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Abstract

This paper considers variable annuity contracts embedded with guaranteed minimum
accumulation benefit (GMAB) riders when policyholder’s proceeds are taxed upon early
surrender or maturity. These contracts promise the return of the premium paid by the
policyholder, or a higher rolled-up value, at the end of the investment period. A partial
differential equation valuation framework which exploits the numerical method of lines,
is used to determine fair fees that render the policyholder and insurer breakeven. Two
taxation regimes are considered; one where capital gains are allowed to offset losses and
a second where gains do not offset losses. Most insurance providers highlight the tax-
deferred features of variable annuity contracts. We show that the regime under which
the insured is taxed significantly impacts prices. If losses are allowed to offset gains then
this enhances the market, increasing the policyholder’s willingness to participate in the
market compared to the case when losses are not allowed to offset gains. With fair fees
from the policyholder’s perspective, we show that the net profit is generally positive for
insurance companies offering the contract as a naked option without any hedge. We also
show how investment policy, as reflected in the Sharpe ratio, impacts and interacts with
policyholder persistency.
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1 Introduction and Motivation

Variable annuities (VAs) are notoriously popular in the US where the net asset value is
approximately $2.08 trillion as of June 2021 (Insured Retirement Institute, 2022). Conversely,
there is a very thin market for VAs in Australia and Europe.1 The VA market is relatively
immature in Australia.2 In Europe, the VAs’ market was worth 188 billion in 2010 (EIOPA,
2011). However, after the Global Financial Crisis, their popularity decreased and various
life insurers stopped offering such contracts.3 VAs are among the few assets which grow
tax-deferred within the US and Australia.4 Indeed, investors willing to save more than the
guaranteed pension employer contributions can invest in a VA, gaining exposure to the equity
markets, profiting from a tax-deferred investment to then annuitize the account value upon
retirement (Stanley, 2021).

VAs offer an opportunity to participate in the equity market while providing minimum
guarantees in case of poor market performance. We focus on GMABs which promise the return
of the premium payment, or a higher rolled-up value at the end of the accumulation period
of the contract.5 The policyholder can surrender their contract anytime prior to maturity,
incorporating often underestimated lapse risk. This is the risk that policyholders exercise
their surrender options at a different rate than assumed at inception of the contract. Indeed,
Moody’s Investor Service (2013) highlights that underpricing lapse risk leads to significant
write-downs and earnings charges for insurers.

Taxation levels are known to affect household financial behavior, yet few studies focus
on the effect of institutional settings on the demand of insurance products including variable
annuities. All proceeds for the policyholder, be it at maturity or surrender, are assumed to be
taxed creating a valuation wedge between the insurer and policyholder. We study the effect
of three taxation arrangements: no tax, losses offset (or not) other capital gains on variable
annuities. We aim to identify the extent to which taxation structures affect the demand for
VAs and whether this might explain the lower popularity of such contracts. We find that
allowing for losses to offset gains increases policyholder values and fees they are willing to pay
for the contract, whereas the no offset case decreases the value and hence fee. We find low
to no demand for some contract specifications. Yet, when fair fees from the policyholder’s
perspective are applied to the VA contracts, insurer’s net average profit is positive in almost

1We acknowledge that besides tax frictions there are unique factors in each market that might render supply
of these products difficult. To name a few, in Germany, VA-type products are not popular due to a lack of
fair value accounting (Russ and Kling, 2006). In Belgium, life insurance products with guarantees are liable
to offer a minimum return guarantee, updated yearly by the Belgian Financial Market Authority, adding an
additional layer of complexity and variability to any life insurance offering (FSMA, 2023).

2There are only a few notable players which includes AMP Financial Services, BT Financial Group and
MLC (Vassallo et al., 2016).

3For instance, Prudential’s GMAB offering Pru Flexible retirement has been closed for business since 2018
(Prudential UK, 2018).

4Both countries have a high share of private occupational or private pension savings to finance retirement.
The Australian superannuation system, similar to 401(k) plans, is valued at $3 trillion as of December 2019
and is projected to increase to $3.5 trillion by 2020 (The Association of Superannuation Funds of Australia
Limited, 2020). Maximizing their retirement savings is a high stakes problem in both countries.

5There are various types of guarantees embedded in variable annuity contracts and these can be classified
into two broad categories namely; guaranteed minimum living benefits (GMLBs) and guaranteed minimum
death benefits (GMDBs). GMLBs can be further divided into four subcategories as follows: guaranteed
minimum accumulation benefits (GMABs), guaranteed minimum income benefits (GMIBs) and guaranteed
minimum withdrawal benefits (GMWBs). A GMIB guarantees an income stream upon maturity of a GMAB
for a given term if the policyholder chooses to annuitize. A GMWB guarantees a certain level of withdrawals
during the life of the contract.
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all taxation settings and median profit is positive in all taxation settings, and are particularly
affected by financial market parameters driving the dynamics of the underlying fund.

The bulk of existing literature has focused on risk-neutral valuation of VA contracts us-
ing a variety of techniques without considering income and wealth tax. Bauer et al. (2008);
Bacinello et al. (2011) and Kélani and Quittard-Pinon (2017) provide universal pricing frame-
works for various riders embedded in VA contracts when the underlying fund dynamics evolve
under the influence of geometric Brownian motion (GBM) and Lévy markets, respectively.
Incorporating a surrender option is a recent development that addresses the underpricing of
lapse risk.6 Bernard et al. (2014) note that it can always be optimal for the policyholder
to surrender the contract anytime prior to maturity if the underlying fund value exceeds a
certain threshold. As a means of disincentivizing early surrender, the authors consider an ex-
ponentially decaying surrender charge and use numerical integration techniques to determine
optimal surrender boundaries. Such a penalty is needed as the possibility to lapse renders
the product more profitable for the policyholder at the expense of the insurer (Piscopo and
Rüede, 2018).7 Various authors have since extended the framework in Bernard et al. (2014)
to incorporate realistic market dynamics and computationally efficient methods.8 These val-
uation frameworks determine fees which lie much higher than those observed in the market
partly because taxes are not considered. Our general setting, considering two tax regimes,
can be simplified to assess the classical case in the literature where taxes are not considered.

However, it is well known that taxes affect household financial behavior. Souleles (1999);
Johnson et al. (2006) and Parker (1999) show that US households’ consumption is significantly
affected by income tax refunds as well as changes in social security taxes, covering old age
survivor and disability insurance (OASDI) and health insurance (DI), respectively. These
findings contradict classical life-cycle theory as these tax-related cash-flows are expected and
considered in their optimal decision making. Taxes also influence how to finance savings.
Multiple studies show that taxes should affect portfolio allocation and asset holding in tax-
deferred accounts.9 However, as highlighted in Poterba (2002), little attention has been paid
to the effect of institutional setting taxation on the demand of insurance products. The few
studies focusing on this, Gruber and Poterba (1994); Gentry and Milano (1998) and Gentry
and Rothschild (2010), note that tax incentives enhance the demand of health insurance
for self-employed, variable annuities and life annuities, respectively. Similarly, Horneff et al.
(2015) show that purchasing VAs embedded with GMWB riders would increase when taxes
are deferred, enhancing the welfare of retirees.

Taxation effects have been highlighted as possible explanation to the mismatch between
theoretical and empirical values of variable annuities (Milevsky and Panyagometh, 2001;

6Bauer et al. (2017) review the state of affairs with regards to the theoretical and empirical insights of
policyholder behavior in variable annuities, including lapse risk.

7Others strive to avoid policyholder’s surrender altogether by considering state-dependent fees, that is, fees
that are paid when the account value is below a certain threshold (MacKay et al., 2017; Moenig and Zhu, 2018;
Bernard and Moenig, 2019). Preliminary research indicates that for a one-year maturity it might still make
the product profitable but the full effect of state-dependent fees on hedging must be investigated further in
depth (Delong, 2014).

8Examples are Ignatieva et al. (2016) who provide a fast and efficient framework for valuing guaranteed
minimum benefits using the Fourier space time-stepping algorithm and Kang and Ziveyi (2018) who incorporate
stochastic volatility and stochastic interest rates and solve the pricing with surrender resulting free-boundary
problem using the method of lines.

9See Black (1980) and Tepper (1981) for their seminal work or Fischer and Gallmeyer (2016) for a recent
review of the extensions to the Tepper-Black model. Chen et al. (2019) show that life insurance contracts with
guarantees contracts lead to a higher expected utility level than traditional long positions in stocks when tax
incentives are considered.
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Brown and Poterba, 2006). Indeed, Moenig and Bauer (2015) resolve this partially by noting
that incorporating taxation in the risk-neutral valuation of GMWB riders yields fees that
closely match empirically observed values. In a subsequent paper, Bauer and Moenig (2023)
find that providers can attach free death benefit riders to guaranteed minimum benefits as a
strategy to disincentivize early surrender when income and capital gains taxation are consid-
ered. Ulm (2018) also highlight that, for the same taxation regime, the timing of tax affects
VA policyholder’s value, with taxation at maturity being more advantageous than taxation
whenever proceeds are earned. In the same vein, this paper examines the impact of taxation
on the optimal surrender boundaries for a GMAB when the policyholder behaves rationally
with respect to the post-tax value of the contract and we find that the presence of taxation
drives a substantial wedge between policyholder and insurer valuations.

These recent findings indicate that individuals might behave rationally with respect to
their aftertax benefits. However, a fruitful strand of literature indicates that households do
not behave rationally with respect to their financial planning and accumulation of retirement
savings or retirement income product purchase, and that this may be due to lack of financial
literacy (Lusardi and Mitchell, 2011, 2014; Bateman et al., 2018) or limited opportunities
for the current generation to engage in social learning (Bernheim, 2002). However, the same
literature on financial literacy indicates that high-income individuals and households score
higher in financial literacy and numeracy measures, and this holds across most developed
countries (Lusardi and Mitchell, 2011). This also translates to complex product ownership10

and better financial decision making (Agnew, 2006). Since VA ownership is more prevalent
in high-income households (Brown and Poterba, 2006), we focus on high-income individuals
marginal rate of taxation.

The remainder of the paper is structured as follows: Section 2 presents the partial differ-
ential valuation problem to be solved with the aid of the method of lines algorithm. Section
3 analyzes the effect of the tax treatments (no tax, offset and no offset) on insurer liabilities
and policyholder contract values. A study of surrender is also performed. Sensitivities to
the main financial market parameters are presented in Section 4. Finally, Section 5 analyzes
the profit and loss statements of these products under the various tax regimes considered to
assess the impact of the moneyness and tax. Concluding remarks are presented in Section 6.

2 Model and Valuation Approach

In this section we provide the valuation framework for a VA contract embedded with a GMAB.
We utilize a partial differential equation approach which is solved with the aid of a fast and
accurate method of lines algorithm.

2.1 VA embedded with a GMAB

A Guaranteed Minimum Accumulation Benefit (GMAB) rider discussed in this paper involves
a policyholder entering into a VA contract by investing an initial amount x0 into a mutual
fund. Upon maturity of the contract, the policyholder is promised the greater of the minimum
guarantee on the premium that is determined by a fixed continuously compounded guarantee

10Indeed Poterba and Samwick (2003) indicate that households share of tax-advantaged assets increase with
marginal income tax rate. Similarly, Inkmann et al. (2010) find that annuity ownership in the UK increases with
financial wealth. These households are also more likely to seek financial advice (Finke et al., 2011; Hackethal
et al., 2012; Calcagno and Monticone, 2015) and hence benefit from tax management (see e.g. Hackethal et al.
(2012) for Germany and Cici et al. (2017) for the US.
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growth rate, δ, G(δ) = x0e
δT , and the fund value. The growh rate, commonly known as

“roll-up”, is typically applied to avoid diluting the value of the insurance feature as the years
pass by. This is of special relevance for long maturity contracts such as VAs embedded with
GMAB.11 Due to no-arbitrage, we require that δ ≤ r. The existence of fair fees may impose
an even stronger constraint on δ.

In order to finance management, guarantee and transaction costs associated with providing
the contract, we assume that the insurer charges a continuously compounded fee at rate q
which is deducted as a percentage of the fund. We suppose that the underlying fund (Sν)12

follows a standard geometric Brownian motion (GBM)13 under the risk-neutral measure such
that dSν = rSνdν+σSνdWν . Here, r is the risk-free interest rate and σ is the volatility of the
underlying fund. The investment component of the VA (xν) can be expressed as xν = e−qνSν
where q is the continuously compounded management fee levied on the fund. Applying Ito’s
Lemma to the process xν yields the following dynamics:

dxν = (r − q)xνdν + σxνdWν . (1)

Upon maturity of the contract, the payoff of the policyholder can be represented as

h(xT , T ) = [max(G(δ), xT )− x0 − C0]+ (2)

= [ [G(δ)− xT ]+︸ ︷︷ ︸
capital gain on guarantee

+ xT − x0 − C0︸ ︷︷ ︸
capital gain on fund, net of all fees

]+ (3)

where , [z]+ = max (z, 0) with x0 being the initial value of the investment account. All other
costs other than management fees for being invested in the VA contract are captured through
C0.14 This cost is deductible for tax purposes only at maturity or surrender. This aligns with
how tax is treated in Australia as all net losses can be carried forward to later income years
(Australian Taxation Office, 2021). As income is only received upon surrender or maturity, it
is reasonable to assume that C0 is deducted at that moment.

We assume that the tax-deductible upfront costs C0 do not include any commissions to
third parties. That is, we assume that any commission paid to intermediaries is either borne
by the insurer or not deductible for tax purposes if borne by the insured as it relates to
separate services, such as the provision of financial advice. If commissions are considered on
top of C0, it would change the value to the policyholder but not the insurer liability. This is
easily accommodated within our framework by solving for policyholder value equals

x0 + C0 + commissions

when determining fair fees.
We assume two tax treatments for losses. First, we assume that the taxable income cannot

be negative in this case because capital losses incurred on the variable annuity account cannot
be offset against other income to reduce total taxes paid. This is in line with the approach

11Most papers on GMAB/GMMB in the literature do not model the roll-up. For instance Delong (2014);
Moenig and Bauer (2015); Moenig and Zhu (2018); MacKay et al. (2017); Bernard and Moenig (2019) all study
return-on-premium, that is δ = 0.

12We reserve the use of t for the time to maturity and τ for the tax rate. Therefore, we use ν to denote the
time elapsed since the inception of contract.

13We use GBM despite its pitfalls, such as the underestimation of the tails of the asset return distribution.
However, an equivalent analysis would naturally follow with the use of sophisticated modelling frameworks.

14For instance, for the Australian MyNorth Investment product, these fees appear under the name “additional
advice fees”, see page 19 of AMP (2020).
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in Moenig and Bauer (2015) in which there are no offsetting investments and capital losses
are not incurred in the GMWB product. The case when losses offset gains is presented as an
extension that reflects the tax treatment in Australia.

In addition to this, the GMAB contract permits the policyholder to surrender early. Pol-
icyholders are not eligible for the guarantee if they surrender early (Kang and Ziveyi, 2018).
If the policyholder surrenders the contract at time ν from the inception of the contract, the
insurer will pay γνxν from the investment account. Here, (1− γν) is charged as a percentage
of the current fund value. In the event of early surrender at time ν, the taxable income will
thus be

[γνxν − x0 − C0]+. (4)

In what follows, we will assume an exponentially decreasing surrender fee structure such
that γv = e−κ(T−v). Let up(x, ν) be the value of the investment account to the policyholder
where, as above, x represents the fund value and the time elapsed since the inception of
the contract is ν. Therefore the governing partial differential equation is the Black-Scholes
equation that can be represented as:

1

2
σ2x2upxx + (r − q) · xupx − rup − u

p
t = 0. (5)

Note that we have applied the transformation t = T − ν where t represents the time to
maturity on the contract. We consider taxes on the boundary condition of the policyholder’s
valuation function, where the policyholder elects to surrender or receives the final payout from
the GMAB contract. Detailed derivations have been relegated to Appendix A. In order to
obtain the contract value from the policyholder’s perspective, Equation (5) is solved subject
to the following boundary conditions:

up(x, 0) = max (x,G(δ))− τ
[

max (x,G(δ))− x0 − C0

]
+
, (6)

up(s(t), t) = γT−ts(t)− τ
[
(s(t)γT−t − x0 − C0]+, (7)

up(0, t) = (x0e
δT − τ [x0e

δT − x0 − C0]+)e−rt, (8)

upx(s(t), t) = γT−t − τγT−tI
{

(s(t)γT−t − x0 − C0) > 0
}
, (9)

where γT−t is the proportion that the policyholder is allowed to keep subsequent to sur-
render, x0 is the initial fund value (that is, the ‘premium’), τ is the tax rate, G(δ) is the
guarantee amount at maturity and s(t) is the minimum fund value to trigger surrender, given
that there are still t years to maturity. The free boundary, s(t), must be computed along
with the valuation solution u(x, t). The first two boundary conditions, Equations (6) and
(7), represent the post-tax payoff at maturity or upon surrender respectively, which occurs
for rational agents when the fund value x exceeds s(t). Equation (8) is the present value of
the taxable income at maturity when the fund value is zero as given by Equation (2). In
that case, the guarantee is triggered and there is no incentive for the policyholder to leave
the contract early.15 Hence, in this case the guarantee is paid with certainty and the payoff is
deterministic. The final boundary condition, Equation (9), enforces the continuity of ux at the
boundary x = s(t). If capital losses are allowed to offset gains, as is the case for nonqualified
plans in the US (IRS, 2016) and Australian variable annuities, we replace

[
. . .
]
+

by
[
. . .
]

in
the boundary conditions (6), (7), (8) and (9).

15This scenario is impossible in practice, however the boundary condition is necessary for a well-posed
problem.
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Insurer’s perspective
As highlighted above, tax is a friction that distorts the valuation of the contract. This

yields different results for the policyholder and insurer. The government receives a proportion
of the payout, either at surrender or maturity, creating a gap between the value for the
policyholder and the insurer’s liabilities. To obtain the value of the contract from the insurer’s
perspective, henceforth to be referred to as the insurer’s liabilities, the partial differential
equation (5) must be solved subject to boundary conditions which reflect the total before tax
payments the insurer must make to the policyholder. The boundary conditions are equal to
those presented in Equations (6) - (9) when τ = 0. In this case, the initial net profit of the
insurer is x0 +C0− ui, where x0 is the initial premium paid by the policyholder and ui is the
value of the insurer’s liabilitites.

Fair fee
In presence of taxation, the fee that renders the contract fair for the policyholder might

differ from the insurer’s fee. However, when τ = 0, the fair fees obtained by solving the PDE
(5) subject to either the policyholder or insurer boundary conditions will be the same. We
denote the policyholder fair fee qp as:

qp = min {q : x0 + C0 = up(x0, T )}. (10)

This is the minimum fee rate such that the value of the contract at inception, when the time
to maturity t is T , is equal to the initial premium paid by the policyholder. In other words,
the net profit to the policyholder is zero. Similarly, the insurer perspective fair fee rate qi can
be determined implicitly as

qi = min {q : x0 + C0 = ui(x0, T )}. (11)

It is the smallest fee rate such that at inception of the contract when t = T , the liabilities of
the insurer are equal to the initial amount they receive from the policyholder. This sets the
net profit of the insurer to be zero.

2.2 Implementation and calibration

In order to solve Equation (5) subject to the initial and boundary conditions (6) - (9), we
utilize the numerical method of lines algorithm. This is accomplished by truncating to the
computational domain such that {(x, t) ∈ [0, X]× [0, T ]}.

It is well known that the method of lines is a fast, accurate and efficient algorithm for
solving such free-boundary problems (Kang and Ziveyi, 2018; Meyer and Van der Hoek, 1997;
Chiarella et al., 2009). To obtain the contract values, Equation (5) is discretized in the t
direction and continuity is maintained in x. Time is discretized uniformly starting at inception
t0 up to maturity T . Appendix B describes the step-by-step implementation of the method of
lines algorithm used for the valuation of the contract. Since this algorithm provides contract
values, we can find fair fees using the bisection method.

The first row in Table 1 shows the parameters used for the base case analysis in Section 3
where only the tax rate and regime are allowed to vary, removing any confounding effects. We
further analyze the effect of the roll-up rate δ and maturity T . The parameters are calibrated
using Australian market data. We select r based on the historical average of the cash rate in
Australia, from 2009 - 2018, and σ based on ASX200 VIX index from 2009-2018. These values
also coincide with Moenig and Zhu (2018) and Bernard and Moenig (2019). The marginal
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Table 1: Financial base case parameters (first row) and sensitivity analysis (second row)

r σ τ x0 δ T κ
Base case 3% 20% 22.5% 1 0.75% 5 0.5%
Sensitivity 2.5%, 3.5% 15%, 25% 17.5%, 27.5% - [0%, 1.5%] 10, 15 0%,1%

Notes: the base case parameters (r, σ, τ) are calibrated using Australian market data and align with Moenig
and Zhu (2018) and Bernard and Moenig (2019). The product specification (δ, T , κ) chosen aligns with the
literature (see e.g. Shen et al. (2016)). Sensitivites to each parameter are shown in the second row. The
initial premium of x0 is chosen as 1 for convenience.

tax of τ is calculated based on the 0.45 marginal income tax rate, multiplied by the discount
of 0.50 for capital gains.16 The value of x0 is chosen to be unit as a convenient numerical
value, since it is only the ratio G(δ)

x0
= eδT which affects pricing. The maturity is assumed

to be 5 years (with sensitivities at 10 and 15 years)17 and the surrender penalty is chosen to
be κ = 0.5% with sensitivities to 0% and 1% following Shen et al. (2016). The initial fee is
chosen to be C0 = 7%18. Unless otherwise stated, these parameters will be used throughout
the remainder of the paper. The second row of Table 1 shows the sensitivities that we will
consider in Section 4. These allow us to further investigate the interaction between market
conditions and tax treatments.

In addition, the following numerical parameters are used for the method of lines algorithm
with the spacing in the x grid given by ∆x = 10−4 and the spacing in the t grid being
∆t = 10−3 . The upper limits of the x grids are set to be four times the initial premium,
that is, X = 4 · x0. We provide some justification for the choice of ∆t and ∆x in Table 2. As
evident in Table 2 it is reasonable to assume that the solution converges to the third decimal
places for the selected values of ∆x and ∆t.

Table 2: Contract values for the base case parameters in Table 1 and policyholder fair fee
q = 0.0023 which illustrates numerical convergence

∆t
∆x

10−1 10−2 10−3 10−4

10−1 1.0748 1.0705 1.0706 1.0706
10−2 0.9211 0.9891 1.0715 1.0705
10−3 0.9210 0.9891 1.0749 1.0708

16In Australia there is no separate tax rate for capital gains. Instead the capital gains are added to taxable
income and taxed at the regular marginal income tax rate. Furthermore, we assume that the policyholder is
a high net worth individual and therefore all investment earnings will fall under the highest tax bracket. As
of 2018 in Australia, individuals in the highest tax bracket with income of $180,001 and over pay $54,097 tax
plus 45c for each $1 over $180,000 (Australian Taxation Office, 2022).

17GMAB product are typically purchased during the accumulation phase with the bulk of existing literature
assuming a typical policyholder aged between 50-60 purchasing the product for a unique premium base as a
strategy of having a minimum guaranteed retirement amount. Depending on the age at inception, maturity
will vary from 5 to 15 for a retirement age fixed at 65. Comparing our parametrization to the literature, we
observe that there is no consensus on which value of T to consider. For instance, Delong (2014) uses T=1,
Moenig and Zhu (2018) and Bernard and Moenig (2019) use T=25 whereas Moenig and Bauer (2015) and
MacKay et al. (2017) use intermediate maturities of T=15 and T=10, 20 respectively. We believe that the
choice of T=5, 10 and 15 sufficiently presents the sensitivity to the maturity of the product.

18This corresponds to the policy acquisition expense rate in Moenig and Zhu (2018) and Bernard and Moenig
(2019) and aligns with a front-load of MyNorth administration fees AMP (2020).
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3 The effect of the tax treatment

This section analyzes the effect of the tax treatment on the contract value of the policyholder
and insurer, the fair fee and surrender boundaries for three tax treatments. First, we study the
case where capital losses can be used to offset capital gains from other investments. Secondly,
we delve into the case where capital losses cannot offset gains from other investments, which
is the case in previous literature (Moenig and Bauer, 2015). More specifically, if the tax
base exceeds the payoff of the asset then the difference may not be claimed as a capital loss
for taxation purposes. This implies that the value of the contract is always positive to the
government. Finally, we assess the case where no tax is considered, which aligns with classical
literature that abstracts from tax.

3.1 Insurer liabilities and policyholder contract values

In this subsection we discuss the impact of increasing the level of taxation to the insurer lia-
bilities and policyholder contract values across the three taxation treatments: tax-free, offset
and no offset. From an insurer’s perspective, it is the value which applies for accounting and
regulatory capital considerations. Indeed, insurers have to hold certain funds notwithstand-
ing the marginal tax rate that policyholders have to pay to the government. Of course, the
policyholder’s value equals the insurer’s liability whenever τ = 0%, which is the canonical
modelling framework in the VA literature. A first glance shows that the presence of tax,
compared to τ = 0%, creates a wedge between the policyholder and insurer value that reflects
the increasing value of the contract to the government as the tax rate increases. Figure 1
presents the contract values from the policyholder and liability curves for the insurer as a
function of fees charged for varying marginal rates of taxation and three maturities. Figure 2
shows the contract values for a fixed tax rate of 22.5% and varying levels of the roll-up rate
δ.

A first obvious finding is that the insurer’s liability crosses x0 + C0 at much higher rates
than the policyholder contract value19 in presence of taxation for the two treatments. In
particular, for high maturities T , the fair fee, calculated as in (11) often does not even exist.
It is natural that the insurer will have to follow the policyholder fair fee whenever taxes are
considered. Indeed it is the policyholder’s behaviour which detects the state of the contract at
any given time. These findings suggest that the presence of taxes could substantially affect the
supply of these products since the fair fee for the policyholder lies below the insurer’s implied
fair fee. This indicates that tax incentives need to be studied carefully as their presence
and design can distort the market. This is of particular importance in a political environment
that stimulates higher reliance of individuals on pension funds or private investment to sustain
their retirement.

We note that the value of the policyholder decreases with increasing fee charges, indeed,
higher fees reduce the level of the underlying fund and potential gains from the product.
Similarly, the liability of the insurer decreases with fees charged as higher fees lead to higher
income, lowering the liability towards the policyholder for the same fixed guarantee. For
longer maturities and higher fees, we observe that liabilities drop suddenly as a consequence
of immediate surrender. For instance in the offset case of Figure 1(a), the contract will not
be viable for T = 15 as a rational policyholder will immediately surrender upon underwriting
for fees higher than 1.8% when τ = 27.5% and 2.6% when τ = 22.5%. In these extreme cases,

19The fair fee for the policyholder is the one that crosses x0 + C0 = 1.07 as well.
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Figure 1: Contract values from the policyholder and insurer perspective as a function of
fees charged for varying marginal rates of taxation τ and maturity T . Financial parameters
correspond to the base case of Table 1.
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(a) Offset: varying marginal rates of taxation τ
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(b) No offset: varying marginal rates of taxation τ
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Figure 2: Contract values from the policyholder and insurer perspective as a function of fees
charged for varying roll-up rates δ and maturity T . Other parameters correspond to the base
case of Table 1.
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(a) Offset: varying roll-up guarantee rates δ
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the policyholder surrenders the contract immediately and this results in a large drop in the
insurer’s liabilities due to the surrender penalties. When losses cannot offset gains, Figure
1(b), a similar behavior appears for T = 15 and T = 10, triggered by even smaller fees than
the offset case.

Whether policyholders prefer higher or lower taxes depend on the tax treatment and fee
rate. Generally, the value to the policyholder decreases with tax. Indeed, all gains are taxed
both in the offset and no offset case, reducing the attractiveness of the product. However,
we observe in Figure 1(a) that for fee rates considerably higher than qp, the contract value
increases with taxation for the offset case. This is because at fee rates much larger than qp, for
which the numerical values are shown in Table 3, the policyholder can expect to pay high fees.
Therefore if the tax rate decreases, the policyholder obtains less value from the tax deduction
associated with having paid such fees. On the other hand, Figure 1(b), charging greater than
the fair fee does not increase the policyholder value when the tax rate increases. Indeed,
contrary to the offset case, higher fee payments yield lower gains with no reimbursement from
the government. This results in the policyholder’s value function converging to the same level
for all tax rates considered whereas in the offset case the value functions converge to a greater
level for higher tax rates. This effect is more obvious when comparing to the tax-free case.
Indeed, for high fees we observe that policyholder value in the offset case could be higher
than when τ = 0%. However, for the no offset case we observe that the policyholder value is
always strictly lower than the tax-free case.

The insurer’s liability increases with tax due to two reasons. Firstly, fees decrease substan-
tially in the presence of tax, lowering insurer’s income for the same guarantee and boundary
condition. Indeed, fees decrease by at least two thirds, greatly affecting the insurer’s prof-
itability. Secondly, surrender boundaries as presented in Subsection 3.2 increase substantially
in presence of tax for the two treatments, increasing the likelihood of having to pay the guar-
antee. However, a clear difference arises when the no offset case is considered. We observe,
Figure 1(a) vs Figure 1(b), that the policyholder value functions and insurer liabilities con-
verge to similar levels when high fees are charged. Of course, in that case taxable income
would become zero and the level of taxation becomes irrelevant. The convergence for the
insurer is erratic, as the impossibility to offset further acts as a friction to contract feasibility.

In summary, the presence of tax, compared to the tax-free case, decreases the value of
the product in all tax treatments for reasonable, close to the fair fee, charges. However, if
fees are substantially larger than the fair fee we observe a greater value to the policyholder
in the offset case as the tax credits are realized. If losses cannot offset capital gains, tax is
only paid when there are investment gains. This will affect the behavior of the policyholder
as they will try to avoid losses, that is, they will try to receive as much value of their contract
while minimizing the fees paid. This will have a distortionary effect in the viability of such
products in this taxation regime, especially for high marginal tax rates.
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Table 3: Fair fees (% p.a.) for the policyholder (qp) at various tax rates (τ%) and roll-up guarantees (δ%). Other parameters correspond
to the base case of Table 1.

a Offset allowed

T = 5 T = 10 T = 15
δ δ δ

τ 0 0.25 0.5 0.75 1 1.25 1.5 0 0.25 0.5 0.75 1 1.25 1.5 0 0.25 0.5 0.75 1 1.25 1.5
0 1.16 1.41 1.69 2.00 2.34 2.73 3.17 0.76 0.97 1.22 1.50 1.83 2.21 2.66 0.27 0.37 0.49 0.64 0.85 1.10 1.41
17.5 0.07 0.23 0.43 0.66 0.92 1.21 1.54 n.a. n.a. 0.06 0.25 0.48 0.75 1.06 n.a. n.a. n.a. n.a. n.a. 0.11 0.26
22.5 n.a. n.a. 0.03 0.23 0.46 0.73 1.02 n.a. n.a. n.a. n.a. 0.06 0.29 0.56 n.a. n.a. n.a. n.a. n.a. n.a. n.a.
27.5 n.a. n.a. n.a. n.a. n.a. 0.21 0.47 n.a. n.a. n.a. n.a. n.a. n.a. 0.06 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

b No offset allowed

T = 5 T = 10 T = 15
δ δ δ

τ 0 0.25 0.5 0.75 1 1.25 1.5 0 0.25 0.5 0.75 1 1.25 1.5 0 0.25 0.5 0.75 1 1.25 1.5
0 1.16 1.41 1.69 2.00 2.34 2.73 3.17 0.76 0.97 1.22 1.50 1.83 2.21 2.66 0.27 0.37 0.49 0.64 0.85 1.10 1.41
17.5 n.a. 0.07 0.28 0.54 0.84 1.19 1.54 n.a. n.a. 0.03 0.25 0.48 0.75 1.06 n.a. n.a. n.a. n.a. n.a. 0.11 0.26
22.5 n.a. n.a. n.a. 0.08 0.36 0.69 1.02 n.a. n.a. n.a. n.a. 0.06 0.29 0.56 n.a. n.a. n.a. n.a. n.a. n.a. n.a.
27.5 n.a. n.a. n.a. n.a. n.a. 0.17 0.47 n.a. n.a. n.a. n.a. n.a. n.a. 0.06 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

Notes: ‘n.a.’ implies that a fair fee does not exist. In other words, for all fee rates q, the value of the contract is less than x0 + C0 = 1.07 due to the interaction
between financial parameters and guarantee level.
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The contract values and insurer’s liabilities are greatly affected by the roll-up rate δ.
The higher the guarantee, the more valuable the contract will be and the higher fee the
policyholder will be willing to pay. As a counterparty, the product becomes more expensive for
the insurance company to offer, increasing liability payments accordingly. It is also interesting
to note that for long maturities, the contract is also not viable for high fee levels and low
δ. Indeed, when T = 15 the insurer liability jumps following immediate surrender whenever
δ = 0% and fees higher than 1.8%. However, for the same maturity we observe that the
cut-off point for immediate surrender increases with δ. Overall, we can conclude that higher
δ increase the viability of the product, despite the corresponding greater fee that is charged.

Table 3 summarizes the policyholder fair fees qp (recall that qi rarely exists in this setting
as taxation distorts the offer of this product), that is, the fees that render the contract fair for
the policyholder in three taxation treatments: tax-free, offset and no offset. Firstly, we observe
that fair fee increases for higher roll-up guarantee δ as suggested in Figure 2. Indeed, higher
δ increase the minimum accumulation benefit making the product more attractive for the
policyholder especially as the spread between the risk-free rate and δ decreases. We observe
that the policyholder fee, qp, decreases with tax rates. As earlier discussed, policyholders
act so as to maximize post-tax contract value, and increasing tax rates reduce the potential
gains for the market. Finally, we observe a negative effect of maturity. The higher the
maturity, the lower the fee, to the extent it does not exist often for high τ and low δ. Even
if the guarantee depends on T , the higher investment horizon makes it more likely for the
underlying to outperform G(δ) rendering the contract less attractive.

We observe that the fair fee often does not exist, n.a. in Table 3, as the value function never
crosses x0 +C0 for higher taxation rates. Indeed, the value function is always under x0 +C0,
even for zero fees, and the product is not attractive from the policyholder’s perspective. Note
that the fair fee of n.a. reflects parameter combinations which make it infeasible for a rational
policyholder to enter the contract. It can as well reflect that the policyholder is not willing to
spend more than the upfront cost of C0 in this product, implying that charging a zero fair fee
whilst considering the C0 could still render the contract profitable for the insurer, as there are
other sources of income such as surrender fees in the event of the contract being surrendered
early. We discuss this in Section 5.

Focusing on Table 3a and comparing it with Table 3b, we note that for all cases associated
with T = 5 and δ < 1.5%, the no offset case yields equal or lower fees than the offset
regime. For instance, we find that in some cases the fee ceases to exist in the no offset case
(δ = 0 and τ = 17.5%) whereas they do in the offset case. The higher the δ the lower the
difference between the two taxation regimes. Indeed, from δ = 1.5% this difference completely
dissapears. We hypothesize this might be due to policyholder having virtually only gains. In
that case, whether losses can offset gains or not is of no relevance.

Another argument is based on the taxable income when xT < G(δ) and the guarantee is
triggered. In that case, the taxable income in Equations (6) and (8) solely depend on the
relationship between δ and C0. Indeed, the taxable income is given by

[x0e
δT − x0 − C0],

which, for our chosen parameters of x0 = 1 and C0 = 7% simplifies to

1
[
eδT − 1− 7%

]
.

Clearly, when T = 5, we find that the taxable income is negative for δ < 1.25% and positive
otherwise. Whether or not losses can offset gains is less relevant when taxable income is
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always positive. The fees in the two taxation regimes hence coincide. A similar exercise for
T = 10 yields positive taxable income from δ = 0.75% and for T = 15 from δ = 0.50%. The
fair fee analysis allows us to conclude that the impact of the taxation regime can be mitigated
by a higher roll-up fee. However, in general the offset case is beneficial to the insurer as the
policyholder’s higher willingness to pay is present. Fees are either higher or exist more often
for the same guarantee level.

3.2 Optimal surrender behavior

The surrender boundary s(ν), as discussed in Subsection 2.1, is the minimum fund value
required to trigger rational surrender, as a function of time since inception ν. Since no fees
can be attached to the insurer valuation, we assume that the fee rate that is actually charged
on the contract is qp, which delivers zero profit to the policyholder. Surrender boundaries
when no fair fee exist, such as in the base case for τ = 27.5%, are excluded from the analysis.

Figure 3 presents optimal surrender boundaries for various τ , δ and T . First, we observe
that the surrender boundary decreases with ν. Indeed, at ν = 5, whenever the guarantee is
maturing, the surrender boundary converges to the guarantee value. In all cases as the contract
approaches maturity, the presence of taxation reduces the volatility in the final payoff, since
the government absorbs a portion of both losses and gains. Furthermore, as time to maturity
approaches zero, the surrender penalty approaches zero and hence the boundaries approach
the guaranteed amount G(δ). Thus the policyholder is more willing to remain invested at
higher τ for smaller ν, which is indicated by the surrender boundary being shifted up, this
is consistent with findings in Bernard et al. (2014). If the policyholder has any amount in
the fund exceeding the initial total payment, then they would prefer to surrender at ∆t (and
keep the fraction e−κ∆t) before maturity rather than pay fees in the time interval ∆t for a
guarantee which has a low probability of ending up in the money.

Second, Figures 3(a) and 3(b), show the boundaries for three tax treatments: offset,
no offset and tax-free. We observe that the boundary increases with tax. The surrender
boundary increases as policyholders are less eager to surrender since they are paying lower fees.
Complementary to this, reducing the post-tax value through higher taxes delays surrender
as individuals are maximizing their post-tax value. Comparing Figure 3(b) with Figure 3(a)
we observe that the surrender boundaries are higher in the no offset case. At ν = 0, these
differences can amount to 4% increase in the surrender boundary. Again, the fact that no
losses can offset gains make policyholders stay longer in the contract, aiming to reach a certain
post-tax value to compensate the loss of income through taxation. When the tax rate, τ , is
set equal to zero, we reproduce results from the setting which has been extensively studied in
the literature (Bernard et al., 2014; Shen et al., 2016).

Higher δ corresponds to higher guarantee levels and hence higher fair fees, decreasing the
surrender boundary accordingly as shown in Figure 3(c) and 3(d). At maturity, the conver-
gence observed in the previous cases appear, but it happens at different levels corresponding
to the varying G(δ). It is interesting to note that for low δ = 0.5% which corresponds to a
virtually free contract with a fair fee of 0.03% (Table 3), we have no surrender during the
initial phases of the contract. However, after 3 year and 5 months we observe that surrender is
possible again. Upon approaching maturity the underlying has had the possibility to increase
more than the low guarantee, rendering surrender more likely.

Figure 3(e) and 3(f) use the base parameters from Table 1 with δ = 1.25% and τ = 17.5%
instead of δ = 0.75% and τ = 22.5%. This is because the base case scenario does not have
fair fees for T = 10 and T = 15 and hence no surrender boundaries to show. Akin to Bernard
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Figure 3: Optimal surrender boundaries. Financial parameters correspond to the base case
of Table 1. The first row presents sensitivity to τ , the second to δ and the third to T .
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Notes: the sensitivity to T uses the base parameters from Table 1 with δ = 1.25% and τ = 17.5% instead of
δ = 0.75% and τ = 22.5% since the base case scenario does not have fair fees for T = 10 and T = 15 and
hence no surrender boundaries to show.

et al. (2014), we find that the surrender boundaries shift upwards with maturity T . The
higher the maturity, the higher the corresponding G(δ), but, contrary to δ sensitivity the
higher guarantee comes with a lower fee since the insurer has a longer period to finance the
guarantee. The low fees increase the boundary, indicating that the policyholder is willing to
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remain invested in the contract despite the higher probability to outperform the guarantee in
the long term.

4 Sensitivity analysis

Table 4: Sensitivity analysis of fair fees (% p.a.): analysis of the impact of r, σ and κ on
policyholder (qp) fair fees. The rest of the parameters are given by Table 1.

a Financial market r and σ sensitivity

Tax-free Losses offset gains Capital gains only
T = 5 σ=0.15 σ=0.20 σ=0.25 σ=0.15 σ=0.20 σ=0.25 σ=0.15 σ=0.20 σ=0.25
r=0.025 0.65 2.73 5.50 n.a. 1.01 3.24 n.a. 0.80 2.93
r=0.030 0.29 2.00 4.41 n.a. 0.23 2.10 n.a. 0.08 1.86
r=0.035 0.02 1.41 3.53 n.a. n.a. 1.18 n.a. n.a. 0.99

b Surrender penalty κ sensitivity

Losses offset gains Capital gains only
κ=0 κ= 0.005 κ=0.01 κ=0 κ=0.005 κ=0.01

τ = 0 2.40 2.00 1.74 2.40 2.00 1.74
τ = 0.175 0.95 0.66 0.54 0.81 0.54 0.45
τ = 0.225 0.48 0.23 0.19 0.30 0.08 0.07
τ = 0.275 n.a. n.a. n.a. n.a. n.a. n.a.

0.2cm Notes: ‘n.a.’ implies that a fair fee does not exist. In other words, for all fee rates q, the value of the
contract is less than x0 + C0 = 1.07 due to the interaction between financial parameters and guarantee level.

This section presents the sensitivity of the fair fees and surrender boundaries to alternative
financial market and contract parameter specifications for three tax treatments: tax-free,
offset and no offset. We show the impact of varying the risk-free rate r, volatility σ and
surrender penalty κ on policyholder fair fees qp. Unless otherwise stated, the rest of the
parameters are given by the first row of Table 1. Globally, we observe that the no offset case,
compared to the case where losses can offset gains, always yields slightly higher surrender
boundaries. As discussed in Section 3, a combination of lower fees in the no offset case,
together with the fact that all gains are taxed makes the policyholder have a higher propensity
to surrender and stay longer in the contract, trying to optimize their after-tax income.

In Table 4, a higher r is accompanied by a lower fee rate. Since policyholders can obtain
a greater return in the risk-free market, they are willing to pay less to enter the contract for
the same level of maturity guarantee. This is akin to put option prices where higher r implies
cheaper put options. Hence as reflected in Figures 4(a) and 4(b) the surrender boundary is
shifted up implying that the policyholder is still willing to remain invested in the contract in
spite of the guarantee being worth less in relative terms. This holds since, the higher r, for
the same volatility σ, the higher average value of the underlying and cut-off to surrender.

Furthermore, Table 4 shows that qp increases with σ. This is because the guarantee is
more attractive in a highly volatile, uncertain market. We show as well that greater market
volatility corresponds to more savings for the policyholder when losses are allowed to offset
gains. In contrast, when losses cannot be used to reduce tax payable, the policyholder fair fee
is lower. Figures 4(c) and 4(d) show that the surrender boundary decreases with volatility.
Higher uncertainty makes the guarantee more valuable and as a consequence the surrender
boundary needs to decrease such that the gain upon surrendering (G(δ)− s(ν)) compensates
the higher option value. Similar to Figures 4(a) and 4(b), we observe that the boundaries are
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Figure 4: Impact of interest rates (a,b), volatility (c,d) and surrender penalty (e,f) on optimal
surrender for different times to maturity, with (a,c,e) and without (b,d,f) offset allowed. Other
parameters correspond to the base case of Table 1.
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higher in the no offset case, however the difference is smaller than in the sensitivity to r. We
also note that fair fees do not exist when risk-free rates are very high or volatility is very low,
indicating that the product is not interesting whenever the guarantee is too weak (high r) or
has less added value (low σ).

In Table 4 as κ increases, qp decreases because the insurer is also able to collect more from
the larger surrender penalty they impose. We also show the impact on optimal surrender
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after increasing κ. As shown in Figure 4(e) and 4(f), a higher surrender penalty shifts the
surrender boundary upwards, since an increase in surrender penalty is accompanied by a
decrease in the fair fee rate. From the insurer’s perspective, the higher surrender penalty
ensures the policyholder stays in the contract for a longer period of time.20 Also, the surrender
penalty is an exponentially decreasing structure with time-to-maturity. If the contract has a
longer maturity and higher penalty fee, then it will not be economical for the policyholder to
surrender early.

Based on the main and sensitivity analysis, we have identified that the fair fee increases
substantially for higher guarantee value δ and volatility σ and it decreases the surrender
boundary such that the gain upon surrendering G(δ) − s(ν) compensates the higher option
value. On the other hand, higher τ , r, κ and T all decrease the fee rate and increase the
surrender boundary accordingly.

5 Profit and Loss analysis

To complement our analysis of the viability of the variable annuity, we perform 1,000 Monte
Carlo simulations to analyse the profit and loss (P & L) profiles and surrender statistics
for various parameter specifications akin to Moenig and Bauer (2015). Values provided in
Tables 5 and 6 correspond to the real-world expectation at t = 0, discounted at the risk-
free rate r. Since x0 = 1, the results are expressed in terms of ×10−2 unless otherwise
specified. We assume that the insurer sells the product at qp following the policyholder bid
price. Furthermore, the simulations of the underlying fund are done under the real-world
measure assuming that the insurer writes a naked option without any hedge. The µ under
the real world measure is obtained as µ = r+SR ·σ where SR is the Sharpe ratio (SR) which
represents risk adjusted returns. We consider the following values for the SR 0.10, 0.25 and
0.45.21 We abstract from any reinvestment of the fair fees in risky assets. We acknowledge
that this is a stylized worst case analysis as it does not incorporate reinvestment risk or
hedging.

The P & L tables provide an overview of the surrender fee that the insurer receives upon
early surrender, the guarantee fees required to fund the insurance product, the initial fee C0

as well as the cost of providing the guarantee. Surrender is triggered whenever the underlying
excess the precomputed surrender boundary, which is the same for all SR. The surrender rate
is then defined as the proportion of insurance contracts that are terminated prior to maturity
and the time elapsed as the average time elapsed in the contract before surrender (if any).22

Finally, the net profit is calculated as the guarantee fees, complemented by the surrender fee
and upfront costs C0 reduced by the guarantee cost. The net profit values on the tables should
be interpreted as follows: a net average profit of 3.72× 10−2, base case with SR = 0.10 in the
tax-free regime, means that the product with x0 = 1 earns 3.72% average yield. Similarly, a
net average profit of −1.04 × 10−2, base case with SR = 0.10 in the offset case, means that
a -1.04% average loss is incurred. The last rows also show the various net profit percentiles
Pα for α = {1, 25, 50, 75, 99} in order to inform about their skewness. The results presented

20The boundary hitting 4 is a proxy for infinity as our numerical scheme is capped to 4 · x0 with x0 = 1
premium.

21Sharpe ratios of 0.25 and 0.45 align with Moenig and Bauer (2015). We study the Sharpe ratio of 0.1 to
study whether the product would still be profitable in a low performing economy.

22The average time elapsed is the average contract life of a given variable annuity. This corresponds to 5
years, the maturity of the contract, if there is never surrender. The lower the value, the less time policyholder
spend in the contract, on average.
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in the first to third set of results correspond to the case without taxation, with taxation and
with the possibility to offset losses, and taxation without the option to offset, respectively.

Figure 5: Histogram of the net profit including C0 over 1,000 Monte Carlo simulations

Notes: the distribution depicted corresponds to the base case scenario (r = 3%, σ = 0.20, δ = 0.75%,
τ = 22.5%) with SR = 0.10.

First, let us delve into the effect of SR in the P&L dynamics for a given case and taxation
regime. Early termination of the contract is more likely for higher SRs, that is, higher rewards-
to-variability ratios. Recall that µ increases with SR, which implies a higher potential outside
of the insurance, making it more likely to hit the surrender boundary. Intuitively, this also
affects the guarantee cost. Indeed, it decreases with SR as it becomes less likely to trigger
the guarantee at maturity. Of course, more lapses, for the same surrender boundary, are
associated with a lower average time in the contract. Surrender and guarantee fees, for a
given taxation regime, are not affected by SRs as much: the former slightly increase whereas
the latter decrease with SR since surrender happens more often. However, the increase in
surrender fees is insufficient to fully substitute the loss of regular guarantee fees. Globally,
the net average and median profit increase with SR but primarily due to the decrease in
guarantee cost. These general trends hold within each taxation regime considered.

The effect of tax is significant. Section 3 shows that fair fees decrease and surrender
boundaries increase substantially when taxation is considered. The decrease (increase) is
even greater whenever losses cannot offset gains. Indeed, having all proceeds taxed incentives
the policyholder to stay longer as their aim is to maximise post-tax value. The stark decrease
in fees translates in a similar decrease guarantee fee revenue. Despite the sizeable increase
in surrender boundaries, Figures 3(a) and 3(b), the surrender rate increases only by 2-7%,
depending on the scenario. Note that, although surrender rate is higher in the taxation
regime with respect to the no tax regime, most of the surrenders are happening later on in
the contract, increasing the average time elapsed accordingly. However, this increase does not
increase the cost of the guarantee, on the contrary, the cost of guarantee decreases instead
due to lower fees facilitating a higher terminal account balance triggering the guarantee less
often. This combined effect of tax skews the distribution further to the left and decreases the
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average profit and all percentiles. Of course, the more restrictive the tax treatment, as in the
no offset case, the higher the impact.

Net average profit differs greatly from its percentiles. We observe that whilst some con-
tracts with low SR under a taxation regime have negative or close to 0 average profit, with
losses up to 1.48%23 of the principal, they always have positive and much greater P50, P75 and
P99. As earlier stated, this is due to the P & L distribution, Figure 5 and P1 in Tables 5 and
6, which has a low frequency high severity negatively skewed distribution, affecting the aver-
age profit greatly when the guarantee kicks-in. We observe indeed that the median profit is
only slightly affected by increasing SR, whereas the net average profit is significantly affected
through the sizeable decrease in guarantee cost. Even in the scenarios with low average profit
we observe that the product would be profitable with margins of at least 7.44% depending on
the taxation regime with a real world probability of 75%.

Table 5 and 6 show the effect of increasing volatility σ24, guarantee level δ25, decreasing
r and τ , whilst keeping all other parameters constant. Increasing σ, δ and decreasing r and
τ increases the fair fee, decreasing the account value. This triggers the guarantee more often,
skewing the distribution further to the left. Yet, the increase in guarantee fees collected is
sufficient to counter the increase in guarantee cost, yielding an increase in overall profitability,
in average and median terms. The decrease in surrender boundaries, Figures 3 and 4, together
with the lower underlying net of fees translates in slightly lower surrender and lower average
time elapsed. Indeed, the changing shape of the boundary renders surrender slightly less
common, but makes it happen sooner in the contract.

Finally, the third pannel of Table 6 shows the effect of increasing the surrender penalty
κ. The slight decrease in fair fees, compared to the base case, lowers the guarantee fees
accordingly and increase the value of the underlying net of fees. This has a reduced impact
in the guarantee cost. Whilst surrender rate remains quite stable, the average time elapsed
increases in the tax-free case by 3 months and in the taxed case to almost T = 5. Indeed,
we know from Figure 3(e)-(f) that the surrender boundary attains the maximum level of 4,
rendering surrender nearly impossible until just before maturity where the boundary drops.
This virtual no surrender decimates the surrender penalty income in the taxed case, lowering
the average profit. In the tax-free case, the greater penalty κ increases the surrender fee
income in this case, having a slight positive effect on profitability on average terms.

6 Conclusions

Insurance providers benefit from the tax-deferred nature of variable annuities. However, the
popularity of these products varies widely across countries. We show that the taxation regime,
tax rate and Sharpe ratio of the market are some of the key drivers of such demand. In this
paper, we illustrate the impact of different taxation systems on policyholder behaviour and
the implications for insurers. In particular, we assess and compare the cases when losses are
allowed to offset gains, and where losses are not allowed to offset gains. These two regimes
reflect features of institutional arrangements in Australia, US and most European countries.

23Offset scenario in the κ = 1% from Table 6.
24Of course, µ increases with σ, yielding a higher potential return under the real world measure. However,

this increase does not translate in greater surrender given the mitigating effect of the greater fair fee.
25Recall that for δ approaching 1.5% we have the same fair fees in the two taxation regimes as there are

virtually no losses anymore and hence the difference between them dissapears.
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Table 5: Profit and Loss profiles for various parameter specifications and Sharpe ratios.

tax free (qp = 2.00%) offset (qp = 0.23%) no offset (qp = 0.08%)
Base case SR SR SR

0.10 0.25 0.45 0.10 0.25 0.45 0.10 0.25 0.45

Surrender fee ×10−2 0.70 0.94 1.28 0.54 0.76 1.04 0.46 0.64 0.93
Guarantee fees ×10−2 7.23 6.90 6.33 0.98 0.96 0.93 0.37 0.37 0.37
C0 × 10−2 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
Guarantee cost ×10−2 11.21 7.17 3.39 9.03 5.55 2.42 8.87 5.50 2.34
Net avg profit ×10−2 3.72 7.68 11.22 -0.52 3.17 6.55 -1.04 2.51 5.96
P50 ×10−2 13.26 13.83 13.95 8.21 8.46 8.85 7.48 7.68 8.09
P25;P75 ×10−2 -6.7 ;15.23 5.7 ;15.43 12.6 ;15.36 -8.4 ;8.82 3.9 ;9.22 8.2 ;9.60 -8.5 ;8.06 3.4 ;8.39 7.5 ;8.94
P1;P99 ×10−2 -43.4 ;17.61 -37.7 ;17.60 -28.6 ;17.42 -45.2 ;10.81 -39.2 ;10.90 -29.8 ;11.03 -45.3 ;10.10 -39.4 ;10.34 -29.9 ;10.58
Surrender Rate (%) 52 65 79 57 69 81 59 71 83
Avg time elapsed 4.01 3.68 3.21 4.33 4.06 3.73 4.44 4.24 3.92

tax free (qp = 4.41%) offset (qp = 2.10%) no offset (qp = 1.86%)
σ = 0.25 SR SR SR

0.10 0.25 0.45 0.10 0.25 0.45 0.10 0.25 0.45

Surrender fee ×10−2 0.94 1.16 1.51 0.86 1.13 1.49 0.84 1.12 1.49
Guarantee fees ×10−2 13.26 12.72 11.47 7.05 6.71 6.16 6.35 6.04 5.54
C0 × 10−2 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
Guarantee cost ×10−2 16.69 11.32 5.91 14.14 9.09 4.51 13.86 8.94 4.38
Net avg profit ×10−2 4.51 9.56 14.08 0.77 5.75 10.13 0.33 5.22 9.65
P50 ×10−2 13.80 15.96 16.76 12.82 13.58 13.89 12.64 13.28 13.46
P25;P75 ×10−2 -11.8 ;20.17 2.3 ;21.20 13.3 ;21.25 -13.8 ;15.05 1.2 ;15.31 12.4 ;15.34 -13.8 ;14.44 0.8 ;14.61 12.2 ;14.60
P1;P99 ×10−2 -49.5 ;28.28 -44.0 ;28.39 -35.1 ;28.23 -52.1 ;18.12 -46.5 ;17.88 -37.4 ;17.82 -52.4 ;16.95 -46.8 ;16.72 -37.6 ;16.72
Surrender Rate (%) 50 62 76 52 65 78 54 66 79
Avg time elapsed 3.66 3.34 2.86 3.85 3.50 3.03 3.89 3.53 3.06

tax free (qp = 2.34%) offset (qp = 0.46%) no offset (qp = 0.36%)
δ = 1% SR SR SR

0.10 0.25 0.45 0.10 0.25 0.45 0.10 0.25 0.45

Surrender fee ×10−2 0.73 0.97 1.31 0.61 0.81 1.13 0.57 0.80 1.10
Guarantee fees ×10−2 8.29 7.87 7.21 1.86 1.82 1.74 1.49 1.45 1.39
C0 × 10−2 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
Guarantee cost ×10−2 12.18 7.89 3.82 9.73 6.08 2.72 9.62 6.00 2.67
Net avg profit ×10−2 3.84 7.95 11.69 -0.26 3.56 7.14 -0.56 3.25 6.83
P50 ×10−2 13.39 14.20 14.51 9.30 9.59 9.89 8.83 9.12 9.48
P25;P75 ×10−2 -7.7 ;16.12 4.7 ;16.40 12.7 ;16.43 -9.3 ;9.87 3.2 ;10.14 9.3 ;10.40 -9.4 ;9.39 2.8 ;9.78 8.8 ;10.08
P1;P99 ×10−2 -44.2 ;19.32 -38.5 ;19.19 -29.4 ;19.16 -46.1 ;11.07 -40.1 ;11.08 -30.7 ;11.14 -46.2 ;10.95 -40.2 ;11.04 -30.8 ;11.10
Surrender Rate (%) 51 64 77 56 67 81 57 69 81
Avg time elapsed 3.96 3.61 3.15 4.22 3.96 3.57 4.27 3.99 3.62

Notes: the first, second and third block of results represent the base case, high volatility (σ = 0.25) and high guarantee value (δ = 1%) with the other
parameters as depicted in Table 1. Net avg profit is calculated as Guarantee fees + Surrender fee +C0 - Guarantee cost. Px represents the xth percentile. Of
course P25, P75 and P50 correspond to the quartiles and median respectively. P1 and P99 correspond to the extreme percentiles. This analysis includes C0.
To exclude it, C0 = 0.07 should be substracted to the Net avg profit and percentile rows and analyze subsequently.
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Table 6: Profit and Loss profiles for varying r, σ and κ for different Sharpe ratios.

tax free (qp = 2.73%) offset (qp = 1.01%) no offset (qp = 0.80%)
r = 2.5% SR SR SR

0.10 0.25 0.45 0.10 0.25 0.45 0.10 0.25 0.45

Surrender fee ×10−2 0.74 0.99 1.33 0.66 0.88 1.21 0.64 0.86 1.18
Guarantee fees ×10−2 9.48 8.98 8.15 3.84 3.72 3.47 3.12 3.02 2.85
C0 × 10−2 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
Guarantee cost ×10−2 13.29 8.69 4.35 10.87 6.88 3.25 10.60 6.71 3.13
Net avg profit ×10−2 3.94 8.27 12.12 0.63 4.72 8.44 0.16 4.17 7.90
P50 ×10−2 13.34 14.57 14.93 11.42 11.57 11.65 10.74 11.01 11.15
P25;P75 ×10−2 -8.5 ;17.02 3.7 ;17.48 12.7 ;17.39 -9.8 ;11.86 3.0 ;11.92 11.4 ;11.93 -9.8 ;11.23 2.5 ;11.30 10.7 ;11.33
P1;P99 ×10−2 -44.9 ;21.30 -39.2 ;20.99 -30.3 ;21.05 -46.7 ;12.62 -40.8 ;12.67 -31.5 ;12.60 -46.9 ;11.61 -41.0 ;11.63 -31.6 ;11.67
Surrender Rate (%) 49 63 77 54 66 79 56 68 81
Avg time elapsed 3.92 3.57 3.09 4.11 3.81 3.39 4.15 3.86 3.46

tax free (qp = 2.00%) offset (qp = 0.66%) no offset (qp = 0.54%)
τ = 17.5% SR SR SR

0.10 0.25 0.45 0.10 0.25 0.45 0.10 0.25 0.45

Surrender fee ×10−2 0.70 0.94 1.28 0.62 0.82 1.14 0.58 0.80 1.11
Guarantee fees ×10−2 7.23 6.90 6.33 2.63 2.57 2.44 2.18 2.13 2.04
C0 × 10−2 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
Guarantee cost ×10−2 11.21 7.17 3.39 9.54 5.94 2.66 9.40 5.85 2.59
Net avg profit ×10−2 3.72 7.68 11.22 0.70 4.46 7.92 0.36 4.08 7.56
P50 ×10−2 13.26 13.83 13.95 10.17 10.45 10.68 9.63 9.92 10.19
P25;P75 ×10−2 -6.7 ;15.23 5.7 ;15.43 12.6 ;15.36 -8.0 ;10.73 4.5 ;10.87 10.1 ;11.01 -8.1 ;10.19 4.1 ;10.41 9.6 ;10.64
P1;P99 ×10−2 -43.4 ;17.61 -37.7 ;17.60 -28.6 ;17.42 -44.8 ;11.31 -38.8 ;11.34 -29.4 ;11.36 -44.9 ;11.23 -39.0 ;11.27 -29.5 ;11.30
Surrender Rate (%) 52 65 79 56 68 81 58 70 83
Avg time elapsed 4.01 3.68 3.21 4.19 3.93 3.54 4.25 3.98 3.61

tax free (qp = 1.74%) offset (qp = 0.19%) no offset (qp = 0.07%)
κ = 1% SR SR SR

0.10 0.25 0.45 0.10 0.25 0.45 0.10 0.25 0.45

Surrender fee ×10−2 1.05 1.48 2.07 0.01 0.02 0.07 0.01 0.02 0.07
Guarantee fees ×10−2 6.99 6.84 6.57 1.01 1.09 1.20 0.38 0.41 0.46
C0 × 10−2 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
Guarantee cost ×10−2 11.08 7.09 3.38 9.03 5.61 2.42 8.88 5.50 2.35
Net avg profit ×10−2 3.97 8.23 12.27 -1.02 2.49 5.85 -1.48 1.94 5.18
P50 ×10−2 14.84 15.53 15.89 7.95 8.06 8.17 7.36 7.40 7.45
P25;P75 ×10−2 -7.3 ;16.07 4.7 ;16.23 14.9 ;16.31 -8.9 ;8.16 3.0 ;8.25 7.9 ;8.40 -8.9 ;7.44 2.9 ;7.48 7.4 ;7.53
P1;P99 ×10−2 -43.7 ;17.22 -37.9 ;17.08 -28.7 ;17.25 -45.2 ;8.78 -39.3 ;8.95 -29.8 ;11.33 -45.4 ;7.68 -39.4 ;7.75 -29.9 ;10.49
Surrender Rate (%) 51 63 77 55 67 80 58 70 83
Avg time elapsed 4.31 4.03 3.66 5.00 4.99 4.98 5.00 4.99 4.98

Notes: the first, second and third block of results represent the high relative value of the guarantee case (r = 2.5%), low tax (τ = 17, 5%) and high surrender
penalty (κ = 1%) with the other parameters as depicted in Table 1. The case r = 3.5% and τ = 27, 5% are not presented as they yield no fee (Table 4). Net
avg profit is calculated as Guarantee fees + Surrender fee +C0 - Guarantee cost. Net extreme profit Ptiles represent the 1st and 99th percentile. Net profit
Qtiles consider the 25th percentile and 75th percentile. This analysis includes C0. To exclude it, C0 = 7 should be substracted to the Net avg profit and
percentile rows and analyze subsequently.
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Majority of existing literature on variable annuity pricing abstract from the friction in-
duced by taxation naturally leading to policyholder fair fees coinciding with insurer’s expec-
tations. However, upon introducing taxation, we show that wide gaps arise as a result of the
interaction between the tax regimes and underlying policyholder behavior through surrender.
We observe that individuals’ threshold to surrender differs greatly from the no tax case at the
beginning and end of the contract.

We formulate the valuation of a GMAB contract from the policyholder and insurer’s
perspective as a free boundary problem which is solved using the method of lines. The
corresponding policyholder fair fee and insurer fair fee are computed. The numerical results
show how the guarantee level δ, maturity T , risk-free rate r, volatility σ and surrender penalty
κ impact the pricing and optimal surrender behaviour. This impact is determined by the fair
fees and also on the particular taxation system. In particular, fair fees increase with δ and σ
and decrease with r, κ and T .

We show that allowing for losses to offset gains enhances the market, increasing the will-
ingness to pay of the policyholder. However, fair fees and subsequently net profit still are
still higher in the no tax case. However, the tax regime alone is not a sole driver of the
attractiveness of the product. In financial markets with low volatility and high taxes, pol-
icyholders are only willing to enter the contract at very low fee levels. On the other hand,
high volatility increases the attractiveness of the contract, as increasing guarantees do. For
a particular financial market setting, we observe that product features such as the level of
the guarantee can mitigate the effect of taxes. Intuitively the greater δ compensates for the
decreased post-tax income in a way that can still create demand for the product in adverse
financial and institutional settings. Adjusting the volatility level, to the extend that insurers
can target a particular volatility of the fund is also a way of enhancing demand and profits.
Despite the increase in fair fees in both cases, (rational) surrender is not affected as much,
increase guarantee revenue and decreasing the cost of actually providing the guarantee.

The profit and loss analysis shows that, despite charging the (low) demand fee, insurance
providers’ net median profit is always positive. This analysis is made under the assumption
that the insurer writes a naked option without any hedge. The profit and loss distribution of
the product is highly left skewed, yielding positive returns on the product at high probability
but with high losses at the tail. When losses offset gains, policyholders delay early surrender
in order to receive the higher tax reductions reflecting their increased losses. However, if
losses are not allowed to offset gains, then policyholders behave in such a way to maximize
the post-tax value. Profitability of the insurer varies with the Sharpe ratio. For low Sharpe
ratios, policyholders are more likely to hold their contracts until maturity and receive the
benefit of the guarantee, diluting the insurer’s profit. For high Sharpe ratios, the higher
returns outside of the product incentivizes the policyholder to surrender since the guarantee
offered can quickly become out of the money.

We identify at least two important directions for future research. Policyholder in our
setting are always taxed upon surrender or upon reaching maturity. However, most taxation
regimes offer incentives, either by reducing or removing tax altogether, in order to cash-out
retirement income beyond a particular preservation age. Of interest will be disentangling
the effect of this discontinuity in product pricing. Furthermore, we have identified hybrid
products that combine the main underlying fund in most classical VA literature with a cash
account that earns the risk-free rate. Combining the two allows for further tax optimisation
as cash-flows can be transferred from one to the other delaying claim date and tax liability.
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Appendices

A The Governing Partial Differential Equation

Applying Ito’s Lemma in conjunction with the formula for dx in Equation (1) yields

du = uxdx+
1

2
uxx(dx)2 + uνdν

= uxdx+
1

2
σ2x2uxxdν + uνdν. (A.1)

Now consider a portfolio consisting of a long position in the GMAB contract (inclusive of both
the cash account and investment account) and ux units short in the underlying fund backing
the investment account (without the cash account). The value of the portfolio can then be
represented by Π = u(x, ν) + c(ν) − uxx. Over a small time interval dν the corresponding
change in portfolio value, given that a continuously compounded management fee at rate qxux
is paid out of the investment account

dΠ = du− uxdx− qxuxdν (A.2)

Substituting the known value of du from Equation (A.1) into Equation (A.2) implies that

dΠ =
1

2
σ2x2 · uxxdν + uνdν − qx · uxdν.
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Since this portfolio has no random component, that is, it does not have a dx term, it must
accumulate at the pre-tax risk-free rate. Substituting back Π = u− uxx we have

r(u− xux) =
1

2
σ2x2 · uxx − qx · ux. (A.3)

In deriving the PDE (A.3), we assume the existence of a complete, no-arbitrage market
in which the participants (the policyholder and the insurer) can rebalance their portfolios
without transaction costs. Instead, taxation is considered from an individual’s perspective as
it manifests at the boundary conditions of (A.3), when the policyholder elects to surrender
or receives the final payout from the GMAB contract.

Re-arranging Equation (A.3) and applying the transformation t = T−ν where t represents
the time to maturity on the contract, u will satisfy the PDE

1

2
σ2x2uxx + (r − q) · xux − ru− ut = 0. (A.4)

B Method of lines implementation

In order to solve Equation (5), it is discretised in t and y directions and continuity is main-
tained in x. Let 0 = t0 < t1 < ... < tn < ..., tN = T be a uniformly space time grid and
Denote u(x, tn′) = u,n′(x) = un′ . As highlighted in Meyer and Van der Hoek (1997) and Kang
and Ziveyi (2018), the following finite difference approximations are used along the line t = tn
(where we let un = u to emphasise that u is presently being solved for as a function of x
only):

ut =

{
u−un−1

∆t if n = 1, 2
3
2
u−un−1

∆t − 1
2
un−1−un−2

∆t if n ≥ 3.
(B.1)

The method of lines as presented in Meyer (2015) can be used to solve the system of equations
generated when Equations (B.1) are used to approximate a solution for the partial differential
equation (5).

Substituting (B.1) into (5) will give:

1

2
σ2x2uxx + (r − q) · xux − c̃u = f̂ (B.2)

where c̃ = r +

{
1

∆t if n = 1, 2
3

2∆t if n ≥ 3
and f̂ =

{
−un−1

∆t if n = 1, 2

−4un−1−un−2

2∆t if n ≥ 3

Solving Equation (B.2) requires the one dimensional Method of Line solution, which is
already discussed in great detail in Meyer (2015), which the following discussion is based on.
We first rewrite (B.2) as the two point boundary value problem

u′(x) = v(x), u(0) = (x0e
δT − τ [x0e

δT − x0 − C0]+)e−rtn (B.3)

v′(x) = C(x)u+D(x)v + g(x), v(S) = γT−t − τγT−tI{[SγT−t − x0 − C0 > 0} (B.4)

where S = s(tn) is the free boundary that needs to be computed along with the solution and

C(x) =
2ĉ(x)

σ2x2
, D(x) =

2(q − r)
σ2x

, g(x) =
2f̂

σ2x2
.
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The solution method of the system in (B.3) , (B.4) requires us to observe that the functions
u(x), v(x) are related through the Riccati transformation u(x) = R(x)v(x) +w(x). R(x) and
w(x) are solutions to the initial value problems

R′ = 1−D(x)R− C(x)R2, R(0) = 0 (B.5)

w′ = −C(x)R(x)w −R(x)g(x), w(0) = (x0e
δT − τ [x0e

δT − x0 − C0]+)e−rtn (B.6)

We first solve equation (B.5) using the implicit Trapezoidal rule as detailed in Meyer (2015),
although in principle any standard technique for first order initial value problems can be
employed. Equation (B.5) depends only on the order of the difference schemes being used.
Hence, in this case, there are actually only 2 possible solutions for R(x) (depending whether
n is greater than or less than 2). Thus we solve for R(x) outside the main loop and store the
2 separate solutions off-line. Once the values of R(x) along the grid points are obtained, these
known values can be used to solve equation (B.6). This is also done using the trapezoidal rule
for ODEs described in Chapter 3 of Meyer (2015).
Now we turn our attention to finding the exercise point S = s(tn). This is done by considering
the function φ(x) = u(x)−R(x)w(x)− v(x) and noting that, by definition, it equals zero for
0 ≤ x ≤ S. Thus φ(S) = u(S) − R(S)w(S) − v(S) = 0. Moreover, the boundary conditions
of equation (7) and (9) define what values u(S) and v(S) must take. In order to compute the
appropriate S, we define the functions:

vb(x) = γT−tn − τγT−tnI{x− x0 − C0 > 0}
ub(x) = γT−tnx− τ [γT−tnx− x0 − C0]+

and see that the value of S is the root of the equation φ̃(x) = ub(x)− vb(x)R(x)− w(x).
These values are known on the points along x, so we find S by identifying where a sign change
occurs in function φ̃. More specifically, one uses the fact that φ̃(xs)·φ̃(xs+1) < 0 then S occurs
in the interval [xs, xs+1]. We use linear interpolation to estimate S. If there are multiple sign
changes, we refer to the root computed at the previous iteration and choose the one that is
closest to it, as s(t) must be continuous for this particular problem. From general financial
reasoning, a small change in t or y should not produce a discontinuous jump in the surrender
behaviour for the GMAB.
Once S is found, the reverse sweep can proceed to solve for v(x). Using the same linear
implicit method used to find w(x), the initial value problem in equation (B.4) can be solved.
Since x = S is not a point in the chosen grid, in order to perform the first backward step from
x = S to the nearest grid-point, we estimate the values of C(S), R(S), g(S) and D(S) using
linear interpolation.
Since v(x) is computed for x < S, we set the solution as:

u(x) =

{
R(x)v(x) + w(x) if x < S

ub(x) if x ≥ S
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