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Our goal: producing robust/credible projections of 
Antarctic contribution to future sea-level rise

AR6, IPCC (2021)

The Antarctic ice sheet is the largest and 
most uncertain potential contributor to 

future sea level rise
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‘accurate predictions of the cryosphere’s contribution to sea level require that models
1. fully characterize uncertainties in model structure, parameters, initial conditions, and boundary conditions;
2. yield simulations that fit observations within observational uncertainty.
If the first point is not satisfied, then predictive uncertainties are likely to be underestimated. If the second 
condition is not satisfied, then the distribution of model predictions is likely to be biased relative to reality.’

Two requirements for such projections: 

1. Accounting for all sources of uncertainty 
→ uncertainty quantification framework

2. Conditioning simulations on observations

Our goal: producing robust/credible projections of 
Antarctic contribution to future sea-level rise

‘Effective planning for coming sea level rise 
necessitates credible estimates accompanied by a 

robust assessment of uncertainty’
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Goals of this talk

• Describe the requirements to produce robust/credible Antarctic 
sea-level projections

• Guide you through what are, according to me*, the main 
challenges to produce such projections

• Be a support for discussion

*this presentation is based on my (short) experience as an ice-sheet modeller and may be 
strongly biased or incomplete
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1. Robust assessment of uncertainties
Propagation of uncertainty in ice-sheet model projections
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sometimes strong divergences 
between projections from 
different climate models

ice-sheet response strongly 
depends on the initial state 
(geometry, ice temperature, …)

i.e., emissions pathways 
(RCP or SSP scenarios)

all models contain parameters 
whose values are uncertain

sea-level 
contribution
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1. Robust assessment of uncertainties
.. implies that the complete probability distributions of the different sources of 

uncertainty are considered

• In theory, very simple 

• Estimate Y for many samples 
from each source of uncertainty

• In practice, very 
computationally-challenging, 
especially for large-scale and 
multi-centennial Antarctic 
simulations

→ relatively recent in ice-sheet 
modelling community

• Typically, some compromises must be made: 

• Regional/short timescale focus (e.g., Nias et al., 2019; Hill et al., 2021, Bevan et al., 2023)

• Coarse spatial resolution (e.g., Ritz et al., 2015; Pollard et al., 2016; Bulthuis et al. 2019, Coulon et al. 2021, 2023)

• Simplified approaches and/or parameterisations (e.g., Bulthuis et al. 2019, Coulon et al. 2021, 2023)

• Focus on specific sources of uncertainty (all so far)

sea-level 
contribution
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An example case: Coulon et al. (2023)

• 1000-yr Antarctic simulations under SSP scenarios
• Latin hypercube sampling (100 samples over 9 inputs)
• No emulation

Compromises/limitations:
• Coarse spatial resolution (16 km)
• Simplified approaches (PDD model, ELRA model)
• Parametric uncertainty focused on ice-climate interactions
• Only one ice-sheet model and 2 initial states

CMIP6 GCM applied 
for the climate 
forcing

MRI-ESM2-0

UKESM1-0-LL

CESM2-WACCM

IPSL-CM6A-LR

Atmospheric 
present-day 
climatology

RACMO2.3p2 

MAR3.11

Atmospheric lapse 
rate

5-12 °C/km

Refreezing 
thermally-active 
layer 

0 - 15 m

PDD ice melt factor 4 - 12 w.e. mm/PDD

PDD snow melt 
factor

0 - 6 w.e. mm/PDD

Oceanic present-
day climatology

Schmidtko et al. (2014)

ISMIP6 (Jourdain et al., 2020)

Sub-shelf melt 
parameterisation

PICO model (Reese et al., 2018)

Plume model (Lazeroms et al., 2019)

Quadratic local (Burgard et al., 2023)

ISMIP6 non-local (Jourdain et al., 2020)

ISMIP6 non local slope (Jourdain 

et al., 2020)

Effective ice-ocean 
heat flux

𝛾𝑇
∗

𝐶𝑑
1/2

Γ𝑇𝑆
𝐾
𝛾0
𝛾0

0.1 – 10 x 10-5  m/s

1 – 10 x 10-4

1 – 10 x 10-4 m/s

1 – 4 x 104  m/yr

1 – 4 x 106  m/yr
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The challenges of a UQ framework
• Computational cost to run sufficiently large ensembles (10²-10³)
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The challenges of a UQ framework
• Computational cost to run sufficiently large ensembles (10²-10³)

• Solution: use emulators (e.g., Bulthuis et al., 2019; Hill et al., 2019; Edwards et al., 2019, 2021)

• Even to feed emulators, sufficiently large ensemble of simulations is necessary (~10)

• Requires a specific design: an optimal ensemble design has 

• wide ranges of uncertainties 

• a space-filling ensemble design

VS

maximin Latin 
Hypercube 

grid (factorial) 
design
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2. Conditioning simulations on observations

1. Robust assessment of uncertainties: the complete probability distributions of the 
different sources of uncertainty are considered

PROBLEM: the PDFs of the sources of uncertainty are not always known…
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2. Conditioning simulations on observations

1. Robust assessment of uncertainties: the complete probability distributions of the 
different sources of uncertainty are considered

PROBLEM: the PDFs of the sources of uncertainty are not always known…

After an initial guess,
approximate the PDFs of the 

different sources of uncertainty 
according to how well the 
parameter space matches 

observations

STEP 1: ‘guess’ the PDFs STEP 2: calibrate

CALIBRATION

prior posterior

→ Next step in a UQ framework

sea-level
contribution
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Two alternative approaches to calibrate projections
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Lowry et al. (2021)

Edwards et al. (2019)

HISTORY MATCHING
rules out inadequate values of the 

parameters (i.e., ensemble members judged 
too dissimilar to observations)

Threshold for implausibilility

uncalibrated

calibrated
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Two alternative approaches to calibrate projections

Lowry et al. (2021)

Edwards et al. (2019)

HISTORY MATCHING
rules out inadequate values of the 

parameters (i.e., ensemble members judged 
too dissimilar to observations)

BAYESIAN CALIBRATION
weights ensemble members according to 

their distance from observations

𝑃(𝑌|𝑂) ∝ 𝑃 𝑂 𝑌 𝑃(𝑌)

Nias et al. (2019)

Threshold for implausibilility

uncalibrated

calibrated

posterior Likelihood function

BAYES’ THEOREM: 

prior
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An example case: Coulon et al. (2023)
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posterior
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BAYES’ THEOREM: 

10



An example case: Coulon et al. (2023)

𝑃(𝑌|𝑂) ∝ 𝑃 𝑂 𝑌 𝑃(𝑌)

posterior

prior

Likelihood function

BAYES’ THEOREM: 

Uniform prior probability distributions 
of the uncertain input parameters

10



An example case: Coulon et al. (2023)

𝑃(𝑌|𝑂) ∝ 𝑃 𝑂 𝑌 𝑃(𝑌)

posterior

prior

Likelihood function

BAYES’ THEOREM: 

WAIS 
(Gt/yr)

EAIS 
(Gt/yr)

Peninsula 
(Gt/yr)

1992 − 1996 −37 ± 19 −27 ± 33 −7 ± 11

1997 − 2001 −42 ± 19 21 ± 32 2 ± 11

2002 − 2006 −64 ± 20 21 ± 34 −20 ± 11

2007 − 2011 −129 ± 23 19 ± 36 −21 ± 12

Data used for the calibration: rates of ice sheet mass change 
(IMBIE – Otosaka et al., 2023)

Uniform prior probability distributions 
of the uncertain input parameters

Observational constraints
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𝑠𝑗 = exp −
1

2


𝑖=1

𝑁obs
mod𝑖

𝑗
− obs𝑖
𝜎𝑖

2

with 𝜎𝑖
2 = 𝜎𝑖

𝑜𝑏𝑠 2
+ 𝜎𝑖

𝑚𝑜𝑑 2

𝑤𝑗 =
𝑠𝑗
σ𝑠𝑗
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posterior

prior

Likelihood function

BAYES’ THEOREM: 

WAIS 
(Gt/yr)

EAIS 
(Gt/yr)

Peninsula 
(Gt/yr)

1992 − 1996 −37 ± 19 −27 ± 33 −7 ± 11

1997 − 2001 −42 ± 19 21 ± 32 2 ± 11

2002 − 2006 −64 ± 20 21 ± 34 −20 ± 11

2007 − 2011 −129 ± 23 19 ± 36 −21 ± 12

Data used for the calibration: rates of ice sheet mass change 
(IMBIE – Otosaka et al., 2023)

Uniform prior probability distributions 
of the uncertain input parameters

Observational constraints

Gaussian likelihood function

Discrepancy variance

similar to, e.g., Nias et al. (2019), Bevan et al. (2023)

𝜎𝑖
𝑚𝑜𝑑 = 8𝜎𝑖

𝑜𝑏𝑠
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Calibrating allows to reduce the spread in ice-sheet response

Nias et al. (2019)

Coulon et al. (2023)
HINDSCASTS
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Nias et al. (2019)

Coulon et al. (2023)

Lowry et al. (2021)

Bevan et al. (2023)

Calibrating allows to reduce the spread in ice-sheet response

PROJECTIONS

posterior

prior

2100 2300 3000
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PROBLEM: reproducing the past is difficult!

initMIP-Antarctica ctrl experiment
Seroussi et al. (2019)

One of the culprits: the initialisation
• Small mass balance signal over the historical period
• Requires limited model drift/noise

Some additional challenges/questions when 
producing historical hindcasts: 

• How to initialise an ice-sheet model for a past 
unknown state?

• What forcing to use for the hindcasts

• One single forcing as the ‘truth’, if yes, which one?

• Forcing from several climate models and include in 
calibration?

An example case: Coulon et al. (2023)

NorESM1-M (CMIP5)

Transient inverse 
simulation seeking 
to match observed
surface elevation.
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Other challenges of calibration… 

• A simulation may be evaluated as well-matching observations ‘for the 
wrong reasons’, i.e., it compensates for

• some drift from the initialisation

• biases in imposed climate forcing

→ assess the evolution of the sources of mass change

• Precise satellite data only available for short modern periods
• Modern conditions may not reflect the future ones, 

i.e., simulations that do not match observations may yet better perform at 
reproducing the future

→ ensemble members that do not match the historical trends should not 
be discarded too strictly

• We may be missing something
• Simulations may reproduce observations but lack accounting for processes 

that may be triggered in the future (e.g., MICI, …)

15
→ Avoid overfitting!



CONCLUSIONS
• Robust Antarctic projections should ideally

1. Include as many sources of uncertainty as possible in a probabilistic 
framework

2. Calibrate the simulations with observational constraints

• This is quite challenging: 
• Computation time, ensemble design, initialisation, historical forcing, …

• We are making progress: AIS projections are increasingly
• evaluated or calibrated with observations

• designed to quantify uncertainties
• Model intercomparison projects
• Statistical emulation
• Large ensembles with space-filling PPE

• Next step/challenge: 
multi-model PPE starting in the past
• ISMIP7
• PROTECT
• … 16
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CONCLUSIONS
• Robust Antarctic projections should ideally

1. Include as many sources of uncertainty as possible in a probabilistic 
framework

2. Calibrate the simulations with observational constraints

• This is quite challenging: 
• Computation time, ensemble design, initialisation, historical forcing, …

• We are making progress: AIS projections are increasingly
• evaluated or calibrated with observations

• designed to quantify uncertainties
• Model intercomparison projects
• Statistical emulation
• Large ensembles with space-filling PPE

• Next step/challenge: 
multi-model PPE starting in the past
• ISMIP7
• PROTECT
• …

‘We propose for the future a ‘grand 
ensemble’, designed across multiple, 

diverse ice-sheet models, that 
simultaneously and systematically samples 

parameters, structures, boundary 
conditions and initial conditions. Co-

ordinated design would enable multi-model 
emulation—a statistically rigorous method 
for interpreting and combining different 

model projections—to estimate probability 
distributions that account for structural 
uncertainties across multiple models.’

Edwards et al. (2019) 16



Thank you for your attention!



ADDITIONAL SLIDES



• divides the sample space of each variable 
into n evenly spaced regions 

• spreads points efficiently throughout the 
input space
→ far better for building emulators

• does not require too many simulations (in 
contrast to, e.g., Monte Carlo sampling)

• Cannot be changed once defined

• fixed values of each parameter are 
chosen and sampled in every 
combination

• Not a good coverage of input space

• Easy to isolate the effect of a process 
and understand its influence

→ Is UQ compatible/complementary with process understanding? 

VS

The challenges of a UQ framework

maximin Latin Hypercube grid (factorial) design



What data can we use for calibration ?

• Paleo-constraints
• large variety of observational 

constraints (e.g., AntICE2)

• sparse data in both time and space

• covering periods of significant 
ice-sheet changes

• Precise satellite data over the 
past decades
• e.g., surface elevation change, 

surface velocities, mass change

• very short time period…

• … with limited changes 
(non-linear changes, e.g., MISI and 
MICI, currently not observed)

avoid use of observational data
that have been used for the initialisation!

Edwards et al. (2019)

Bevan et al. (2023)
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1950-2014 hindcasts with Kori
• Initial state in year 1950 

(CLIM1995-2014 + aNorESM1-M)

• Transient inverse simulation following 
Pollard&DeConto (2012) and Bernales et al. (2017)

• Basal sliding coefficients under grounded 
ice and sub-shelf melt rates under 
floating ice obtained by solving an 
inverse problem seeking to match 
observed surface elevation.

• Full model physics and freely moving 
grounding lines

• …until reaching a steady-state

• 10-year relaxation to limit shock 
caused by transition from balance 
sub-shelf melt rates to melt rates 
derived from a parameterisation

• Historical run using anomalies derived 
from CMIP5 NorESM1-M

An example case: Coulon et al. (2023)



1950-2014 hindcasts with Kori
• Initial state in year 1950 

(CLIM1995-2014 + aNorESM1-M)

• Transient inverse simulation following 
Pollard&DeConto (2012) and Bernales et al. (2017)

• Basal sliding coefficients under grounded 
ice and sub-shelf melt rates under 
floating ice obtained by solving an 
inverse problem seeking to match 
observed surface elevation.

• Full model physics and freely moving 
grounding lines

• …until reaching a steady-state

• 10-year relaxation to limit shock 
caused by transition from balance 
sub-shelf melt rates to melt rates 
derived from a parameterisation

• Historical run using anomalies derived 
from CMIP5 NorESM1-M

An example case: Coulon et al. (2023)

Validation of our hindcasts with observational
estimates not used in the calibration



The importance of accounting for structural error
Any type of calibration should incorporate both observational and model errors
→ models are imperfect
→ even the best simulations would not be expected to match the observations perfectly

Edwards et al. (2019)

𝑠𝑗 = exp −
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2
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Discrepancy variance



𝑠𝑗 = exp −
1

2


𝑖=1
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𝑗
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𝜎𝑖

2

𝜎𝑖
2 = 𝜎𝑖

𝑜𝑏𝑠 2
+ 𝝈𝒊

𝒎𝒐𝒅 2

Problem: arbitrary choice to be made.. Nias et al. (2019)

Bevan et al. (2023)

The importance of accounting for structural error
Any type of calibration should incorporate both observational and model errors
→ models are imperfect
→ even the best simulations would not be expected to match the observations perfectly
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