactants,
computed by the PoPMuSiC predictor [45]. It uses statistical energy
functions for ��G estimation, derived from the Boltzmann law
which relates the frequency of occurrence of a structural pattern
to its free energy.

SSIPe [18] combines protein interface profiles obtained from
structure and sequence homology searches with physics-based
energy functions.

SAAMBE-3D [19] is a machine learning-based predictor that
utilizes 33 knowledge-based features representing the physical
environment surrounding the mutation site.

NetTree [20] is a deep learning method based on convolutional
neural networks and algebraic topology features. It uses element-
and site-specific persistent homology to represent the structure
of a protein complex and to translate it into topological features.

FoldX [46] is a purely physics-based method that uses empirical
energy functions to predict ��Gb as described in the FOLDEF
paper [10]. Its energy terms are defined by theoretical models
(e.g. the van der Waals potential energy function), which are
parameterized and weighted using empirical data.

BindProfX [15] combines the FoldX prediction and a profile
score based on structural interface alignments obtained by the
iAlign software [47]. The profile score exploits evolutionary infor-
mation by comparing the frequencies of occurrence of the wild-
type and the mutant amino acids in structurally similar inter-
faces. BindProfX is only applicable to protein dimers; when applied
to higher order multimers, we use the FoldX term only.

These predictors can be classified into three groups based on
the nature of their approach: mCSM-PPI2, MutaBind2, SAAMBE-
3D and NetTree are machine learning predictors whose features
are extracted from protein structures, physics and evolution;
SSIPe and BindProfX linearly combine an evolutionary term and
a physics-based energy term using ��Gb data to optimize their
models; BeAtMuSiC and FoldX are pure physics-based predictors.

In terms of training set, we have the following classification:
NetTree was trained on antigen–antibody interaction data from
the AB-Bind dataset [29] which is partially included in the SKEMPI
2.0 dataset; FoldX was trained on ��G data from ProTherm
[23], however note that it has been updated several times since
its first publication [10] in 2002 and it is unclear whether
or not the current version (v5) [48] has used ��Gb data for
parameterization; BeAtMuSiC was also trained on ��G values,
with only two parameters to balance interprotein and intraprotein
contributions adjusted using SKEMPI 1.0 ��Gb values; BindProfX
was trained on SKEMPI 1.0 entries; all other predictors were
trained on SKEMPI 2.0. Finally, mCSM-PPI2 and MutaBind2
included reverse mutations in addition to direct mutations in
their training datasets.

Predictions from BeAtMuSiC, SSIPe, SAAMBE-3D, NetTree, Bind-
ProfX and FoldX were obtained by running their stand-alone code,
while predictions from mCSM-PPI2 and MutaBind2 were obtained
using their online webserver.

RESULTS AND DISCUSSION
An upper bound to the accuracy of predictors
Binding affinity change values collected from the literature and
available in S2536 are derived from experiments performed
using different techniques and under different environmental
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conditions such as pH, temperature or solvent additives. These
differences add to the experimental error and usually lead to
different ��Gb values for the same mutation in the same protein
complex. Furthermore, although SKEMPI 2.0 is particularly well
curated, curation errors cannot be avoided, as illustrated by
the error corrections between SKEMPI 1.0 and SKEMPI 2.0 (see
Supplementary Section 1). The uncertainty on ��Gb values places
an upper bound on the precision of the predictions, which cannot
exceed the accuracy of the experimental data.

An analytical method for estimating the upper bound on the
Pearson correlation coefficient (ρ), which measures the strength
of the linear relation between predicted and target values, and
the lower bound on the root mean squared error (RMSE), which is
a measure of the average error of a prediction, has recently been
proposed [49, 50]. These bounds are expressed as

sup(ρ) = σ 2
DB

σ̄ 2 + σ 2
DB

, (4)

inf(RMSE) =
√

2σ̄ 2, (5)

where σ 2
DB is the variance of ��Gb values in the whole dataset and

σ̄ 2 is the mean of the individual variances for redundant entries.
We estimated the values of these bounds using the 116 redundant
clusters with at least three entries among all single mutations
from the SKEMPI 2.0 dataset.

We obtained: sup(ρ) = 0.89 and inf(RMSE) = 0.70 kcal/mol.
Note, however, that these bounds are probably overestimated
and underestimated, respectively, due to an underestimation of
σ̄ 2. Indeed, only independent, uncorrelated, ��Gb measures of
a given mutation can yield a correct estimation of the variance,
which seems to not be always the case.

The performances of the tested predictors presented in the
following sections can be compared with these ‘optimal’ values.
It should be stressed that an accuracy better than these bounds
suggests that the predictor is overfitted toward the dataset. A good
prediction should thus have a Pearson correlation significantly
above zero but below the upper bound of 0.89. It is also expected
to have an RMSE value above the lower bound of 0.70 kcal/mol. To
give the reader an intuitive idea of the scale of the RMSE, we note
that a predictor that consistently predicts ��Gb to be zero would
obtain RMSE values of 2.3 and 1.8 kcal/mol on S2536 and C380,
respectively.

Biases in the S2536 dataset
As mentioned by the SKEMPI authors [24, 25], mutations char-
acterized and reported in the literature are not systematic but
reflect the interests of the experimenters. The collected data
have therefore biases toward specific residues, mutation types,
spatial locations, proteins and protein families. These biases can
lead to overoptimistic assessments of the predictors, even when
strict cross-validation methods are used. Indeed, if training and
test sets are subject to the same biases, a predictor can learn
and replicate them, increasing both its apparent performance
and generalization error. This can lead to a gap between the
performances estimated from either a biased test set or a set
of systematic mutations, raising concerns about the reliability of
predictors. In this section we have quantified and discussed some
of the biases in the S2536 mutations set.

First we note the imbalance in terms of mutation types. The
occurrences of the 380 possible mutation types in S2536 are
shown in Figure 1A. Half of the mutations are toward alanine, 222
mutation types occur less than five times and 92 mutation types

are not represented. This tendency is related to the prevalence of
experimental alanine-scanning data in S2536. It may weaken the
predictions of underrepresented mutation types.

Another notable imbalance is toward mutations located at
protein–protein interfaces: 78% of S2536 entries are mutations
of the 9% of residues located at the interface. Although inter-
face residues are usually more critical for the interaction, non-
interface regions can also be important and their effects risk being
overlooked by the predictors.

Finally, the ��Gb distribution is largely shifted toward positive
values, as shown in Figure 1B. It has a mean value of 1.11 kcal/mol
and a standard deviation of 1.99 kcal/mol with clear prevalence of
destabilizing mutations. This imbalance is not surprising as exper-
imentally studied complexes are often optimized for high binding
affinity by evolution. However, it tends to cause predictors to
systematically output destabilizing ��Gb values even for neutral
and stabilizing mutations, thus preventing the symmetry property
(Eq. (3)) from being satisfied. This issue, which is particularly
problematic for, e.g. rational protein design, has been identified
and widely investigated in the context of stability changes upon
mutations [33–35, 51–53]. In the next sections, we will examine
this in the context of changes in binding affinity.

Note that these imbalances were observed in S2536, but also
occur in all single-site mutations of the SKEMPI 2.0 dataset (see
Supplementary Section 2).

Performances on SKEMPI 2.0
We tested the performances of the eight selected predictors
described in Methods (Section 2) on the direct and reverse
mutations of the S2536 benchmark dataset. For that purpose,
we used the Pearson correlation coefficient between predicted
and experimental ��Gb values (ρ) as performance metric. The
results are represented in Figures 2–3 and Table 1. Other metrics
such as the RMSE and the Spearman rank correlation (r) lead to
the similar conclusions (as shown in Table 1 and https://github.
com/3BioCompBio/DDGb_bias).

This benchmark, though informative, should be considered
with caution, as the extent of cross-validation differs according to
the predictor. The main issue is that each of the benchmarked pre-
dictors is trained on a different subset of S2536, with various cov-
ering ratios (CR) with respect to the subset of direct (S2536-D) and
reverse (S2536-R) mutations (Table 2). For instance, the training
set of mCSM-PPI2 contains 99% of the S2536-D mutations, while
that of NetTree only 10%. Furthermore, mCSM-PPI2 is trained
on almost all reverse mutations of S2536-R and MutaBind2, on
the fraction necessary to balance the number of stabilizing and
destabilizing mutations.

The best-performing predictors on the direct mutation set
S2536-D are mCSM-PPI2, MutaBind2 and SAAMBE-3D with Pear-
son correlations ρ of 0.91, 0.90 and 0.88, respectively. These val-
ues exceed or are very close to the upper bound of 0.89 (Eq.
(4)), which suggests some overfitting toward the training set.
They are followed by BindProfX, SSIPe, FoldX, BeAtMuSiC and
NetTree.

We observe that the performance of all predictors but SSIPe
and BindProfX significantly drops when tested on reverse
S2536-R mutations. The magnitude of the drop indicates how
much each predictor is biased toward direct mutations, which are
mostly destabilizing. mCSM-PPI2 and MutaBind2 perform the best
on S2536-R, which is expected since they have reverse mutations
in their training set; the performance of mCSM-PPI2 drops less
than that of MutaBind2, probably because the latter has seen
only a part of the reverse mutations during training.
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Figure 1. Characteristics of the S2536 dataset. (A) Number of occurrences of mutation types; (B) Distribution of the experimental ��Gb values (in
kcal/mol).

Figure 2. Pearson correlations ρ between experimental and predicted ��Gb values on direct (in blue) and reverse (in orange) mutations of S2536 (left)
and C380 (right).

Surprisingly, SSIPe and BindProfX are the most robust toward
reverse mutations, with almost no drop in performance, although
they do not use reverse mutations in training; their robustness
is therefore not acquired by training but rather by the symmetry
properties of the model. In contrast, BeAtMuSiC, SAAMBE-3D and
NetTree basically fail to predict the ��Gb of reverse mutations.
Note the particularly huge drop in performance of SAAMBE-
3D, whose Pearson correlation decreases from 0.88 to 0.11; this
predictor appears thus to be heavily biased toward destabilizing
mutations.

This first benchmark shows that a bias toward destabilizing
mutations is present in the context of ��Gb predictions. Note that
the drop in performance observed when passing from direct to
reverse mutations can partly be attributed to this bias but also to
the presence of a larger proportion of mutations in S2536-R than
in S2536-D which are unseen during training.

For the six methods trained on ��Gb data (mCSM-PPI2,
MutaBind2, SSIPe, SAAMBE-3D, NetTree and BindProfX), the

covering ratio CR between training and benchmark datasets
accurately predicts the performances of the predictors. Indeed,
we found an almost linear relationship between the CR of the
six predictors and their Pearson correlation ρ on the S2536-
D set, with a coefficient of determination R2 as high as 0.91
(Figure 4).

While this observation does not prove that these predictors are
dataset specific and overfitted, it raises some concerns about their
ability to generalize to mutations outside the training set. There-
fore, further investigation based on a dataset of more systematic
and unseen mutations is required: this is the topic of the next
subsection.

Performances on SARS-CoV-2 mutations
The C380 dataset has two major advantages over S2536: it is
unknown to the eight benchmarked predictors and it is systematic
in terms of mutation types. This makes it a better dataset to
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Figure 3. Predicted ��Gb values as a function of experimental ��Gb values (in kcal/mol) for the datasets S2536-D (blue dots) and S2536-R (orange dots).
Predictions are obtained with mCSM-PPI2, MutaBind2, BeAtMuSiC, SSIPe, SAAMBE-3D, NetTree, BindProfX and FoldX.

Table 1: Performances of the eight benchmarked predictors measured by the Pearson correlation (ρ), the Spearman rank correlation (r)
and RMSE on the datasets S2536-D, S2536-R, C380-D and C380-R

S2536-D S2536-R C380-D C380-R

Predictors ρ r RMSE ρ r RMSE ρ r RMSE ρ r RMSE

mCSM-PPI2 0.91 0.90 0.96 0.78 0.71 1.37 0.45 0.48 1.27 0.39 0.36 1.59
MutaBind2 0.90 0.85 0.92 0.59 0.47 1.62 0.47 0.58 1.20 0.38 0.39 1.40
BeAtMuSiC 0.34 0.40 1.90 0.09 0.03 2.66 0.35 0.34 1.26 −0.05 −0.02 2.37
SSIPe 0.53 0.46 1.76 0.47 0.35 2.16 0.37 0.41 1.30 0.23 0.23 2.05
SAAMBE-3D 0.88 0.85 1.02 0.11 −0.05 2.53 0.16 0.14 1.31 −0.17 −0.08 2.45
NetTree 0.16 0.27 2.37 −0.09 −0.11 4.18 0.24 0.18 1.94 −0.20 −0.15 3.93
BindProfX 0.58 0.50 1.64 0.51 0.38 1.89 0.57 0.63 1.06 0.37 0.36 1.84
FoldX 0.44 0.48 1.99 0.31 0.34 2.20 0.33 0.55 2.32 0.14 0.36 2.31

Table 2: Year of publication of the eight benchmarked predictors
and covering ratio (CR) of their training sets with respect to
S2536-D and S2536-R

Predictor Year CR CR
S2536-D S2536-R

mCSM-PPI2 2019 0.99 0.99
MutaBind2 2020 0.75 0.20
BeAtMuSiC 2013 0.621 0.00
SSIPe 2019 0.50 0.00
SAAMBE-3D 2020 0.902 0.00
NetTree 2020 0.10 0.00
BindProfX 2017 0.38 0.00
FoldX 2019 −3 −3

1BeAtMuSiC energy functions were parameterized on ��G data, and only
two parameters were identified using ��Gb data. 2Estimated from the
dataset description in SAAMBE-3D publication [19]. 3It is not clear if the
FoldX version tested [48] use ��Gb data for training.

evaluate the performances of the predictors. By comparing perfor-
mances on direct and reverse mutations from C380-D and C380-
R, we further explored the predictors’ bias toward destabilizing
mutations; by comparing performances on mutations from S2536
and C380, we estimated the dataset dependence of the predictors.
Predicted values and performance metrics on C380 are available
on https://github.com/3BioCompBio/DDGb_bias and predictions
are graphically represented in Supplementary Figure S-4.

As shown in Figure 2, the performances of all predictors but
NetTree drop from S2536 to C380, with no score higher than 0.6

Figure 4. Relation between the covering ratio CR and the Pearson correla-
tion ρ between predicted and experimental ��Gb values on the S2536-D
set for six benchmarked predictors. The linear regression line (dashed)
and coefficient of determination (R2) are indicated.

on C380-D and 0.4 on C380-R. Comparing performances on direct
mutations from the two datasets illustrates the heavy impact of
the training dataset on the prediction accuracy, especially for the
best performing predictors on the S2536 benchmark.
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Figure 5. Distribution of the shift δ (in kcal/mol) for the eight benchmarked predictors calculated for mutations from C380. The vertical blue dashed
lines indicate δ = 0 and the vertical red dashed lines, the value of 〈δ〉.

Note that the pure physics-based predictors (FoldX and BeAt-
MuSiC) and the predictors that use ��Gb data only to set up
some weights and parameterize their model (BindProfX and SSIPe)
only show relatively small drops in performance between S2536-
D and C380-D. Among predictors which use machine learning
more extensively, mCSM-PPI2 and MutaBind2 still show good
performances on C380-D, ranking as second (MutaBind2: ρ = 0.47)
and third (mCSM-PPI2: ρ = 0.45) after BindProfX (ρ = 0.57); their
performance is, however, substantially reduced in comparison
with the S2536-D benchmark; and SAAMBE-3D undergoes the
largest performances drop.

The performance comparison between direct and reverse
mutations of C380-D and C380-R confirms the conclusions of the
previous section: all predictors suffer, to a different extent, from
a bias toward destabilizing mutations. A way to quantify this bias
for a given predictor is to compute the symmetry violation defined
by Eq. (3) by computing the shift δ defined as

δ := ��Gwt→mt
b + ��Gmt→wt

b , (6)

averaged over all C380 dataset entries. While some fluctuations in
δ are expected and acceptable, a systematic deviation of the mean
shift 〈δ〉 from zero quantifies the asymmetry of a predictor and its
bias toward stabilizing or destabilizing mutations. A perfect unbi-
ased value for 〈δ〉 is zero; its ‘worst-case’ value can be estimated as
twice the average ��Gb value in the dataset of direct mutations,
which is 1.24 kcal/mol in C380. We thus estimated the ‘worst-case’
δ-value to be about 2.5 kcal/mol.

We show in Figure 5 the distributions of δ-values for the eight
predictors on C380. Analogous δ-values distributions are depicted
for S2536 in Supplementary Figure S-5. We observe that all pre-
dictors have a statistically significant shift toward destabilizing
mutations, with a vanishing p-value, but amplitude of the shift
widely varies. The most symmetric predictors are, as expected,
those that perform best on reverse mutations: MutaBind2 with
〈δ〉 = 0.28 kcal/mol followed by mCSM-PPI2 with 〈δ〉 = 0.47
kcal/mol.

This confirms that the usage of reverse mutations for training
can largely reduce the asymmetry of the predictions. More biased
predictions are observed for FoldX, SSIPe, BeAtMuSiC, BindProfX
and SAAMBE-3D, with 〈δ〉 = 1.20, 1.28, 1.44, 1.49 and 1.62 kcal/mol,
respectively. These values indicate a bias toward destabilizing

mutations, which is, however, still significantly lower than the
‘worst-case’ bias. This means that such predictions are still able
to distinguish the tendency between a set of mostly stabilizing
and mostly destabilizing mutations. In contrast, NetTree obtains
〈δ〉 = 4.05 kcal/mol, which is largely above the ‘worst-case’ bias
and reflects its inability to distinguish stabilizing from destabi-
lizing mutations. This particularly large 〈δ〉-value can partly be
explained by NetTree’s tendency to predict very large ��Gb values
of about 2 kcal/mol, much higher than average experimental
values.

In summary, this benchmark represents a fair and objective
way to evaluate the performance of the predictors, since C380
is unknown to all. It confirms the presence of biases toward
destabilizing mutations in the state-of-the-art ��Gb predictors
and highlights the two predictors mCSM-PPI2 and MutaBind2 that
are the least affected by this bias.

Performances and biases toward mutation
properties
We investigated the predictors’ performances on subsets of S2536-
D containing mutations sharing similar properties, i.e. muta-
tion type, mutation location and type of complex, in order to
highlight the predictors’ strengths and weaknesses. As the stan-
dard deviations σ of the experimental ��Gb values widely differ
according to the subset, we used the normalized RMSE defined
as nRMSE := RMSE/σ to assess the predictions. The results are
shown in Figure 6. All observations discussed below are statisti-
cally significant with almost vanishing P-values (< 0.0001).

We first analyzed separately the subset of mutations toward
alanine and the subset of other mutations. As seen in Figure 6A,
no substantial differences are observed between these two sub-
sets, except that MutaBind2 and SAAMBE-3D perform slightly
better on the latter subset. This might be explained by actual
strengths/weaknesses of the predictors or could suggest a mild
overfitting, since it is easier to memorize ��Gb values on under-
represented mutation types.

Most predictors are slightly weaker on mutations outside the
protein–protein interface (Figure 6B). This is foreseeable, since
effects on binding affinity of non-interface mutations are indirect
an thus more difficult to predict. MutaBind2, BindProfX, SAAMBE-
3D and NetTree suffer from the largest increase in nRMSE. In con-
trast, BeAtMuSiC and FoldX present similar performances on both
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Figure 6. Normalized RMSE (nRMSE) of the eight predictors on subsets of S2536-D. Subsets were defined based on (a) mutation type: mutation toward
Ala (A) versus other mutations (nA); (b) mutation location: mutations at the interface (I) versus other mutations (nI). (c) complex type: mutation on
dimeric complexes (D) versus mutations on multi-n-meric complexes (n > 2) (nD).

subsets. SSIPe shows a surprisingly small drop in performance on
mutations outside the interface, although it explicitly claims to be
only able to predict interface mutations.

When comparing mutations in dimers to mutations in
higher order multimers (Figure 6C), we observe that mCSM-PPI2,
BeAtMuSiC and FoldX are the most stable and that MutaBind2,
SSIPe, SAAMBE-3D and BindProfX show the largest performance
drop. SSIPe’s poor performance on higher order multimers is
not surprising as it explicitly announces not to predict such
mutations. BindProfX’s drop is related to the fact that its
predictions on higher order multimers are taken from FoldX (see
Methods). Paradoxically, mCSM-PPI2 does not require specifying
which chains make up the two interactants, although higher
order multimers have several protein–protein interfaces and so
there is an ambiguity. In spite of this, it maintains the same
performance on both subsets, which could suggest overfitting
toward its training dataset. In contrast, MutaBind2 asks the chains
included in the interactants, but has the largest performance drop
on higher order multimers.

We also assessed the performances on other S2536-D subsets,
partitioned by secondary structure, solvent exposure in the com-
plex and interface sub-regions [54] (definitions in Supplementary
Section 4), but no relevant observations where found. Results are
available at https://github.com/3BioCompBio/DDGb_bias).

Strategies for avoiding biased predictions
To ensure the generalizability of the predictions, k-fold cross-
validation procedures should be carefully performed, avoiding
blindly splitting the training set. Indeed, when separating a
dataset into folds, a direct mutation and its corresponding reverse
mutation should end up in the same fold to avoid that information
from one mutation influences the prediction of the other. As
the S2536 dataset contains multiple homologous complexes
differing by only a few mutations, random cross-validations can
also lead to information leaks from training to testing sets and
provide overoptimistic results. Thus, mutations on homologous
complexes should also be kept in the same fold [24].

However, dataset biases can be learned by the predictors even
if a strict cross-validation procedure is used. To illustrate this, we
started by noticing that half of the mutations from S2536-D are
toward alanine (X → A) and thus that half of the mutations from
S2536-R are from alanine (A → X). Knowing moreover that S2536-
D and S2536-R contain mostly destabilizing and mostly stabilizing
mutations, respectively, the sign of ��Gb can be often correctly
guessed for X → A and A → X mutations while holding no
predictive power. In other words, predictors can learn imbalances
and cross correlations between mutations’ properties from S2536,

which improves its performances in cross-validation while also
increasing its generalization error.

As a proof of this phenomenon, we created a ‘perfectly biased’
predictor, which estimates ��Gb as the mean of the experimental
��Gb values of the same mutation type in the training set (or
zero if the mutation type was never encountered). This predictor
manages to obtain a Pearson correlation ρ = 0.46 on S2536-DR
in 10-fold cross-validation. When applying the same predictor
(trained on S2536-DR) on mutation type-balanced, interface-only
entries from C380-DR, the Pearson correlation falls to ρ = 0.35,
and completely vanishes when dropping the interface filter and
applying the predictor to the whole dataset of mutations on the
RBD-ACE2 complex (-DR) with ρ = 0.04. The same phenomenon
also happens, with however slightly smaller correlations, when
considering direct mutations only. We indeed found ρ = 0.34 in 10-
fold cross-validation on S2536-D, ρ = 0.27 on C380-D and ρ = 0.05
on RBD-ACE2 (-D). Note that these scores are only an underesti-
mation of how dataset-dependent cross correlations from S2536
can impact predictions; we have indeed only considered mutation
type-related biases.

As extensively discussed above, asymmetric predictions are
another type of unwanted bias. One easy way to avoid it is to sym-
metrize the prediction results. Indeed, the prediction shift δ van-
ishes when redefining the prediction of a mutation wt → mt as

��Gb
wt→mt

:=��Gwt→mt
b − ��Gmt→wt

b

2
, (7)

with, as a consequence, δ = ��Gb
wt→mt + ��Gb

mt→wt = 0. This
operation requires both wild-type and mutant structures, but
does not introduce any internal modifications to the predictor
itself. Some but not all mutant structures have been resolved
experimentally; we listed in the https://github.com/3BioCompBio/
DDGb_bias repository the pairs of resolved wild-type and mutant
structures from SKEMPI 2.0 that are separated by a single
mutation (more details in Supplementary Section 5). Alternatively,
the unavailable mutant structures can be modeled with homology
modeling techniques using the wild-type structure as a template.

Symmetrized versions of all tested predictors were obtained
using Eq. (7). For predictors that suffer from a strong bias toward
destabilizing mutations, the Pearson correlation coefficient of the
symmetrized version falls somewhere between their scores on
direct and on reverse mutations. In contrast, the least asym-
metric predictors, mCSM-PPI2, MutaBind2, BindProfX, FoldX and
SSIPe, show a significantly improved score on the reverse datasets
S2536-R and C380-R, as well as on the combined datasets S2536-
DR and C380-DR, and similar or only slightly lower performance
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on the direct datasets S2536-D and C380-D (Supplementary Sec-
tion 3). This shows that the overall performances of some pre-
dictors can be improved while also increasing their symmetry
without introducing any internal changes to the model.

As seen in the previous subsections, an alternative strategy to
reduce the asymmetry of the predictions consists in using reverse
mutations for training. Among the tested predictors, MutaBind2
and mCSM-PPI2 apply this technique and reach good symmetry
properties. This practice increases the generalizability and robust-
ness of predictors. However, the symmetrization of the training
set has to be done carefully. Indeed, due to the presence of
wild-type/mutant pairs in SKEMPI 2.0, adding the reverse of all
mutations, as done in mCSM-PPI2, leads to redundant entries that
should be avoided, as they are a source of biases.

Predictors’ computational efficiency
Computational time efficiency is another characteristic to con-
sider when choosing a prediction method, especially when a large
set of mutations has to be analyzed, as for example in the study
of variants impact on the interactome [2]. In terms of speed,
BeAtMuSiC and SAAMBE-3D are fast enough to enable large-scale
computational mutagenesis experiments; indeed, they are able to
predict all possible single-site mutations in a protein complex in a
few to a few tens of seconds. While FoldX is significantly slower, it
still can perform all mutations in a small protein complex in about
a few hours. In contrast, mCSM-PPI2, MutaBind2, SSIPe, NetTree
and BindProfX are time-consuming and require tens of seconds
to tens of minutes to run a single mutation. This prevents their
use for large-scale applications.

CONCLUSIONS
In the last decade, the computational prediction of how
mutations impact protein–protein binding affinity have expe-
rienced substantial improvements. Due to the large amount of
experimental mutagenesis data generated and the development
of new machine learning algorithms and accurate force fields,
many ��Gb predictors that reach good performance have been
developed and used in biotechnological and biopharmaceutical
applications.

However, as clearly illustrated in our benchmarking analy-
ses, the predictive power of a method is not necessarily well
represented by its scores on its training dataset even if a strict
cross-validation procedure is used. This makes the validation
process particularly challenging. Here we identified two main
issues, which are the predictors’ systematic asymmetry and their
lack of generalization on mutations outside their training set.
They are discussed below.

Lack of generalization. A major challenge in ��Gb predictions
is to distinguish between statistical relations that are dataset-
dependent and the ‘true’ ones that have a biological meaning.
We would like to stress that, while physics- and evolution-based
methods are at least partly equipped to tackle this problem, pure
machine learning methods struggle to make this distinction. This
can explain the particularly large performance drop on unknown
mutations observed for most purely machine learning meth-
ods such as SAAMBE-3D and the good generalizability properties
observed for methods that are totally or partly physics-based,
such as BeAtMuSiC, BindProfX and FoldX.

The generalizability of a predictor must be tested on indepen-
dent sets of mutations outside the training set. Sets of systematic
mutations obtained by deep mutagenesis experiments, such as
C380, have the advantage of not being impacted by literature

biases. They are thus appropriate for validating and benchmark-
ing predictions, even though their ��Gb values are less accurate
than those obtained by individual thermodynamic experiments.

Symmetry properties. Symmetry properties should be carefully
checked when constructing a prediction model. One way to assess
them is on the basis of the shift δ (Eq. (6)). As a general rule, the
symmetry of a predictor can be achieved by (1) using symmetric
data during training by including all or a fraction of reverse
mutations, as done in mCSM-PPI2 and MutaBind2; (2) enforcing
symmetry in the predictor’s mathematical model, as in [33];
and (3) applying symmetry-correction methods through, e.g. the
symmetrization defined in Eq. (7). Method (1) is a good practice
which, as we showed, can increase the generalizability of the
predictions. Method (2) can help the predictor to be symmetric,
but it is only applicable when the mathematical expression of the
model is known. Method (3) is the easiest to implement, but is
efficient only if the predictor is already robust to symmetry.

There are additional challenges that need to be addressed.
First, further data on binding affinity and interactions need to
be collected. Accurate ��Gb thermodynamics data have not
been systematically collected for the past 5 years, after SKEMPI
2.0’s release. Also, deep mutagenesis data of binding affinity are
currently generated at a high rate but need to be collected, curated
and harmonized. Secondly, the interpretation of ��Gb prediction
models is an issue that we do not explore in this paper and that is
not sufficiently discussed in the literature. Indeed, performance is
not the only criterion for evaluating a prediction model. Insights
into model interpretation can help gaining physical under-
standing of molecular recognition and protein–protein binding
mechanisms.

Finally, there is a need for more independent assessments. We
invite the community to set up blind challenges for the prediction
of changes in protein–protein binding affinity upon mutations,
similar to what has been done during the 26th critical assess-
ment of predicted interactions (CAPRI) experiment [55]. These
community-wide blind challenges provide important insights into
whether and how different predictors achieve the targeted accu-
racy, and help drive the development of new methods.

Key Points

• Predicting the impact of mutations on protein–protein
binding affinity has seen substantial progress over the
past decade, but still faces challenging issues.

• Although many predictors achieve good performance on
their training set, even in cross validation, they usually
struggle to generalize to unseen data.

• Most predictors are biased, especially toward muta-
tions that destabilize protein–protein complexes, as their
training sets are dominated by them.

• Further strategies to limit biases are proposed to improve
prediction performance.

• Current machine learning-based approaches suffer
more from training set overfitting issues than physics-
based methods which generally demonstrate better gen-
eralizability properties.
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