If near-surface warming exceeds +7.5°C, the **atmosphere** will **shift** from a **mitigating** to an **amplifying** factor of **Antarctic mass loss**

Disentangling the drivers of future Antarctic ice loss with a historically-calibrated ice-sheet model

OR What can the past decades tell us about future Antarctic ice loss?

Why?

- Current Antarctic ice loss is mainly driven by the ocean, but its future evolution remains uncertain.
- Under a warming climate, we may expect an increase in competing processes

sub-shelf melt

snow accumulation surface runoff

What will be the balance between these competing processes and their influence on the evolution of the Antarctic ice sheet in the future ?

How?

- We use the ice-sheet model **Kori** to run an **ensemble of 100 simulations** that covers **uncertainties in ice-ocean and ice-atmosphere interactions**.
- We perform a **Bayesian calibration** using **satellite-based estimates** of **regional mass balance** over the historical period.
- We then extend the calibrated ensemble to the end of the millennium using projections from a subset of CMIP6 climate models under low and high emissions scenarios.

CALIBRATION OF THE ENSEMBLE

Data used for the calibration: rates of ice sheet mass change (IMBIE – Otosaka et al., 2023)			
	WAIS (Gt/yr)	EAIS (Gt/yr)	Peninsula (Gt/yr)
1992 — 1996	-37 ± 19	-27 ± 33	-7 ± 11
1997 — 2001	-42 ± 19	21 ± 32	2 ± 11
2002 - 2006	-64 ± 20	21 ± 34	-20 ± 11

 $2007 - 2011 \qquad -129 \pm 23 \qquad 19 \pm 36 \qquad -21 \pm 12$

Calibrating allows to reduce the spread in ice-sheet response.

/ The calibrated ensemble reproduces the historical trends in good agreement with observations

OBSERVED - 2003-2019

[From Smith et al., 2020]

EVOLUTION OF THE CALIBRATED ENSEMBLE

I. Short-term Antarctic ice loss is driven by the ocean, triggering significant retreat in West Antarctica, even under limited warming.

MODELLED - 2000-2015

Bayesian calibrated mean

- II. Acceleration of ice loss in conjunction with a decrease in surface mass balance
- III. Sub-shelf melt decreases and mass loss becomes dominated by the atmosphere

+7.5°C regional warming wa

ULB

Violaine Coulon, Ann Kristin Klose, Christoph Kittel, Tamsin Edwards, Fiona Turner, Ricarda Winkelmann, and Frank Pattyn

