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Abstract—A novel unified frequency diverse array (FDA) and
spatial data focusing (SDF) approach is proposed to simulta-
neously overcome time-variance and precision constraints of
conventional FDA in geocasting, i.e., spatially confined broad-
casting, scenarios. This paper describes a free space FDA-based
SDF (FDA-SDF) system model for 2-dimensional range-angle-
based focusing, including a generalized multi-purpose baseband
approach for time-invariant FDA, complemented by SDF pro-
cessing for improved spatial focusing precision and reduced
array size. Comprehensive analytical derivations – general for
any frequency offset configuration – describe the geographical
FDA-SDF properties and design rules, such as geocast delivery
zone steering, location, uniqueness, and size. Simulations of the
proposed scheme validate theoretical derivations and demon-
strate FDA-SDF’s superior spatial precision and minimal design
complexity. In particular, using novel alternating logarithmic
frequency offsets, a 3-antenna FDA-SDF setup is shown to match
the radial and azimuthal precision of its beamforming-based FDA
counterpart using, respectively, 64 and 24 antennas.

Index Terms—Geocasting, spatial data focusing (SDF), fre-
quency diverse array (FDA), single-antenna multiple-channel
(SAMC), time-invariance.

I. INTRODUCTION

GEOCASTING, or location-based multicasting, aims to
perform spatially confined broadcasting of information

towards users within restricted geographic areas. It is an
interesting technique in smart city and internet-of-things
scenarios, where it can provide location-dependent services
or messaging to large groups of mobile devices, e.g., for
advertising and marketing, tourism, emergency signaling,
traffic management, etc., [1], [2]. Moreover, by targeting
a geographic area rather than individual users, it avoids
potential privacy concerns as it requires no centralized
knowledge of a user’s location. While often achieved at the
network layer by geographic routing algorithms [3], [4], these
approaches require a challenging tradeoff between delivery
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rate, overhead, and scalability. Instead, by introducing spatial
focusing capabilities at the base station, geocasting can be
enforced at the physical layer. A geocast delivery zone is then
generated where the bit error rate (BER) is sufficiently low.

Most evidently, beamforming can be exploited to realize the
above scenario of physical-layer multicasting [5] or geocasting
[6]. It performs spatial power focusing to manipulate the
signal-to-noise ratio (SNR), and thereby the BER, to generate
a geocast delivery zone. Notably, frequency diverse array
(FDA) expands the foundation of classical phased array
(PA) angular beamforming [7] to range-angle-dependent
beamforming by varying each antenna’s carrier frequency
with small frequency offsets along the array. It originates from
radar applications, pursuing joint angle and range estimation
of targets [8] and providing range ambiguity resolution of
pulsed transmissions [9]. Nevertheless, in continuous-wave
transmission mode for communication scenarios, it enables
range-angle-dependent interference suppression and user
separation [10] – the latter being of significant interest for
physical-layer geocasting. While original linear FDA [11]
yields unbounded range-angle-coupled beampatterns that
are unfit for geocasting, range-angle-decoupling of FDA
beampatterns is enabled through nonlinear frequency offsets,
such as logarithmic FDA [12], windowed FDA [13], random
FDA [14]. However, FDA suffers – just as PA – from
beamforming’s inherent requirement for large physical arrays
to generate narrow beams, thus inhibiting its achievable
spatial precision for geocasting.

Inspired by directional modulation’s (DM’s) ability to
secure beamforming communications in sidelobe directions,
FDA has been most commonly investigated in physical-layer
security (PLS) scenarios. In an attempt to exploit FDA’s
range-angle-dependent beamforming properties to extend
angular domain secrecy of PA-DM [15] to both angle
and range, numerous hybrid FDA-DM schemes have been
proposed. Using artificial noise injection, both single-user
[16], [17] as well as broadcasting [18] and multi-beam [19]
FDA-DM variations have been investigated. Nevertheless,
these approaches fail to overcome beamforming’s large-scale
array requirements, while often coming at the additional
cost of increased design complexity. Moreover, recent work
has revealed the commonly overlooked range-time-coupling
and time-variance of FDA beampatterns [20] – an inherent
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physical limitation that is shown to inevitably jeopardize
FDA’s principal envisioned application of FDA-DM range-
domain secrecy for PLS in wireless communications [21].

While the conclusions in [20] and [21] are indisputable,
they consider only conventional FDA beamforming that relies
on electromagnetic interference of transmitted signals at radio
frequency (RF) for array radiation pattern manipulation, i.e.,
power focusing. Thus, they disregard the degree of freedom
that is frequency down-conversion from RF to baseband,
which – when applied individually on orthogonal signals
transmitted from each antenna – allows to bypass FDA’s
time-variant RF interference, while preserving its range-angle-
dependency. While also investigated for radars [22]–[24],
this approach was explored for FDA-DM communications in
[25], [26] through use of a single-antenna multiple-channel
(SAMC) receiver. However, [22], [26] rely on band-pass or
low-pass filtering for signal orthogonality, limiting frequency
offset design, while [23]–[25] fail to account for multi-symbol
transmission in their orthogonality criteria, undermining their
validity for communications. Most importantly, [25], [26]
– and derivated works – cannot restore PLS prospects for
FDA as their inherent requirement for transmitter-receiver
time-synchronization and dedicated receiver processing
implies cooperative receivers that oppose PLS ambitions.
Geocasting, on the other hand, can benefit from time-invariant
FDA. However, current SAMC approaches are insufficiently
adapted to this scenario due to their prior emphasis on
PLS. Indeed, by attempting to mimic the FDA beamforming
array factor in baseband, they inefficiently utilize orthogonal
resources for the retransmission of identical information and,
moreover, inherit its large-scale array requirements.

On the other hand, spatial data focusing (SDF) purposefully
abandons power focusing ambitions and constraints to more
efficiently address the geocasting use case [27]. In doing
so, at the cost of sacrificing power efficiency, it unlocks
an additional degree of freedom in its system design to
improve spatial focusing precision. Specifically, it performs
distributed transmission of information across an array, using
uncorrelated and orthogonal signals. Dedicated equalization
at cooperative geocasting receivers then exploits propagation
differences between the datastreams from each antenna to
induce a location-dependent symbol distortion that restricts
the spatial accessibility of transmitted information. This novel
approach allows SDF to increase focusing precision, reduce
array size, and minimize design complexity compared to
traditional beamforming-based approaches.
Time-based SDF (T-SDF) [28], which employs time resources
for orthogonal signal transmission, has first demonstrated
SDF’s improved precision in the angular domain. By
exploiting OFDM frequency resources, OFDM-based SDF
(OFDM-SDF) has achieved high precision range-angle-
based geocasting in both free space [29] and multipath
[30] scenarios. Additionally, SDF’s inherent inter-antenna
signal orthogonality and independent substream processing
make it naturally compatible with the SAMC receiver
architecture to combat FDA time-variance, without increasing

complexity over such approaches. In fact, similarly to [31],
[32] in DM context, a time-invariant SAMC approach is
used implicitly in OFDM-SDF through OFDM’s orthogonal
subcarrier nature. However, OFDM-SDF frequency offsets are
restricted to OFDM subcarriers that lack the design flexibility
of FDA for efficient manipulation of the geocast delivery zone.

By recognizing that time-invariant FDA requirements and
its intrinsic geocasting operation are naturally met by SDF
and its inherent SAMC-like receiver architecture, this paper
proposes a hybrid FDA-based SDF (FDA-SDF) system in an
attempt to shift ambition of FDA in wireless communications
from PLS to geocasting. In doing so, it additionally combines
SDF’s high spatial precision with FDA’s flexible frequency
offset design for 2-dimensional range-angle-based geocasting.
Preliminary work on FDA-SDF has been presented in [33].
However, in contrast to this work, its analysis is intuitive and
lacks analytical description of the system’s spatial properties.
More specifically, this paper’s main contribution is fourfold:
• Generalized time-invariant FDA baseband system model.

2-stage frequency up and down-conversion is introduced
for flexible baseband modeling of FDA in wireless com-
munications and universal time-invariant FDA orthogo-
nality criteria are derived for arbitrary frequency offsets
and filter waveforms.

• Dedicated SDF precoding and cooperative geocasting
receiver architecture. It is shown that SDF distributed
orthogonal transmission naturally complements time-
invariant FDA requirements and simultaneously improves
FDA focusing precision and SDF design flexibility.

• Extensive analytical description of FDA-SDF’s geograph-
ical behavior. Correct symbol recovery conditions are
derived to provide general, i.e., for arbitrary frequency
offsets, design rules and descriptions for geocast delivery
zone steering, location, uniqueness, and size.

• Novel alternating logarithmic FDA frequency offsets. By
leveraging FDA-SDF’s distinctive spatial features, they
minimize azimuthal geocast delivery zone recurrence,
guarantee its radial uniqueness, maximize azimuthal
precision, and facilitate radial precision manipulation.

Section II introduces the proposed FDA-SDF system model,
describing the time-invariant approach to FDA in Section
II-A and complementary SDF processing in Section II-B.
Geographical properties and design rules are derived in Section
III. Simulations and performance analyses are performed in
Section IV, leading to the conclusions in Section V.

II. SYSTEM MODEL

Fig. 1 shows the proposed FDA-SDF system model. At
the transmitter, it employs a uniform linear array of N
antennas, with spacing b. Antennas are indexed by n =
−N1, . . . , 0, . . . , N2, with N1, N2 ∈ N, N = N1 + N2 + 1,
and the origin is defined at antenna n = 0.1 A single-antenna

1For simplicity, Fig. 1 shows only the common FDA setup with n =
0, 1, . . . , N − 1. However, the subsequent discussion is valid for any type
of FDA, regardless of the origin location in the array.



3

Fig. 1. FDA-based spatial data focusing baseband system model

receiver is considered and its position in the array plane is
described by the polar coordinates (d, θ), with d the radial dis-
tance to the array origin and θ the azimuth angle with respect
to the array broadside direction. The proposed model consists
of distinct yet complementary FDA and SDF contributions.
They are discussed individually below.

A. Time-invariant Baseband Frequency Diverse Array

As in conventional FDA, a specific carrier frequency fn
is allocated to each antenna n. They are defined by adding
small frequency offsets ∆fn to a base carrier frequency fc,
i.e., fn = fc + ∆fn, with ∆fn � fc. However, in contrast
to a majority of conventional FDA literature that is limited
in generality by embedding explicit frequency offset design
rules in its models to capitalize on the distinct behavior
they induce, this paper avoids any assumption or restriction
on frequency offset assignment: the proposed approach is
compatible with any arbitrary set of frequency offsets ∆fn.

1) Transmitter-side Signal Processing: At its input, each
antenna n is fed with a stream of symbols xn[m], with
symbol index m ∈ N and whose nature depends on the
encompassing communication technique that incorporates the
FDA, e.g., beamforming, DM, or SDF. The symbols xn[m]
are then sequentially transmitted from each antenna through
modulation of the transmitter waveforms gtxn (t), with t the
time variable. As such, the baseband signals xn(t) to be
transmitted from each antenna n are given by

xn(t) =
∑
m

xn[m]gtxn (t−mTa), (1)

where Ta is the array period, i.e., the time to transmit a
symbol from each antenna in the array.

2) Baseband Frequency Diverse Array Channel Model:
The proposed baseband FDA approach is characterized by
a symmetric multi-frequency up and down-conversion, each
performed in 2 stages. At the transmitter, each baseband signal
xn(t) is first individually up-converted to an intermediate
frequency (IF), corresponding to the frequency offset ∆fn
assigned to their respective antennas. Collective up-conversion
using the common base carrier frequency fc then yields the
appropriate radio frequency (RF) carrier fn = fc + ∆fn
for each antenna n. Reversely, the incoming RF signal at
the receiver is first down-converted to IF using the common

base carrier frequency fc, after which down-conversion to
baseband is performed separately by each of the frequency
offsets ∆fn. As shown in Section II-A3, this multi-frequency
down-conversion at the receiver is crucial in mitigating
FDA time-variance. Additionally, given that ∆fn � fc
for FDA, the 2-stage frequency up and down-conversion
enables digital baseband-IF conversions. Although this
increases the receiver’s computational load, it reduces RF
hardware complexity and increases practical frequency offset
configuration flexibility compared to existing SAMC FDA
literature [25], [26], and allows to model the RF propagation
channel by the baseband channel impulse response (CIR), as
described below.

In the above scenario, after up-conversion by the frequency
offsets ∆fn, the corresponding IF signals transmitted from
each antenna n become xn(t)ej2π∆fnt. In free space, their
respective propagation channels are characterized by distinct
propagation delays τn, while an identical complex channel am-
plitude α can be assumed, considering close antenna spacing in
the array.2 Therefore, the baseband CIR hn(τ) that models the
RF propagation channel at the common base carrier frequency
fc for the n-th antenna is given by

hn(τ) = αδ(τ − τn)e−j2πfcτn , (2)

where τ is the delay variable and δ(·) the Dirac delta
function. The received baseband signals rv(t), after separate
down-conversion of the aggregated received IF signal by the
respective frequency offsets ∆fv , can then be written as

rv(t)=
[∑

n

(
xn(t)ej2π∆fnt

)
∗ hn(τ) + z(t)

]
e−j2π∆fvt (3a)

=
[∑

n

αxn(t− τn)ej2π∆fn(t−τn)

× e−j2πfcτn + z(t)
]
e−j2π∆fvt

(3b)

=
∑
n

αxn(t− τn)e−j2πfnτnej2π∆fnvt + zv(t), (3c)

where ∗ is the convolution operator, z(t) ∼ CN (0, σ2
z)

represents complex additive white Gaussian noise (AWGN)
with variance σ2

z , zv(t) is the noise after frequency
down-conversion by ∆fv , and ∆fnv = ∆fn−∆fv = fn−fv
is the difference between the up and down-conversion
frequency offsets. Note that carrier phase offsets are
omitted in (3a) under the assumption of transmitter-receiver
synchronization to a common time reference – achievable
in practice through satellite navigation systems such as GPS
on-board clock or time-of-flight estimation. As anticipated,
this implies cooperative receivers for time-invariant FDA – no
different from SAMC FDA architectures like [25], [26] – and
hence a geocasting scenario, ideally suited for SDF operation.

2While it is beyond the scope of this paper, an extended multipath channel
model can easily be adopted for FDA-SDF analogous to the multipath OFDM-
SDF model [30], assuming a line-of-sight channel component is guaranteed.
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3) Receiver-side Signal Processing: In the received signal
(3c) from the v-th receiver branch, while FDA’s charac-
teristic signal phases e−j2πfnτn and hence tractable range-
angle-dependent inter-antenna phase differences are preserved,
FDA’s inherent time-variance is manifested through the pres-
ence of the time-variant phases ej2π∆fnvt. However, after indi-
vidual down-conversion by the frequency offsets ∆fv , they af-
fect only the signal components xn(t), n 6= v, as ∆fnv = 0 for
identical up and down-conversion frequency offsets. As such,
multi-frequency down-conversion ensures that each transmit-
ted FDA signal component xv(t) remains time-invariant in
the respective v-th receiver branch. In contrast to RF FDA
models, demodulation then provides an additional degree of
freedom in the proposed baseband approach to isolate and
process time-invariant signal components. In particular, the
signals rv(t) are demodulated through convolution with the
receiver waveforms grxv (t), such that the demodulated signal
yv(t) in the v-th receiver branch is given by

yv(t) = rv(t) ∗ grxv (t) (4a)

=
∑
n

αe−j2πfnτn
{∑

m

xn[m]

×
[(
gtxn (t− τn −mTa)ej2π∆fnvt

)
∗ grxv (t)

]}
+ z′v(t),

(4b)

where z′v(t) is the demodulated noise.

After demodulation, the signal yv(t) is sampled according
to the array period, i.e., t = τ0 + lTa, to extract the v-th
symbol stream’s l-th received symbol yv[l]. It is free from in-
ter-symbol interference only when the transmitter and receiver
waveforms, gtxn (t) and grxv (t), ensure inter and intra-antenna
signal orthogonality, despite the time-variant phases ej2π∆fnvt

affecting their convolution in (4b). Upon sampling, this results
in the following orthogonality criterion for the transmitter and
receiver waveforms

+∞∫
−∞

gtxn
(
τ ′
)
grxv
(
(l−m)Ta−τ ′

)
ej2π∆fnvτ

′
dτ ′ = δnvδml, (5)

where δij is the Kronecker delta function for integers i and
j and a narrowband scenario, i.e., |τn − τ0| � Ta, was
assumed such that sampling offsets due to inter-antenna delay
differences are negligible. Multiple waveforms may satisfy this
requirement; in the context of FDA-SDF, a simple matched fil-
tering approach is proposed in Section II-B. The l-th received
symbol from the v-th symbol stream is then given by

yv[l] = αxv[l]e
−j2πfvτv + z′v[l], (6)

where z′v[l] is the sampled noise. Thus, the multi-frequency
down-conversion in the proposed baseband FDA approach
allows to extract at each receiver branch v the symbols trans-
mitted from the corresponding v-th FDA antenna, affected by
the desired time-invariant FDA phase shift. Further processing

can then be performed at will, according to the communication
scheme that incorporates the FDA.3

B. Spatial Data Focusing

1) Transmitter-side Precoding: SDF employs distributed
and orthogonal transmission of information from different
antennas in an array to enforce its geocasting features. There-
fore, for proper FDA-SDF operation, the FDA transmitter-side
processing from Section II-A1 is preceded by appropriate
SDF precoding. In particular, an arbitrary symbol stream s
is first remapped to N symbol substreams sn, assigned to
each corresponding antenna n. Symbol mapping should be
disjoint and exhaustive, so as to ensure that each substream
carries unique yet complemental segments of the initial sym-
bol stream. In this paper, for clarity and simplicity, this is
achieved through simple alternating and cyclic mapping of
successive symbols from s to the different substreams sn, i.e.,
sn[m] = s[mN +n]. Each substream is then transmitted from
its respective antenna in the FDA. Specifically, the FDA input
symbols xn[m] transmitted from the n-th FDA antenna in
(1) carry the information in the corresponding SDF substream
symbols sn[m], i.e.,

xn[m] = sn[m]ejϕ
steer
n = s[mN + n]ejϕ

steer
n . (7)

The steering phase ϕsteern is introduced to allow geocast
delivery zone steering towards arbitrary target locations, as
described in Section III-A.

The symbols xn[m] are then further processed as described
by the FDA model in Section II-A. For the sake of simplicity,
time-shifted orthogonal waveforms gtxn (t) = g(t − nT ), with
T = 1/B the symbol period for a symbol rate B, are adopted
as the shaping pulses in the transmitted FDA signals (1), with
a rectangular filter shape given by

g(t) =

{
1/
√
T |t| < T/2

0 |t| ≥ T/2.
(8)

The array period in (1) then becomes Ta = NT , such that the
symbols sn[m] are time-sequenced in accordance to the SDF
symbol mapping. Thus, SDF distributed transmission better
complements time-invariant FDA inter-antenna orthogonality
requirements than SAMC FDA architectures, e.g., [25],
[26] that inefficiently utilize orthogonal and frequency
resources for the retransmission of symbols carrying identical
information. As such, just as conventional FDA, their spectral
efficiency is reduced with respect to FDA-SDF by a factor
equal to the number of antennas N .4

3As a single symbol with index m = l from antenna n = v is extracted
upon sampling, the symbol index m and antenna index n unambiguously
identify both the transmitted and received symbols. Therefore, without loss
of generality, the indices l and v can be omitted in the remainder of this paper.

4Note that the time orthogonality in this work additionally avoids restric-
tions on the frequency offset configuration. As opposed to prior SDF [29],
[30] and SAMC FDA-DM [26] schemes that exploit frequency orthogonality.
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2) Receiver-side Channel Estimation & Equalization:
Given the transmitter shaping pulse (8), orthogonality
between the different received FDA signals in (4b) is
ensured for FDA-SDF by adopting the transmitter pulse’s
matched filter as the FDA receiver shaping pulse, i.e.,
grxn (t) = gtx

∗

n (−t) = g∗(−t − nT ). After the FDA
receiver-side processing from Section II-A3, cooperative
SDF geocasting receivers can then readily exploit the time-
invariant FDA phase shift on the received symbols (6). As in
[28]–[30], SDF performs channel estimation exclusively for a
designated reference channel. For FDA-SDF in particular, the
reference channel is defined to correspond to the reference
antenna n = 0 at the FDA origin. It is estimated through
traditional single-input single-output (SISO) transmission of
an unsteered preamble. Equalization of the received symbols
(6) from all antennas n is then performed using the same
unique reference channel estimation.5

The following notations are introduced to interpret this
equalization process. By assuming – without loss of gener-
ality – that the reference antenna’s carrier frequency f0 is
equal to the base carrier frequency fc, the frequency difference
between the n-th channel and the reference is given by
∆fn = fn − fc = fn − f0. Similarly, the delay difference
between the n-th channel and the reference is denoted as
∆τn = τn − τ0. With these conventions, simple zero forcing
[34] (i.e., multiplication with the inverted reference channel
estimation) yields that the received equalized symbols from
the n-th channel in FDA-SDF are given by

ŷn[m] = sn[m]ejϕ
steer
n e−j2πf0∆τne−j2π∆fnτn + ẑn[m], (9)

where ẑn[m] is the equalized noise sample. Thus, after dedi-
cated SDF channel estimation and equalization, exploiting the
FDA inter-antenna frequency offsets ∆fn and delay differ-
ences ∆τn, a residual phase shift is imposed on the received
symbols (9), unique for the symbol substream from each an-
tenna n. Its geographical properties, enabling geocasting func-
tionality, are described in Section III. The complete symbol
stream ŷ is ultimately reconstructed at the receiver by inverting
the transmitter-side symbol mapping, i.e., ŷ[mN+n] = ŷn[m].

III. GEOGRAPHICAL PROPERTIES & DESIGN RULES

Undistorted recovery of the FDA-SDF received symbols
(9) occurs only when their residual phase shift is an integer
multiple of 2π, i.e.,

ϕsteern − 2πf0∆τn − 2π∆fnτn = kn2π, kn ∈ Z. (10)

Under paraxial approximation (b� d), the delay τn and delay
difference ∆τn depend on the receiver position (d, θ):

τn =
d

c
− nb

c
sin θ, (11a)

∆τn = −nb
c

sin θ, (11b)

where c is the speed of light. Therefore, compliance to the
residual phase condition (10) exhibits a tractable dependency

5Note that FDA-SDF channel estimation and equalization thus impose no
additional cost compared to classical SISO communications.

on the receiver angle and range that can be leveraged to
describe FDA-SDF’s range-angle-based geocasting properties.

A. Steering Phases

The steering phases ϕsteern , added to the transmitted sym-
bols (7) of their respective antennas, allow to enforce com-
pliance to the residual phase condition (10) and hence cor-
rect data retrieval at an arbitrary geocasting target location
(dsteer, θsteer). After isolating the steering phase ϕsteern from
(10), its final definition is found by evaluating (11a) and (11b)
at the target coordinates (dsteer, θsteer) and substituting them
for τn and ∆τn, while omitting the integer kn as it modifies
the steering phase by multiples of 2π only. One finds

ϕsteern = 2π

[
∆fn

dsteer

c
− fn

nb

c
sin θsteer

]
. (12)

B. Geocast Delivery Zone Location(s)

Inserting the steering phase expression (12) and replacing
τn and ∆τn by their theoretical counterparts (11a) and (11b)
in the residual phase condition (10), reveals its spatial de-
pendency and allows to determine the coordinates (dn, θn),
where information transmitted from each non-reference an-
tenna n 6= 0 is perfectly received. One finds

dn(θ) ≈ dsteer +
nb

λ0

c

∆fn

[
sin θ − sin θsteer

]
− c

∆fn
kn,

(13a)

sin θn(d) ≈ sin θsteer +
λ0

nb

∆fn
c

[
d− dsteer

]
+
λ0

nb
kn,

(13b)

where it was noted that, by design, FDA frequency offsets
satisfy ∆fn � fc = f0, such that fn

c ≈
f0

c = 1
λ0

, with λ0

the reference antenna’s carrier wavelength. The expressions
(13a) and (13b) are equivalent, describing the same spatial
pattern, and reveal that the region of correct retrieval of the
n-th antenna’s symbol substream follows a linear relation in
the (d, sin θ)-plane that is periodic with a period of c

|∆fn|
and λ0

|n|b along, respectively, the d and sin θ-axis.

Perfect retrieval of the complete transmitted symbol stream
is achieved exclusively at the geographical location where
the residual phase condition (10) is satisfied for all antennas
n simultaneously. This occurs at the coordinates where the
curves (13a) (equivalently (13b)) of perfect data recovery
intersect for all non-reference antennas n 6= 0, i.e.,

d−N1
(θ) = · · · =d−1(θ)

= d1(θ) = · · · = dN2
(θ),

(14a)

sin θ−N1
(d) = · · · = sin θ−1(d)

= sin θ1(d) = · · · = sin θN2
(d).

(14b)

Around these positions, the equalized symbols (9) from all
antennas n are received with collectively negligible residual
phase shifts, generating a spatially confined region of sub-
threshold BER where transmitted information is exclusively
retrievable, i.e., the geocast delivery zone. The exact geocast
delivery zone location(s) are found as the solution(s) to
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the above systems of N − 2 equations. For N ≥ 4, they
are solved through mathematical induction.6 First, as the
induction step, the spatial periodicity of any arbitrary solution
is studied. Next, as the induction base, the solutions within a
single spatial period (the base case) are identified. From the
latter, the complete set of solutions is found by applying the
periodicity properties derived in the former.

1) Periodicity of Geocast Delivery Zone(s):
a) Radial periodicity: Considering that the residual

phase condition solutions (13a) have a distinct radial
periodicity c

|∆fn| for each antenna n, any intersection of
these curves, i.e., solution to (14a) and (14b), can only
appear at ranges coinciding with the curve (13a) of the
antenna having the largest radial periodicity. To this end,
ñ is defined as the antenna index to which the smallest
nonzero frequency offset in absolute value is allocated, i.e.,
∆fñ = arg min∆fn

{
|∆fn|, n 6= 0, ∆fn 6= 0

}
, and thus

manifesting the largest radial periodicity in (13a).

Given an arbitrary geocast delivery zone around coordinates
(dsol, θsol) as solution to (14a) and (14b), then the former
imposes that dñ(θsol) = dn(θsol), ∀n 6= 0, ñ. Further devel-
opment of this statement, after inserting (13a) for antennas ñ
and n, yields

kn
∆fn

− kñ
∆fñ

=
( n

∆fn
− ñ

∆fñ

) b

λ0

[
sin θsol − sin θsteer

]
.

(15)
A radial recurrence of this solution exists only if the above
statement is satisfied for a second pair of integers k′n and
k′ñ. Noting that the right-hand side of (15) is invariant to the
value of the integers kn, kñ, k′n, and k′ñ, this occurs only
when kn

∆fn
− kñ

∆fñ
=

k′n
∆fn

− k′ñ
∆fñ

is satisfied. By writing
k′ñ = kñ ± q and k′n = kn + pn, with q ∈ Z+

0 , pn ∈ Z0, one
finds that radial recurrences of a geocast delivery zone appear
only for frequency offsets satisfying ∆fn = ±pnq ∆fñ. Sub-
stitution of these results in (13a) reveals that the correspond-
ing solution to (14a) and (14b) is given by the coordinates
(dsol ∓ q c

∆fñ
, sin θsol) in the (d, sin θ)-plane. The following

property is so proven.

Property 1 (Radial Periodicity). Radial recurrences of an
FDA-SDF geocast delivery zone exist only for frequency offsets
∆fn = pn

q ∆fñ,
pn
q ∈ Q that can be written as rational

multiples of the smallest nonzero frequency offset in absolute
value ∆fñ, with least common denominator q ∈ Z+

0 . They are
periodic with periodicity Td = q c

|∆fñ| along the d-axis.
An FDA-SDF geocast delivery zone is unique in the radial
domain when at least one frequency offset ∆fn is an irrational
multiple of the smallest nonzero frequency offset in absolute
value ∆fñ, i.e., ∃n : ∆fn = ρn∆fñ, ρn ∈ R \Q.7

6The constraint N ≥ 4 on the number of antennas is avoided when
employing multiple frequency offsets per antenna. Curves (13a) and (13b)
then exist for each frequency offset, rather than each antenna. Given at least
4 frequency offsets, the following discussion and results are identical and
remain valid, such that there is no loss of generality in the presented approach.

7In the remainder of this paper, these two distinct categories of frequency
offset configurations are referred to as rational frequency offsets and irrational
frequency offsets, respectively.

b) Angular periodicity: Similarly to the radial
dimension, the residual phase shift condition solutions
(13b) have a distinct periodicity λ0

|n|b in the sin θ dimension
for each antenna n. As such, any intersection of these curves,
i.e., solution to (14a) and (14b), can occur only at angles
that coincide with the curve (13b) of the antenna having the
largest period along the sin θ-axis. Evidently, this is the case
for the antenna closest to the reference antenna, i.e., |n| = 1.8

Considering again the arbitrary geocast delivery zone
around the coordinates (dsol, θsol) as solution to (14a) and
(14b), then sin θ1(dsol) = sin θn(dsol), ∀n 6= 0, 1 is imposed
by the latter. After inserting (13b) for antennas 1 and n, this
expression becomes

kn
n
− k1 =

(
∆f1 −

∆fn
n

)1

c

[
dsol − dsteer

]
. (16)

An angular recurrence of this solution exists only if the above
statement is satisfied for a second pair of integers k′′n and
k′′1 . Noting that the right-hand side of (16) is invariant to the
value of the integers kn, k1, k′′n, and k′′1 , this occurs only
when kn

n −k1 =
k′′n
n −k

′′
1 is satisfied. By writing k′′1 = k1±u

and k′′n = kn + wn, with u ∈ Z+
0 , wn ∈ Z0, this condition

reduces to wn = ±nu. Integers u and wn that comply to this
expression always exist and it is invariant to the frequency
offsets ∆fn, such that angular recurrences of a geocast deliv-
ery zone cannot be mitigated through FDA frequency offset
design. Substitution of these results in (13b) reveals that the
closest recurrence of the solution (dsol, θsol) to (14a) and (14b)
is found for u = 1 at coordinates (dsol, sin θsol ± λ0

b ) in the
(d, sin θ)-plane, leading to the following property.

Property 2 (Angular Periodicity). Angular recurrences of a
geocast delivery zone for an FDA-SDF system with uniform
antenna spacing b exist for any set of frequency offsets ∆fn.
They are periodic with periodicity Tsin θ = λ0

b along the
sin θ-axis.

2) Geocast Delivery Zone(s) in Base Case: By Property 2,
the sin θ geocast delivery zone periodicity is equal to that of
the residual phase condition solution (13b) for |n| = 1, i.e.,
having the largest sin θ period. As such, identifying the geocast
delivery zones and solutions to (14a) and (14b) located on the
curve (13a) or (13b) for n = 1 and k1 = 0 suffices to find
all other geocast delivery zone locations through application of
the periodicity properties from Section III-B1. From (14a) and
(14b) one finds that such a solution satisfies sin θ1(d)|k1=0 =
sin θn(d), d1(θ)|k1=0 = dn(θ), ∀n 6= 0, 1. Substitution of,
respectively, (13b) and (13a) in the above statements yields
the following expressions for the coordinates that satisfy them

d = dsteer + c
kn

n∆f1 −∆fn

sin θ = sin θsteer +
λ0

b

∆f1kn
n∆f1 −∆fn

.
(17)

A geocast delivery zone is established only if the above coor-
dinates (17) coincide for all antennas n 6= 0, 1. Therefore, the

8For clarity, n = 1 is used in the following derivation. Identical results are
obtained when considering n = −1, if applicable.
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integers kn, ∀n 6= 0, 1 that characterize the sought solutions
should satisfy the following system of N − 3 equations

k−N1

−N1∆f1 −∆f−N1

= · · · = k−1

−∆f1 −∆f−1

=
k2

2∆f1 −∆f2
= · · · = kN2

N2∆f1 −∆fN2

.

(18)

The above expression is a system of homogeneous linear
Diophantine equations (HLDEs), each in 2 of the integer
variables kn [35]. In general, such a system is represented as
κ1

a1
= κ2

a2
= · · · = κP

aP
, P ∈ N0, with variables κ1, κ2, . . . , κP ,

of which only integer solutions are of interest, and coefficients
a1, a2, . . . , aP . The trivial solution κ1 = κ2 = · · · = κP = 0
to this problem always exists. From [35], it can be proven that
nontrivial integer solutions exist only when the coefficients
a1, a2, . . . , aP are integers. The solutions are then given
by κn = k an

gcd(a1,...,aP ) , k ∈ Z, where gcd(A) returns the
greatest common divisor of the elements in the set A. Applied
to (18) for the two identified frequency offset categories, the
above considerations yield the following results.

a) Rational Frequency Offsets: Given the definition
of a rational frequency offset configuration, i.e., ∆fn =
pn
q ∆fñ,

pn
q ∈ Q, the coefficients n∆f1 −∆fn in the system

(18) of HLDEs reduce to np1−pn. The rational nature of the
fractions pn

q implies that pn ∈ Z, such that these coefficients
are integers. By the prior considerations on HLDEs, the system
(18) then has nontrivial solutions that are given by

kn = k
np1 − pn

gcd
(
{np1 − pn

∣∣n 6= 0, 1}
) , k ∈ Z. (19)

Substitution of these results, together with the rational fre-
quency offset definition, in the coordinates (17) shows that
the geocast delivery zones on the curve (13b) for n = 1 and
k1 = 0 are located at the following coordinates

d = dsteer + q
c

∆fñ

k

D

sin θ = sin θsteer +
λ0

b

p1k

D
,

(20)

where D = gcd
(
{np1−pn

∣∣n 6= 0, 1}
)
. These solutions can be

remapped, using the periodicity Properties 1 and 2, to bound
them to a single spatial period dsteer ≤ d < dsteer + Td,
sin θsteer ≤ sin θ < sin θsteer +Tsin θ, i.e., the base case. One
finds 

d = dsteer + q
c

|∆fñ|
k′

D

sin θ = sin θsteer +
λ0

b

(p1k
′ mod D)

D
,

(21)

where k′ = 0, 1, . . . , D − 1, and (α mod β) is the modulo
operator returning the remainder after division of α by β.

b) Irrational Frequency Offsets: Given the definition of
an irrational frequency offset configuration, i.e., ∃n : ∆fn =
ρn∆fñ, ρn ∈ R \ Q, there exists at least one coefficient
n∆f1 − ∆fn in the system (18) of HLDEs that is not an
integer. Therefore, only the trivial solution k−N1 = · · · =
k−1 = k2 = · · · = kN2

= 0 exists. As a result, the only

geocast delivery zone coinciding with the curve (13b) for
n = 1 and k1 = 0, and thus within the base case’s single
spatial period, is located at the target coordinates{

d = dsteer

sin θ = sin θsteer.
(22)

3) Complete Set of Geocast Delivery Zone Locations:
Applying the periodicity Properties 1 and 2 from Section
III-B1 to the base case solutions from Section III-B2 allows
to describe the geocast delivery zone positions in the entire
(d, sin θ)-plane. By defining kd, kθ ∈ Z, one finds the
following results.

a) Rational Frequency Offsets: From the base case solu-
tions (21), all geocast delivery zone locations for an FDA-SDF
system with rational frequency offsets are found. Their coor-
dinates are given by

d = dsteer + q
c

|∆fñ|

(
k′

D
+ kd

)
sin θ = sin θsteer +

λ0

b

(
(p1k

′ mod D)

D
+ kθ

)
.

(23)

The above result should be interpreted as follows. The integer
k′ describes the position of a geocast delivery zone within the
base case’s single spatial period (or any periodic recurrence
thereof). The integers kd and kθ indicate by how many
periods, in the radial and azimuthal domain respectively, this
solution is shifted with respect to its base case equivalent.

b) Irrational Frequency Offsets: The geocast delivery
zone locations for an FDA-SDF system with irrational fre-
quency offsets are found from the corresponding base case
solution (22). They are located at the coordinates d = dsteer

sin θ = sin θsteer +
λ0

b
kθ.

(24)

Thus, as anticipated by Property 1, geocast delivery zones for
irrational frequency offsets are unique in the radial domain, in
contrast to the locations (23) for rational frequency offsets.

C. Geocast Delivery Zone Uniqueness

The solutions (23) and (24) to the perfect data retrieval
conditions (14a) and (14b) confirm the presence of a geocast
delivery zone at the desired target coordinates (dsteer, θsteer),
for k′, kd, kθ = 0. However, solutions for k′, kd, kθ 6= 0
generate spurious zones of correct data retrieval at undesired
positions and should thus be mitigated to ensure uniqueness
of the intended geocast delivery zone.

1) Rational Frequency Offsets: Given the radial dimen-
sion’s infinite character and the radially periodic nature of
geocast delivery zone locations (23) for rational frequency
offsets, radial uniqueness in this scenario cannot be guaranteed
theoretically. However, in practice, a distance dlim exists
beyond which data recovery becomes impossible – either
through excessive path loss and insufficient SNR or physical
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obstructions constraining the receiver’s position. Under this as-
sumption, radial uniqueness is ensured when only the intended
geocast delivery zone at the target coordinates (dsteer, θsteer)
exists in the range [0, dlim]. Using (23), this translates to the
condition

dsteer + q
c

|∆fñ|

(
k′

D
+ kd

)
< 0

k′

D
+ kd < 0

dlim < dsteer + q
c

|∆fñ|

(
k′

D
+ kd

)
k′

D
+ kd > 0.

(25)

Noting that
∣∣k′
D + kd

∣∣ = 1
D yields the strictest constraints,

an upper bound is found on the smallest frequency offset
∆fñ, guaranteeing radial uniqueness of an FDA-SDF geocast
delivery zone for rational frequency offsets when

|∆fñ| <
q

D
min

{
c

dsteer
,

c

dlim − dsteer

}
. (26)

Uniqueness in the azimuthal domain is ensured when all
spurious geocast delivery zones are located at imaginary
azimuthal coordinates θ ∈ C \ R. By (23), this is satisfied
when∣∣∣∣ sin θsteer +

λ0

b

(
k′′

D
+ kθ

)∣∣∣∣ > 1, ∀k′′, kθ 6= 0, (27)

where k′′ = (p1k
′ mod D) = 0, 1, . . . , D − 1. Again, the

strictest constraint is obtained for
∣∣k′′
D + kθ

∣∣ = 1
D . As such,

azimuthal uniqueness of an FDA-SDF geocast delivery zone
for rational frequency offsets is guaranteed when the antenna
spacing b satisfies the upper bound

b <
λ0

D

1

1 + | sin θsteer|
. (28)

It should be noted that, in general, the uniqueness conditions
(26) and (28) should not be satisfied simultaneously. Indeed,
the integers k′ and k′′ are not independent. Therefore, stating
that

∣∣k′
D + kd

∣∣ or
∣∣k′′
D + kθ

∣∣ = 1
D in one of the conditions (25)

or (27), fixes the value of, respectively, k′′ and k′ in the other,
which is thus not necessarily in its strictest form. Intuitively,
a spurious geocast delivery zone mitigated by satisfying
the uniqueness condition for one dimension is no longer
physically present and hence should not be considered when
defining the uniqueness condition in the other dimension.

2) Irrational Frequency Offsets: By (24), the use of
irrational frequency offsets guarantees radial geocast delivery
zone uniqueness by design. Therefore, no additional
restrictions apply to the frequency offsets ∆fn to guarantee
radial uniqueness in this scenario.

An analogous reasoning to the rational frequency offset
scenario easily shows that, for irrational frequency offsets, the

upper bound on the antenna spacing b, guaranteeing azimuthal
uniqueness of an FDA-SDF geocast delivery zone, becomes

b < λ0
1

1 + | sin θsteer|
. (29)

Upon comparison with (28), irrational frequency offsets are
noted to allow wider antenna spacing than rational frequency
offsets (and, by Section III-D below, higher azimuthal preci-
sion) without jeopardizing azimuthal uniqueness of the geocast
delivery zone.

D. Geocast Delivery Zone Size

By the above, a unique geocast delivery zone is generated
around the target coordinates (dsteer, θsteer). It is formally
defined as the geographical area around these coordinates
where the BER remains below a threshold P the that ensures
successful recovery of transmitted information. By defining
the threshold phase Φth as the phase rotation at which the
BER reaches the threshold P the , the geocast delivery zone
is described as the set of positions (d, θ) where the residual
phase shift on the received symbols (9) is bounded by Φth for
all antennas n. By introducing (11a), (11b), and (12) in the
residual phase expression (left-hand side of (10)) and noting
again that ∆fn � fc = f0 ⇒ fn

c ≈
f0

c = 1
λ0

, one finds the
condition

−Φth < 2π
nb

λ0

[
sin θ − sin θsteer

]
− 2π

∆fn
c

[
d− dsteer

]
< Φth.

(30)

By isolating sin θ or d in (30), upper and lower bounds,
respectively for the azimuthal and radial coordinates, are found
for each antenna n that describe the spatial region where the
corresponding received symbols are subject to sub-threshold
residual phase distortion, and thus yield sub-threshold BER.
They are given in (31a) and (31b) at the bottom of this page.
The overall FDA-SDF BER is below the threshold only when
the conditions (31a) and (31b) are satisfied for all antennas
n, such that the geocast delivery zone corresponds to the area
where these ranges overlap for all antennas n. Its edges are
therefore established at the intersection of the lowest upper
bound with the highest lower bound. By equaling the lower
bound for an antenna ň and upper bound for an antenna
n̂ in (31a) and (31b), one finds, respectively, the radial and

sin θsteer − λ0

|n|b
Φth
2π + sgn(n) λ0

|n|b
∆fn
c [d− dsteer] < sin θ < sin θsteer + λ0

|n|b
Φth
2π + sgn(n) λ0

|n|b
∆fn
c

[
d− dsteer

]
(31a)

dsteer − c
|∆fn|

Φth
2π + sgn(∆fn) c

|∆fn|
nb
λ0

[
sin θ − sin θsteer

]
< d < dsteer + c

|∆fn|
Φth
2π + sgn(∆fn) c

|∆fn|
nb
λ0

[
sin θ − sin θsteer

]
(31b)
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TABLE I
OVERVIEW OF ELEMENTARY FDA CONFIGURATIONS AND THEIR SPATIAL PROPERTIES FOR FDA-SDF

FDA Type Frequency Offset Values, ∆fn
Uniqueness Conditions Geocast-width

Radial*, |∆fñ| < Angular, b < Radial, |Fd(ňd, n̂d)| Angular, |Fθ(ňθ, n̂θ)|

symm. lin. [36] |n|∆f † 1
2

c
dsteer

1
2

λ0
1+| sin θsteer|

2
N−1

1
∆f

2
N−1

altern. lin. [33]

{
+n∆f n odd
−n∆f n even ‡

1
4

c
dsteer

1
4

λ0
1+| sin θsteer|

2N−3
2(N−1)(N−2)

1
∆f

2N−3
2(N−1)(N−2)

symm. log. [37] loga(|n|+ 1)∆f † n.a. λ0
1+| sin θsteer| log−1

a

(
N+1

2

)
1

∆f
2

N−1

altern. log.

{
+ loga(n + 1)∆f n odd
− loga(n + 1)∆f n even ‡

n.a. λ0
1+| sin θsteer|

2N−3

loga

(
NN−2(N−1)N−1

) 1
∆f

logNN−2(N−1)N−1
(
N(N−1)

)
* For simplicity, dlim < 2dsteer is assumed in (26)
† Central reference antenna: n = −N−1

2
, . . . , N−1

2
‡ Edge reference antenna: n = 0, 1, . . . , N − 1

azimuthal coordinates of their intersection. They are given by

d = dsteer ± c |ň|+|n̂|
sgn(ň)|n̂|∆fň−sgn(n̂)|ň|∆fn̂︸ ︷︷ ︸

Fd(ň,n̂)

Φth
2π

, (32a)

sin θ = sin θsteer ± λ0

b
|∆fň|+|∆fn̂|

sgn(∆fň)|∆fn̂|ň−sgn(∆fn̂)|∆fň|n̂︸ ︷︷ ︸
Fθ(ň,n̂)

Φth
2π

.

(32b)

The intersection of the lowest upper bound with the highest
lower bound, which determines the geocast delivery zone size,
then corresponds to the one having coordinates (32a) and (32b)
closest to the respective target coordinates dsteer and θsteer.
In the radial domain, this is the case for antennas ňd, n̂d =
arg minň,n̂ |Fd(ň, n̂)|; in the azimuthal domain, it is obtained
for antennas ňθ, n̂θ = arg minň,n̂ |Fθ(ň, n̂)|. The radial Θd

and azimuthal Θθ width of the geocast delivery zone (i.e.,
geocast-width) are then given by the radial and angular range
between the coordinates in (32a) and (32b) for the antennas
ňd, n̂d and ňθ, n̂θ, respectively. One finds

Θd = 2c
∣∣Fd(ňd, n̂d)∣∣Φth

2π
, (33a)

Θθ = asin

(
sin θsteer +

λ0

b

∣∣Fθ(ňθ, n̂θ)∣∣Φth
2π

)
− asin

(
sin θsteer − λ0

b

∣∣Fθ(ňθ, n̂θ)∣∣Φth
2π

)
.

(33b)

The phase threshold Φth depends strongly on the communi-
cation scenario. A thorough examination of its characteristics
is beyond the scope of this paper. However, analytical expres-
sions for PSK and QAM constellations in a simple AWGN
free space scenario are provided in Appendix A.

E. Discussion on Frequency Offset Configuration

It should be emphasized that the above analysis provides
a deterministic and closed-form description of FDA-SDF’s
geographical properties and design rules for any arbitrary fre-
quency offset arrangement. Nevertheless, this paper addition-
ally proposes a novel alternating logarithmic frequency offset
configuration that optimally exploits the derived properties. It
logarithmically increases the absolute value of consecutive fre-
quency offsets, while alternating their sign. More specifically,

(a) Alternating linear FDA-SDF (b) Alternating logarithmic FDA-SDF

Fig. 2. Spatial BER distribution of FDA-SDF with N = 4 antennas. White ×
marks target position.

given a base frequency offset ∆f > 0 and logarithm base
a > 1, the n-th antenna’s frequency offset is defined as

∆fn =

{
+ loga(n+ 1)∆f n odd
− loga(n+ 1)∆f n even,

(34)

for n = 0, 1, . . . , N − 1, i.e., a reference antenna at the array
edge. The irrational frequency offset nature maximizes the
geocast delivery zone’s azimuthal uniqueness interval, while
avoiding radial recurrence entirely. Additionally, the outermost
reference antenna placement yields maximal values for the
antenna index n, minimizing the parameter

∣∣Fθ(ňθ, n̂θ)∣∣ in
(33b) and thus the azimuthal geocast delivery zone width,
while the logarithm base a provides an additional degree
of freedom to manipulate its radial width by controlling the
frequency offset values in the parameter

∣∣Fd(ňd, n̂d)∣∣ of (33a).
This is illustrated in Table I, where the FDA-SDF spatial
properties are derived for the proposed alternating logarithmic
frequency offsets and compared to related configurations with
symmetrical linear [36], alternating linear [33], and symmet-
rical logarithmic [37] frequency offsets. Further performance
analyses of FDA-SDF in general and alternating logarithmic
frequency offsets in particular are given in Section IV.

IV. SIMULATIONS AND PERFORMANCE EVALUATION

The following system parameters are used to simulate
the proposed FDA-SDF scheme. The input symbol stream
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Fig. 3. Radial geocast delivery zone width, for varying number of antennas N .
Markers represent theoretical predictions (33a) for each respective FDA-SDF
frequency offset configuration.

consists of 16-QAM symbols, mapped from an arbitrary
bitstream of length 105 using traditional Gray coding. A
target range and angle of, respectively, dsteer = 100 m and
θsteer = −15° are employed for steering phase configuration.
Unless specified otherwise, the number of antennas N is
varied, while the antenna spacing is fixed at b = 0.75λ0,
satisfying the azimuthal uniqueness condition (29) for the
proposed alternating logarithmic frequency offsets. The base
carrier frequency is set to fc = f0 = 3.6 GHz, for a symbol
rate of B = 50 MHz. Frequency offsets are constructed as
in Table I, using a base frequency offset ∆f = 1 MHz and,
where applicable, a logarithm base a = 1.2, which equalizes
the radial precision of the alternating logarithmic and
alternating linear configurations for the largest investigated
array size of N = 15 antennas. The SNR is fixed to
γs = 25 dB and an uncoded BER threshold of P the = 10−3

is used for geocast delivery zone characterization.

Fig. 2 compares the spatial BER distribution of FDA-SDF
for alternating linear and alternating logarithmic frequency
offsets, both using an array of N = 4 antennas along
the y-axis and placed at the origin. In both scenarios, a
geocast delivery zone of sub-threshold BER and thus correct
data recovery is successfully generated around the target
position. As anticipated in Section III-E, it is unique only
in the latter scenario, whereas, by Table I, the former
requires decreased antenna spacing or frequency offsets
for sidelobe mitigation at the cost of increased geocast
delivery zone size.9 Nevertheless, despite the rudimentary
nature of the employed frequency offset schemes, uniqueness
conditions are straightforward whenever necessary and
geocast delivery zones are isolated and well delineated.
FDA-SDF therefore allows to significantly reduce overall
design complexity compared to conventional beamforming
FDA implementations that require complexified frequency
offset design [14] or DM processing [16]–[19] to suppress

9Analogous observations can be made for symmetrical linear and symmet-
rical logarithmic frequency offsets, as apparent from Table I.

Fig. 4. Azimuthal geocast delivery zone width, for varying number of an-
tennas N . Markers represent theoretical predictions (33b) for each respective
FDA-SDF frequency offset configuration.

sidelobes of increased power and decreased BER that
otherwise spread out from the main lobe.

Evaluation of FDA-SDF’s spatial focusing precision is
done in Figs. 3 and 4, respectively showing the radial
and azimuthal geocast-width for each of the frequency
offset schemes in Table I. They are compared with their
respective theoretical estimations (33a) and (33b), as well
as with beamforming-based FDA using the same array and
frequency offset configuration. The latter results are obtained
by transmitting identical but phase-shifted symbols using
the time-invariant FDA model proposed in Section II-A and
recombining the received symbols (6) by summation, as in
the SAMC FDA schemes [25], [26]. For a fair comparison,
noise is added such that the target position’s SNR is identical
to the FDA-SDF scenario. At other positions, by [38], [39],
the SNR’s spatial variation impacts the BER accordingly,
allowing to evaluate the beamforming-based FDA geocast
delivery zone, of which the width is shown in Figs. 3 and 4,
using the same BER threshold as for FDA-SDF.10

The results in Figs. 3 and 4 validate a good match
of simulation observations and theoretical predictions of
the FDA-SDF geocast-width and illustrate the degrees of
freedom for its manipulation. That is, the dependency of
radial precision on the frequency offset magnitude and
distribution among the antennas (as illustrated by the different
precision for each frequency offset scheme in Fig. 3) and
the improvement of angular precision by displacement of
the reference antenna n = 0 away from the array center
(as exhibited by both alternating frequency offset schemes,
outperforming their symmetrical counterparts in Fig. 4).
Additionally, the logarithm-based frequency offset schemes
exhibit a flattened radial precision evolution as a function

10Note that consideration of DM processing is omitted given the invalida-
tion of FDA-DM’s envisioned PLS benefits over conventional FDA and FDA-
SDF, either by time-variance [20], [21] or common transmitter-receiver time-
frames and cooperative receiver processing in [25], [26] and derivated works.
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of array size (controlled by the logarithm base a), allowing
them to achieve improved radial precision for smaller arrays,
compared to their linear counterparts. As anticipated in
Section III-E, the proposed alternating logarithmic frequency
offset configuration combines all of the above precision
benefits, together with optimal uniqueness conditions,
making it an ideal choice for use in FDA-SDF applications.
Additionally, note that, while beamforming-based FDA
shares the frequency offset magnitude degree of freedom for
radial precision manipulation (as apparent from Fig. 3), its
azimuthal geocast-width in Fig. 4 is invariant to changes in
the reference antenna position. As such, the latter is a novel
degree of freedom, exclusive to FDA-SDF, that provides a
low-cost and low-complexity opportunity for FDA azimuthal
precision manipulation.

Most importantly, Figs. 3 and 4 show FDA-SDF’s spatial
precision superiority over beamforming-based FDA. Indeed,
for any frequency offset configuration, the FDA-SDF geocast
delivery zone is significantly smaller in both the radial and
azimuthal dimensions than its FDA counterpart. In particular,
while not visible in the figures, a 3-antenna FDA-SDF setup
matches the radial and angular precision of its FDA coun-
terpart using, respectively, 14 and 24 antennas for alternating
linear frequency offsets, or 64 and 24 antennas for alternating
logarithmic frequency offsets. The former results affirm the
observations in [33]. The latter shows that conventional FDA’s
typically mid to large-scale arrays fail to exploit the flattened
radial precision versus array size feature of the proposed
alternating logarithmic frequency offset scheme, in contrast to
FDA-SDF’s small-scale arrays that optimally benefit from it.

V. CONCLUSION AND PERSPECTIVES

In this paper, a novel unified frequency diverse array (FDA)
and spatial data focusing (SDF) approach is proposed for
wireless physical layer geocasting, i.e., spatially confined
broadcasting. By combining SDF’s high spatial focusing pre-
cision and FDA’s flexible frequency offset design, it simulta-
neously overcomes large-scale array requirements of classical
beamforming-based FDA and OFDM-SDF’s limited degrees
of freedom for geocast delivery zone manipulation. Addition-
ally, SDF’s inherent inter-antenna signal orthogonality and
separate substream processing at the receiver are exploited to
more efficiently implement a SAMC receiver architecture for
time-invariant FDA.
A hybrid FDA-based SDF (FDA-SDF) system model is pre-
sented in free space. A comprehensive analytical derivation
provides a deterministic and closed-form description of the
proposed scheme’s geographical properties and design rules,
such as geocast delivery zone steering, location, uniqueness,
and size. Additionally, although derivations are general for
any arbitrary frequency offset configuration, novel alternating
logarithmic frequency offsets are proposed that mitigate radial
periodicity and maximize azimuthal separation of the geocast
delivery zone, while minimizing its size.
Theoretical results are supported by a simulation-based analy-
sis of the proposed scheme. It confirms FDA-SDF’s ability

to generate a unique and well delineated geocast delivery
zone with minimal frequency offset complexity and array size.
Most importantly, it demonstrates FDA-SDF’s improved spa-
tial precision over beamforming-based FDA. Using alternating
logarithmic frequency offsets, a 3-antenna FDA-SDF setup
is shown to match the radial and azimuthal precision of its
beamforming-based FDA counterpart using, respectively, 64
and 24 antennas.

APPENDIX A
RESIDUAL PHASE THRESHOLD FOR AWGN CHANNELS

In noiseless free space scenarios, the first SDF-induced
symbol errors (i.e., occurring closest to the target position with
the smallest residual phase shift) instantly push the BER above
any meaningful threshold P the . Then, the phase threshold Φth
in the geocast-width expressions (33a) and (33b) corresponds
to the smallest phase difference between any symbol in the
constellation and its decision bounds. In [30], it is given for
M-PSK and square M-QAM as, respectively,

ΦPSKth =
π

M
, (35)

ΦQAMth =
π

4
− asin

( √
M − 2√

2(
√
M − 1)

)
. (36)

The above decision bounds can be adjusted by a correction
margin to account for noise in the channel, as shown below.

From [38], a high SNR approximation for the M-PSK bit
error probability PPSKe over an AWGN channel for equiprob-
able Gray coded symbols at a phase margin Φm from their
closest decision bound is found as

PPSKe ≈ 1

log2M
Q

(√
2γs sin Φm

)
, (37)

where Q(·) is the Q-function and γs = Es
N0

is the SNR per
symbol for an average symbol energy Es and noise power
spectral density N0. By isolating the phase margin Φm from
(37) and subtracting it from the noiseless residual phase
threshold (35), the corrected M-PSK residual phase threshold
Φ̃PSKth for AWGN channels is found as

Φ̃PSKth =
π

M
− asin

(
1√
2γs

Q−1

(
log2(M)NP the

))
, (38)

where it was assumed that antennas with sub-threshold
residual phase shifts have negligible impact on the global
BER in SDF, i.e., P the = 1

N

∑
n P

PSK
e,n ≈ 1

N P
PSK
e .

Similarly, from [39], a high SNR approximation for the
bit error probability PQAMe over an AWGN channel for
equiprobable Gray coded square M-QAM symbols at a margin
distance δm from their closest decision bound is found as

PQAMe ≈
√
M − 1√

M log2

√
M
Q

(
δm√
N0/2

)
. (39)

After isolating the margin distance δm from (39) and nor-
malizing it by the decision bound distance δ =

√
3Es

2(M−1) of
an undistorted square M-QAM constellation, the normalized
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margin distance δm/δ can be introduced in the noiseless phase
threshold (36). As such, one finds that the corrected square
M-QAM residual phase threshold Φ̃QAMth for AWGN channels
is given by

Φ̃QAMth =
π

4
− asin

(√
M − 2 + δm/δ√

2(
√
M − 1)

)
, (40)

with

δm/δ =

√
M − 1

3γs
Q−1

(√
M log2

√
M√

M − 1
NP the

)
, (41)

where the impact on the global SDF BER of antennas with
sub-threshold residual phase shifts is again neglected, i.e.,
P the = 1

N

∑
n P

QAM
e,n ≈ 1

N P
QAM
e .
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