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Key points 

• Aggregation tests collapse multiple rare variants within a genetic region (e.g. gene, gene 

set, genomic loci) to test for association. They have successfully identified trait-
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associated rare variants and enhanced comprehension of the fundamental disease 

mechanism. 

• We reviewed numerous aggregation tests, presenting their main advantages and 

drawbacks. We described aggregates methods’ specificity given their own underlying 

assumptions and mathematical models, separating them into 5 classes: Burden, adaptive 

Burden, Variance-component, Omnibus and others. We also summarize validations and 

software for such methods.  

• We highlight current limitations of aggregation tests: cohort construction, selection of 

qualifying variants, aggregation unit definition, and test selection. All these having an 

impact on the success of an aggregation study. 

• Aggregation tests capable of managing a broad spectrum of disease mechanisms and 

can be used to prioritize genetic regions in a complete new way compared to classical 

bioinformatics tools that only handle single variants. 
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Abstract 

Over the past years, progress made in next-generation sequencing technologies and 

bioinformatics have sparked a surge in association studies. Especially, genome-wide 

association studies (GWAS) have demonstrated their effectiveness in identifying disease 

associations with common genetic variants. Yet, rare variants can contribute to additional 

disease risk or trait heterogeneity. Because GWAS is underpowered for detecting association 

with such variants, numerous statistical methods have been recently proposed. Aggregation 

tests collapse multiple rare variants within a genetic region (e.g. gene, gene set, genomic loci) 

to test for association. An increasing number of studies using such methods successfully 
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identified trait-associated rare variants and led to a better understanding of the underlying 

disease mechanism. In this review, we compare existing aggregation tests, their statistical 

features and scope of application, splitting them into the five classical classes: Burden, adaptive 

Burden, Variance-Component, Omnibus and Other. Finally, we describe some limitations of 

current aggregation tests, highlighting potential direction for further investigations.  

Introduction 

The progress in high-throughput next-generation sequencing (NGS) and biostatistics have 

resulted in a significant increase in the number of associations studies, e.g. genome wide 

association studies (GWAS). To overcome the sparsity and high-dimensional nature of GWAS 

data, several sophisticated and robust statistical methods have been developed. However, in 

scenarios where thousands of samples are at our disposal, the efficacy of single-marker 

association tests can diminish, particularly when confronted with low minor allele frequencies 

(MAF) and rare variants. Despite the unparalleled potential that sequencing offers for delving 

into the roles of rare variants in complex diseases, it is important to acknowledge that 

pinpointing these variants in association studies still remains a significant challenge [1]. 

The classical strategy to test the connection between genetic variants and complex traits in 

GWAS is to apply a univariate test (also called single variant test). Multiple testing is taken into 

account using correction by scaled p-value threshold (e.g. Bonferroni, Benjamini-Hochberg [2], 

etc.) for declaring significance [3]. Typically, the association between each variant and a trait 

is assessed through linear regression, particularly for continuous traits (also called quantitative 

traits). For binary traits (also referred to as case-control data), utilized methods include the 

Fisher’s exact test, χ2 test, logistic regression and Cochran-Armitage test for trend [4] (CATT) 

[1, 3]. The latter allowed to identify thousands of trait-associated loci. One of the most popular 

tests for common variants in GWAS is the univariate minimum p-value (UminP) [5] method 

that tests separately each SNV and subsequently uses the minimum of their p-values[6]. If some 

assumptions are met (Sample sizes are sufficiently ample, and effect magnitudes are substantial, 

MAF not small), these methods can be useful. However, Single-marker examinations exhibit 

limited ability to identify effects of modest magnitude and collecting large sample cohorts for 

rare diseases is often unfeasible. Moreover, a single-marker test’s power is very sensitive to the 

effect size, which in most cases is unknown for an individual low-frequency variant [1, 3].  

Researchers proposed multiple-marker tests, such as the Hotelling’s Τ2 test [7] (also referred as 

TTest test), which represents a multivariate extension of Student's t-test, the ZGlobal statistic 
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[8] and its variant called Weighted Score Test (WST) [9]. Hotelling's test exhibits a close 

relationship with the SCORE test [10] Within the framework of logistic regression [6]. The 

Sum test [11] also performed well under certain situations for common variants[6]. Adaptive 

combination of p-values for rare variant association testing (ADA) [12] dynamically 

amalgamates p-values on a per-site basis using MAFs as weights. This approach incorporates 

a truncation threshold for per-site p-values, strategically employed to mitigate the noise 

stemming from the inclusion of neutral variants [12]. These methods improve power of multiple 

moderate single nucleotide polymorphism (SNP) effects [3]. However, the risk allele must be 

identified at each variant, and the direction of effect affects the power of the test [3]. These 

methods lose power when There exists solely one robust signal within the genetic region due 

to their numerous degrees of freedom [3]. To overcome the need of identification of the risk 

allele, a multivariate distance matrix regression (MDMR) has been proposed [13]. The kernel-

based association test (KBAT) [14] does not make any presumptions about the direction of 

individual SNP impacts and was found to be more powerful than ZGlobal or MDMR methods 

[3]. A simulation study concerning rare variants demonstrated that multiple marker tests are 

heavily influenced by the MAF and reduced power when the number of rare causal variants 

increases in addition to the problem of multiple degrees of freedom [15]. 

Other techniques that explore the relationship between a trait and numerous variants within a 

genomic region can enhance statistical power and thereby biological interpretability. In this 

approach, numerous genetic variants are combined into a single aggregation score. This 

aggregation score is subsequently used for trait associations instead of assessing each marker 

separately. This is what aggregation tests do (also referred to as collapsing methods). These 

approaches apply a solitary univariate test to consolidated data within a cohort, leading to 

enhanced signals and reduced degrees of freedom, overcoming the multiple correction factors 

associated with numerous single variant tests or addressing the issue of high degrees of freedom 

in a multiple-marker test [3, 15]. These tests achieve an increase in power.  

In this review, we present existing aggregation methods for rare variant association testing 

among unrelated individuals, analysed by whole exome sequencing (WES), and using a case-

control (binary outcome) design. We present the state-of-the-art methods, their main 

advantages, drawbacks and some software that implement them. Finally, we highlight some 

current limitations of aggregation tests. 
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Existing aggregation methods 

Here, we provide a summary of aggregation tests for rare variants (Table 1). The goal of these 

methods is to overcome the conventional single-variant association techniques, which often 

lack the necessary power to identify rare variants effectively.  

The general statistical model underlying most aggregation tests assumes that n individuals have 

undergone sequencing for a particular genetic region (e.g. genes, WES, WGS, pathways) 

containing p variants. Let us denote by 𝑦𝑖 the phenotype of subject i, with mean 𝜇𝑖. For each 

patient i, there are (potentially) q covariates 𝑿𝒊 = (𝑥𝑖1, … , 𝑥𝑖𝑞), and also 𝑮𝒊 = (𝑔𝑖1 , … , 𝑔𝑖𝑝) with 

𝑔𝑖𝑝 = 0, 1 𝑜𝑟 2 denotes the count of the minor allele copies for variant p present in the region. 

Furthermore, let’s consider the scenario where 𝑦𝑖 conforms to a distribution within the quasi-

likelihood family and examine the subsequent generalized linear model [1, 16, 17]: 

{
𝜇𝑖 =  𝛼0 + 𝑿𝒊 𝛼 + ℎ(𝑮𝒊)𝛽 + 𝜀𝑖 , 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑡𝑟𝑎𝑖𝑡 

𝑙𝑜𝑔𝑖𝑡(𝜇𝑖) =  𝛼0 + 𝑿𝒊 𝛼 + ℎ(𝑮𝒊)𝛽, 𝑏𝑖𝑛𝑎𝑟𝑦 𝑡𝑟𝑎𝑖𝑡 
 

Equation 1 

Where 𝛼0 is an intercept that aims at modeling the disease prevalence, 𝛼 = (𝛼1, … , 𝛼𝑞)𝑇 are 

the regression coefficients for the covariates, 𝑿𝒊, 𝛽 = (𝛽1, … , 𝛽𝑝)𝑇 are the regression 

coefficients for the allele counts, 𝑮𝒊, ℎ(·) is an flexible function characterized solely by a 

positive semidefinite kernel function 𝐾(·,·), and 𝜀𝑖 is an error term. We will show later that 

equation 1 is a special case (namely a linear kernel). Choices that are more complex can be 

made. The score statistic of the marginal model for variant j is defined as 

𝑆𝑗 = ∑ 𝑔𝑖𝑗(𝑦𝑖 − 𝝁𝒊)

𝑛

𝑖=1

 

Equation 2 

Where 𝝁𝒊 is the estimated mean of 𝑦𝑖 under the null hypothesis (𝐻0: 𝛽 = 0 and is obtained by 

application of the null model 𝝁𝒊 𝑙𝑜𝑔𝑖𝑡(𝝁𝒊)⁄ =  𝛼0 + 𝑿𝒊𝜶 [1]. The statistics 𝑆𝑗 in equation 2 will 

be positive if variant j increases the risk of disease or trait values, and negative if it decreases it 

We use the most widely [1, 18-20] used classification of aggregation tests: Burden, adaptive 

Burden, Variance-component, Omnibus and Other tests, even though some other classifications 

have been proposed [21]. 
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Burden tests 

Burden tests is probably the most famous class of aggregation tests. They amalgamate fata from 

multiple genetic variants into a singular genetic score, facilitating the assessment of the 

relationship between these composite scores and a given trait [1, 22]. The classical and basic 

approach simply count all the numbers of minor alleles present across all variants within the 

region of interest. Therefore, the summary genetic score is 

𝐶𝑖 = ∑ 𝑤𝑗𝑔𝑖𝑗

𝑝

𝑗=1

 

Equation 3 

Where 𝑤𝑗  is the weight for a variant j. In comparison with the previous model, this is identical 

to putting 𝛽𝑗 =  𝑤𝑗𝛽 in the regression model in equation 1 and testing 𝐻0: 𝛽 = 0 in the 

simplified model 𝝁𝒊 𝑙𝑜𝑔𝑖𝑡(𝝁𝒊)⁄ =  𝛼0 + 𝑿𝒊𝜶 + 𝐶𝑖 𝜷 [1]. The corresponding score statistic to 

test 𝐻0: 𝛽 = 0 is then 

𝑄𝐵𝑢𝑟𝑑𝑒𝑛  =  (∑ 𝑤𝑗𝑆𝑗

𝑝

𝑗=1

)

2

 

Equation 4 

A p-value can be acquired by comparing it to a chi-square distribution with a single  degree of 

freedom [1, 20]. The summary genetic score 𝐶𝑖 see equation 3 can be modified in order to 

accommodate various presuppositions regarding the mechanism of the disease. This is the case, 

for example, of the combined and multivariate collapsing (CMC) [15] or the cohort allelic sums 

test (CAST) [23]. They both assume that the inheritance mode is collectively dominant [20]. 

The CAST makes the hypothesis that the existence of any rare genetic variant augments the risk 

of the disease. Therefore, considering a dominant model, the test sets the genetic score 𝐶𝑖 = 0 

if no minor alleles are present in the region and 𝐶𝑖 = 1 otherwise. The accumulation of rare 

variants integrated and extended locus-specific extensions test (ARIEL) [24] broadens burden 

score to accommodate variability in the quality scores of the variants. The rare variant tests 

(RVT) [25, 26] (also referred to as MZ tests [1]) is an example of collapsing methods within a 

regression framework. These approaches characterize the phenotype by employing a 

summarized representation of variants in one of two manners: RVT1: the fraction of rare 
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variants that bear at least one copy of the minor allele for every individual; RVT2: whether each 

individual possesses or lacks at least one minor allele across any rare variant [3].  

Classical burden tests make use of the regression method. Yet, some have been constructed 

outside this framework. This is the case of the CMC test above. CMC aggregates rare variants, 

akin to CAST, yet with two main differences. It uses distinct MAF categories and appraises the 

collective impact of both rare and common variants using Hoteling’s test [1], which improves 

the robustness of inclusion of non-causal variants. Another alternative to regression is to obtain 

p-values by permutation. This is done in the weighted-sum test (WSS) [27] (also referred to as 

the weighted-sum collapsing approach (WSC) [20], or the w-Sum test [6]). The latter uses the 

Wilcoxon rank-sum test and posits that the magnitude of the effect is inversely related to the 

MAF [20]. For CATT, the assumption is that the probability of being disease causing rises in 

tandem with the count of rare minor alleles, rendering the counts of minor alleles suitable for 

consideration as ordered categories [3]. A contingency table is used to juxtapose the minor 

allele count (MAC) between case and control groups. The cumulative minor-allele test (CMAT) 

[28] takes into consideration the uncertainty introduced by imputation methods on genotypes. 

This test holds potential for reevaluating established GWAS datasets. Finally, RareCover [29] 

utilizes a selective approach employing a greedy method to choose a subset of rare variants 

using forward variable selection that best associates with the phenotype.  

While most methods described above are exclusive to case-control data (binary traits), the 

regression approaches [26] could also handle continuous phenotypes [3]. The strongest 

assumption behind all Burden tests is that every rare variants within the genetic region of 

interest are causative and linked to the trait of interest with the same direction and magnitude 

of effect [22, 30]. If that hypothesis is violated, this could lead to a significant reduction in 

statistical power. 

Adaptive Burden tests 

To overcome the natural limitation of the burden tests, several authors have proposed adaptive 

burden tests. These methods are robust and can handle null variants and both trait-increasing 

and trait-decreasing variants [20]. For example, Han & Pan [31] proposed five versions of a 

new adaptive sum (aSum) test made of five steps. It begins with an estimation of the possible 

direction of effect for each variant. It assigns 𝑤𝑗 =  −1 when 𝛽𝑗  is probably negative and 𝑤𝑗 =

1 otherwise [1]. If 𝑤𝑗  is negative, the corresponding SNP coding is reversed. The resulting set 

of coding SNPs is then employed in fitting the common-effect model [3]. It computes test 
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statistics, using the estimated directions as weights. The authors recommend to use the aSumC-

P test [31]. The latter collapses rare and common variants into two groups, then tests on the two 

associated regression coefficients within a logistic regression model [31]. In order to compute 

p-values, this version of the aSum test uses permutation. The aSum+ uses a more constrained 

form of variable selection, in contrast to the aSum that uses direct variable selection [32]. In 

order to enhance the performance compared to the aSum+ test, an adaptive Sum test that relies 

on two directional search approaches (aSum2) [33] (also called aSum2d [34]) proposes utilizing 

both positively and negatively associated variants. It was found to improve power in detecting 

gene–gene interactions for common variants [34].  

Authors [32] have also proposed an adaptive score test (aScore). The p-value weighted sum test 

(PWST) [35] weights variant individually, including both direction and significance of 

individual variant impacts. These are used to calculate a unified weighted sum score derived 

from rescaled left-tail p-values obtained through single-variant analysis. Subsequently, a 

permutation test of association is conducted between this score and the given trait [35]. The 

comprehensive approach to analyzing rare variants (CARV) [36] selects the optimal 

combination of rare variants and aggregates them into a single group. After testing three 

approaches (hard, variable and step-up), the agnostic step-up method achieving an optimal 

grouping of rare variants without relying on preexisting assumptions was recommended [36]. 

It refines the procedure of the aSum and allows to assign wj = 0 when a variant is unlikely to be 

associated with a trait [1]. Another data adaptive test is the estimated regression coefficient 

(EREC), which assigns weights by estimating a regression coefficient of each variant [37]. The 

idea behind EREC is that true regression coefficient 𝛽𝑗  serves as an optimal weight to maximize 

power [1]. However, the latter is difficult to achieve for rare variants. Indeed, 𝛽𝑗  estimates 

become unstable when the MAC is low [37]. In this case, EREC tries stabilizing the estimates 

by introducing a slight adjustment to the estimated 𝛽𝑗 , which could potentially diminish the 

optimality of EREC and make it behave more like a burden test (not data adaptive anymore) 

[37]. The p-values are estimated using parametric bootstrap [1]. aSum, PWST and EREC are 

computationally intensive because during each permutation, they iteratively compute the 

marginal estimates for the coefficient 𝛽𝑗  [34]. 

As a third way to improve classical burden tests, the variable threshold (VT) [38] is based on 

the assumption that the link between allele frequency and effect size might vary greatly with 

the intensity of selection (i.e. all variants with MAF below the threshold have the same effect 

size [20]). VT test choses optimal frequency thresholds for conducting burden tests on rare 
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variants and assesses statistical significance by permutation [38]. The rare variant weighted 

aggregate statistic (RWAS) [39] computes optimal weights based on the assumption of a 

constant population-attributable risk for all variants [20]. The kernel-based adaptive cluster 

(KBAC) method [40] first classifies variants, and then tests for association using kernel-based 

adaptive weighting. Here, covariates (e.g. sex, population stratification, etc.) can be taken into 

account. KBAC has a greater power than other rare variant analysis techniques like CMC and 

WSS, even in scenarios involving variant misclassification and gene interactions, KBAC is 

particularly advantageous [40]. Finally, the summation of partition approach (SPA), a robust 

model-free method also exists. It was deliberately tailored for the detection of marginal effects 

as well as effects arising from gene-gene and gene-environmental interactions within the 

context of rare variants association studies [41].  

This section shows that adaptive burden tests constitute an improved version of the classical 

burden methods. Indeed, they rely on fewer assumptions concerning the underlying genetic 

model. However, as limitations, one can observe that estimating the regression coefficients for 

individual variants is frequently challenging and prone to instability for rare variants, and the 

permutation needed by most adaptive tests in order to estimate p-values makes them 

computationally intensive [1]. Many adaptive tests have been compared and they share power 

similar to that of variance-component and combined tests, which will be discussed next [6]. 

Variance-Component tests 

Variance-Component tests were introduced in order to allow flexibility in regard to two main 

hypothesis concerning the variants: direction of effect and effect size. These tests are able to 

handle both protective and deleterious variants, as well as variants with effect sizes of different 

magnitude [20]. This new class of methods, instead of grouping rare variants of a region of 

interest, uses random-effect models. These methods ascertain association by examining the 

distribution of genetic effects across a set of variants[1]. Tests that are part of this class include 

C-alpha [42], the sum of square score (SSU) test [43], and the sequence kernel association test 

(SKAT) [17, 30]. They assess the distribution of the aggregated score test statistics (eventually 

using weights) of each variant [1]. If there is no covariate, SKAT reduces to a C-alpha test. In 

contrast, SKAT can also handle SNP-SNP interactions [30]. Going back to equation 1, a random 

effect model states that regression coefficients 𝛽𝑗  adhere to a distribution characterized by a 

mean of 0 and variance 𝑤𝑗
2τ [20]. In this case, the test hypothesis for association reduces to 

𝐻0: τ = 0 by using a variance-component score. As an example, the SKAT test statistic is given 

by 
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𝑄𝑆𝐾𝐴𝑇 =  ∑ 𝑤𝑗
2

𝑝

𝑗=1

𝑆𝑗
2 

Equation 5 

Equation 5 is a summation of squared single-variant score statistics 𝑆𝑗, with each term weighted 

accordingly see equation 2 [1]. Contrary to burden tests (see equation 4), SKAT aggregates 𝑆𝑗
2 

instead of 𝑆𝑗, which makes it able to handle both protective variants and deleterious variants. 

Different kernels allow one to model different genetic models. Therefore, the more flexible and 

adaptable the kernel is, the more complex and different problems (e.g. different diseases, with 

different underlying genetic models) can be tackled. The element of interest is the function ℎ(·) 

in equation 1. It is the most important element of the equation as it is the one that dictates how 

variants are taken into account for disease risk. We detail here the different kernel choices 

available in the SKAT package. Suppose ℎ𝑖 = ℎ(𝐺𝑖) = ∑ 𝐾(𝐺𝑖 , 𝐺𝑙)
𝑛
𝑙=1 , and in order to simplify 

and illustrate the following, the score statistic given by equation 5 will be rewritten, using 

matrix notation, thanks to equation 2 as 

𝑄𝑆𝐾𝐴𝑇 =  (𝑦 − 𝝁𝒊)
𝑇𝐾 (𝑦 − 𝝁𝒊) 

Equation 6 

The kernel function K, is an 𝑛 ×  𝑛 matrix. The function 𝐾(𝐺𝑖1𝑗 , 𝐺𝑖2𝑗) measures the genetic 

similarities between individual 𝑖1 and 𝑖2 within the region of interest thanks to the p variants 

taken into account [1, 17, 30]. By choosing different kernel functions, it is possible to define 

new bases and association models [44]. A detailed description of kernels can be found in 

Supplementary Data. 

The classic SKAT could lose power if the sample size or the coefficient of variation of the 

kernel spectrum is small. The power loss is due to ignoring the uncertainty in the error variance 

estimate. Several versions of adjusted SKAT for different types of outcomes exist to improve 

the power of SKAT in unfavorable situations. They circumvent the difficulty to estimate error 

variance under small sample sizes by deriving a scale-free statistic similar to F-statistic. For 

univariate continuous and binary outcomes, the adjusted SKAT (aSKAT) [45] increased the 

power in microbiome association studies, although the increase in power for human genetic 

association studies was constrained. The multivariate continuous outcome (mSKAT) [46] 

allows one to assess the combined association of rare variant collections with numerous traits. 

The correlated sequence kernel association (cSKAT) test [47] is more powerful in case of 
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correlated continuous outcome. The Recalibrated Lightweight SKAT (RL-SKAT) [48] 

demonstrated that this adjustment could additionally boost statistical power for extensive 

sample sizes [19], but more work remains to be done to extend the method to multiple kernels 

and binary phenotypes. A conditional asymptotic distribution has also been introduced for the 

kernel association test (KAT) [49], which can be used as a screening tool followed by 

comprehensive permutations (classical SKAT) at genes that display signals. For SKAT, all 

subjects are used for estimation of the null genetic covariance. The SKAT+ [50] employs 

identical test statistics as SKAT, but it distinguishes itself through its approach to estimate the 

null distribution, using only control subjects. For multivariate traits [19], results [51] indicate 

that no single approach consistently possesses superior power across the methods. The most 

suitable test hinges on factors such as the extent of phenotype correlation and the nature of 

effect patterns. However, the multivariate kernel machine regression (MV-KM) [51] seems to 

be a reasonable approach. When confronted with a substantial quantity of neutral rare variants, 

SSU and aSSU are more robust [32]. The Bayesian Score Test (BST) [52] is a permutation-

based method equivalent to SSU despite its reliance on an empirical Bayesian model featuring 

an independent prior for genetic variant effects [6]. 

Large-sample-based p-value computation might produce inaccurate type I error rates if sample 

sizes or total MAC are small [1]. In this situation, if the number of cases and controls are equal, 

the false positive rate can be underestimated. On the other hand, if they are not equal, the latter 

can be overestimated [44]. To address the latter problem, a moment-based method capable of 

adjusting the asymptotic null distribution using estimates of the exact small-sample variance 

and kurtosis of the test statistic was developed [1, 44]. Despite this, if the MAC is very low, 

obtaining accurate p-value estimates might require bootstrap or a permutation approach. 

A comprehensive examination of kernel methods is conducted in an in-depth review [19], 

delving further into aspects such as hypothesis testing, extensions for various traits, and the 

intricate design of underlying kernels. This review [19] establishes linkages between kernel 

tests and other statistical methodologies.  

Omnibus tests 

Also called combination tests, omnibus tests combine burden and variance-component tests. 

The main idea behind them is to aggregate evidence from multiple complementary sources [20]. 

On one hand, variance-component tests exhibit greater statistical power when compared to 

burden tests if the region of interest has many non-causal variants or if the causal variants are 
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both protective and deleterious. On the other hand, burden tests tend to exhibit greater statistical 

power compared to variance-component tests when the region of interest contains a significant 

proportion of causative variants that share the same association direction [1]. Because both 

previously described situations can happen, omnibus tests can be more robust. For example, a 

method was designed to combine p-values of the two tests (burden and variance-component) 

with Fisher’s method, and a permutation in order to compute the significance of the test [20, 

53]. The Fisher statistic takes the form 𝐹𝑖𝑠ℎ𝑒𝑟 = −2 log(𝑝𝐵𝑢𝑟𝑑𝑒𝑛) − 2log (𝑝𝑆𝐾𝐴𝑇). Where 

𝑝𝐵𝑢𝑟𝑑𝑒𝑛 and 𝑝𝑆𝐾𝐴𝑇 are p-values obtained from Burden and SKAT tests, respectively. Another 

approach is to use convex combination of burden test and the SKAT statistics with a 

predetermined weight coefficient or adaptive data. The optimal SKAT (SKAT-O) is a linear 

combination in the following form 𝑄𝜌 = 𝜌𝑄𝐵𝑢𝑟𝑑𝑒𝑛 + (1 − 𝜌)𝑄𝑆𝐾𝐴𝑇 , 0 ≤ 𝜌 ≤ 1  [22, 44]. 

Where parameter 𝜌 can be viewed as a pairwise correlation among the genetic effect 

coefficients 𝛽𝑗  in equation 1 [1]. The parameter 𝜌 is likely to be unknown. Therefore, SKAT-

O computes an approximate optimal weight coefficient, 0 ≤  𝜌 ≤ 1 heuristically. It will 

evaluate p-values over a range of 𝜌 values and selects the value that results in stronger evidence 

of an association (i.e. the minimum p-value computed over the grid) [20]. One of the strength 

of the SKAT-O relies in the fact that its asymptotic p-value can be computed efficiently with 

one dimensional numerical integration tools [1, 20].  

The evolutionary mixed model for pooled association testing (EMMPAT) [54] is similar to the 

SKAT-O. EMMPAT uses a hierarchical model for rare variant associations [48]. An important 

advantage is that it allows the incorporation of known characteristics of variants [20]. This 

method loses power if the variant annotations are not correlated with the variant effect size.  

Another example of hierarchal model such as EMMPAT is implemented in the mixed effects 

score test (MiST) [55] that has the The ability to discern which aspects of variant properties and 

heterogeneity contribute to the observed association. The sum of powered score (SPU) tests 

[34] generalize the sum test [43], a representative burden test and the SSU, a variance-

component test. SPU may be useful in the presence of many non-associated rare variants [34].  

The variant-set mixed model association tests (SMMAT) [56] are computationally efficient and 

scalable for WGS analysis. SMMAT comes in four forms, the burden test (SMMAT-B), SKAT 

(SMMAT-S), SKAT-O (SMMAT-O), as well as the recommended version (SMMAT-E). This 

test combines the burden test and an adjusted mixed model SKAT statistic  maintains 

asymptotic independence from the mixed model burden test statistics [56], such as the MiST in 
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non-mixed model setting [55]. DoEstRare [21] combines a burden test along with a position 

test comparing rare variant position distribution and average allele frequencies of a region. The 

position test computes variant position densities within the genetic region for both cases and 

controls using a kernel method, where the weights are determined by a function of allele 

frequencies [21]. 

Omnibus tests reach robust power and outperform Burden or variance-component tests in a 

broad spectrum of situations. However, if the assumptions behind them (burden or variance-

component) are largely true, omnibus tests can be less powerful. Yet, as investigators seldom 

possess prior knowledge regarding the underlying genetic structure, omnibus tests constitute an 

attractive choice. As a global remark on combination tests, the naive procedure of picking the 

minimal p-value of different methods will most of the time yield to an inflated type I error rate 

[1].  

Other methods 

There are still other methods that do not fit the above categories. As seen previously, burden 

and variance-component tests use linear and quadratic sums of Sj respectively, whereas, for 

example, the exponential-combination (EC) test [57], uses an exponential sum of S2
j. The EC 

test is based on the assumption that only one or very few variants within a genetic region are 

causal [57]. The EC test statistic is as follow 𝑄𝐸𝐶 =  ∑ exp (
𝑆𝑗

2

2 𝑣𝑎𝑟(𝑆𝑗)
)𝑝

𝑗=1  where 𝑆𝑗 is defined by 

equation 2. If the assumption fits well the unknown underlying genetic model, the test will 

outperform the others. If only an exceedingly minor fraction of variations are causing the 

disease, EC achieve higher power than the above tests, thanks to the exponential function 

increasing very quickly as 𝑆𝑗
2 increases [1]. Obviously, if too many variants are associated with 

the trait, the EC test will perform poorly. Moreover, in order to estimate p-values, the 

permutations method is required as the null distribution of 𝑄𝐸𝐶  is not known.  

Another method that depends on sparsity of the signal is the least absolute shrinkage and 

selection operator (LASSO) and penalized regression [58]. The replication-based test (RBT) 

[59] (also referred to as RB [41]) uses a replication-based strategy, which is based on a 

weighted-sum statistic to measure: the enrichment of rare alleles in cases (trait-increasing 

alleles); and controls (trait-decreasing alleles) [20]. This method holds the benefit of being less 

influenced by the  existence of both protective and risk variants within a genetic region [59]. In 

the past, RBT has been classified as an adaptive burden test [1]. The Bayesian risk index (BRi) 
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[60] incorporates model uncertainty when deciding which variants to include in the index, along 

with the direction of their associated effects. 

Nengjun Yi and Degui Zhi introduced a novel Bayesian hierarchical generalized linear model 

(we refer to it as the YZ test) that uses prior distributions to specify aspects of the distribution 

of effect sizes [61]. This method allows dealing with disparate effects and non-functional 

variants. However, Bayesian approaches [60, 61] have not been as popular as frequentist 

approaches for rare variants because of computational issues [20]. 

Methodology for aggregation tests benchmarking 

We give an overview of the methods see Table 2, their scope and data used to validate them by 

extending the table proposed in [6]. There are three steps to establish the validity of a new 

aggregation method. First of all, one should simulate data to mimic the population genetic 

samples under a given demographic model (e.g. using a home-made design, available 

software/resources [62-69] or reuse design from existing methods [6, 9, 15, 27, 37, 43, 44, 70, 

71]) and build a simulation pipeline to analyze such data. The second step is to select state-of-

the-art method to benchmark the new aggregation test. One can see that most methods have 

never been compared see Table 3. Last step is to apply the new method on real data when 

available [72-89]. There is no consensus on how to perform these three steps.  

Software for aggregation tests 

Most articles introducing a new method for aggregation provide an implementation freely 

available. The complexity of rare variant analyses makes it difficult to establish a global 

framework able to meet all analysis needs for each study. In such situations, investigators might 

find it desirable to implement custom-designed approaches to carry out specific analyses [90]. 

While reviewing available software [17, 21, 22, 30, 37, 41, 44-51, 55, 91-98] see Table 4, we 

came across some outdated packages. These previously described programs [19], are no longer 

available: the SPA3G CRAN package for gene-gene interaction analysis for continuous 

phenotypes using kernels [99]; the iSKAT, implementing the GESAT for gene-environment 

interaction kernel [19] (note that the GESAT method can be available by contacting the authors 

[100]); FAmily-based rare variant association test for gene-based association test with related 

samples (FARVAT) [101]; and the KMgene CRAN package [102]. 

General comments 

We reviewed numerous aggregation tests, illustrating the fast evolution of the field. Table 2 

aggregates methods’ specificity given their own underlying assumptions and mathematical 
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models. It shows that the robustness and power of most methods tend to be validated based on 

simulated data given very specific numerical simulations that tend to model the best scenario 

for the method under study [103]. It is clearly necessary to establish a general simulation 

framework to enhance our knowledge on the behavior of the methods, as proposed by several 

authors [6, 11, 104-106]. It is necessary to rigorously compare the performance of different 

methods using well-established benchmark datasets, to evaluate the respective strengths and to 

conduct solid benchmarking studies [107, 108]. We focused on methods for binary traits, but a 

vast amount of aggregation tests have been developed outside this framework (e.g. Family-

based association test [101, 109], pedigree data [19, 95], quantitative traits [51], interaction 

testing [19], and haplotype-based methods [105]). The latter might be more useful in frequent 

disorders where common variants are looked for, compared to rare disease research in which 

private variants are usually searched. Other methods reuse the statistical methods described 

above, adapting them for specific sequencing technologies. For example, WGScan test [110] 

has been specifically designed for whole genome sequencing (WGS) data. The three version of 

WGSscan are based on classical CMC, SKAT and SKAT-O methods, respectively. Some 

methods try to improve existing methods by repeating the same idea but on different cluster of 

variants. For example, the subregion-based burden test (REBET) [111] performs a classical 

burden test and then splits the significant regions (e.g. genes) based on variable criteria (e.g. the 

same biological function, similar functional impact) into all possible combinations of 

subregions to find the combination that shows the strongest evidence of association. 

Current limitations of aggregation tests 

The outcome of an aggregation study relies on several factors that influence the range of 

detectable effect sizes [112]. Most methods have been developed in order to fit a particular set 

of parameters (i.e. set of answers to the questions below). We focus on methods for binary trait 

(cases versus controls), using WES data and rare variants. An evaluation of the methods 

dedicated to related samples is available elsewhere [113]. There are no clear-cut answers to the 

questions below and further investigations regarding the behavior of aggregation tests is 

needed, as it has been shown that they have a non-negligible impact on the association results 

[1, 16, 90, 104, 106, 113, 114]. 

How to construct the optimal cohort?  

Two main points have been raised regarding cohort construction for association studies, namely 

the proportion of cases versus controls and the cohort size.  
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Across most aggregation methods (see Table 2), simulation is based on the same number of 

cases and controls, while some real data applications are based on unbalanced cohorts. In the 

presence of imbalance between the numbers of cases and controls, methods that rely on 

asymptotic properties cannot be used [114]. Further investigations are required to evaluate the 

impact of unbalanced cohort on type I error and power of these methods.  

The second limitation comes from the cohort size. It requires a large amount of individuals to 

observe enough copies of rare variants [90]. As an illustration, to have a 99% probability of 

sampling alleles with a frequency of 0.5% or 0.05%, sequencing at least 460 or 4,600 

individuals, respectively, is necessary [1]. Comparative studies showed that the power of 

detection ranges from 5 to 20% for a cohort size of 3K, while using a 10K cohort, the power 

was around 60% [106]. Background variations, which vary across the genome, directly affect 

sample sizes needed to detect associations of a genetic region [104]. Locus heterogeneity and 

mode of inheritance are primary drivers determining the needed sample size [104]. 

How to include qualifying variants?  

This general question should be investigated in regard to four dimensions on the qualifying 

variants: How to weight them, handle protective effects, handle non-causal variants and set an 

optimal MAF threshold?  

The first dimension only concerns methods able to include a weighting scheme within their 

mathematical model (see Table 2). Setting an optimal weighting procedure for a particular 

association study is not feasible in practice, because it requires to know the effect of each 

qualifying variant within the disease model. It is recommended to check the ratio of potential 

weights before applying them to variants to ensure that the range is compatible [90]. For 

example, it is rare that the weight of one variant is hundreds of times higher than another one, 

and that can lead to false positives (e.g. if the up weight variant is non-causal). The classical 

weighting scheme [27] for aggregation tests, using only the MAF, has already been proven to 

be powerful. As an extension of that, possible weighting of variants based on prior knowledge 

such as functional prediction scores [90] can be used. 

The second issue, the presence of protective variants, gave birth to a new class of aggregation 

tesst (see Variance-component tests) able to handle both risk-increasing and risk-decreasing 

variants [1]. Any association study willing to address this issue must therefore focus on methods 

able to take the direction of effect into account in their mathematical model (see Table 2).  
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Regarding the third dimension, increasing sample sizes (from 3000 to 10 000 individuals) also 

increases the number of neutral variants, which may limit gains of power for some methods 

[106]. As a consequence, non-causal variants may dilute the association signal. It is 

recommended to use methods that are robust for the inclusion of such variants (e.g. CMC, 

SKAT-O) [90]. While studying the correlation between statistical power and the filters 

employed to prioritize variants that have a higher likelihood of being pathogenic, less stringent 

filters may be advantageous [104]. This merits further study. 

How to set an optimal MAF threshold is closely linked to establishing a weighting procedure, 

in the sense that it will require knowing in advance which variants are involved in a particular 

disease mechanism. Classical GWAS focuses on the identification of common variants. The 

idea of focusing on variants below a MAF threshold (e.g. 𝑀𝐴𝐹 < 1%), is that these might 

elucidate supplementary disease susceptibility or variability in trait expression [1]. Although 

MAF resolution depends on the database used, the strongest signals from this type of 

association analyses are concentrated among the rarest variants [114]. Future work should 

characterize aggregation methods given different MAF threshold [106].  

Which genetic region for aggregation unit?  

One of the first decision in order to perform association studies is selecting a particular unit, or 

genetic region in which all qualifying variants will be aggregated (e.g. genes, pathways, GO 

terms). These units are established based on genomic coordinates, gene annotations or 

functional characterization [16], and therefore depend on the annotator tool or database used. 

To reduce the impact of multiple testing correction (assuming 20 000 genes in the human 

genome, a Bonferoni correction would lead to an 𝛼 = 2.5 × 10−6 as a significance threshold 

in an exome-wide search), it might be of interest to restrict an analysis to a gene list of interest. 

Constructing the latter raise other issues and considerations, such as the need to construct a 

curated gene list for the disease being studied, which are well beyond the scope of this review 

[115]. However, gene-sets have been used as testing unit [116]. These also rely on databases 

such as MSigDB [117], Reactome [118] and KEGG for pathways [119], or the Gene Ontology 

Resource for GO terms [120]. However, such genetic regions might include an excessive total 

number of variants leading to both computational time explosion and association signal 

dilution. It is expected that only a few genes within these gene-sets truly harbor causal variants 

[90].  
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Which aggregation tests to use? 

All the above questions can be summarized in one: which aggregation tests to use? The 

comparative efficacy of aggregation techniques is contingent upon the underlying disease 

architecture, which is typically unknown [1]. In cases where it is anticipated that a genetic 

region contains a substantial proportion of causal rare variants, with the majority of them 

promoting disease risk, Burden tests are expected to exhibit higher statistical power [1]. 

However, for other association studies, it may be challenging to properly answer the above 

question. A current recommendation is to try multiple methods and subsequently adjust p-

values while considering the utilization of  diverse methods. This strategy is employed to 

prevent the inflation of type I errors. Alternatively, one can consider employing an Omnibus 

test, which is anticipated to possess robust statistical power across a broader spectrum of disease 

models [1]. No single approach outperforms all others in every situation [90], and results may 

vary based on the specific tests that are used [106]. All this indicates the difficulty for 

researchers, aiming to apply aggregation tests, to select the optimal statistical test for a 

particular problem at hand.  

Conclusions and future directions 

In this review, we have focused on rare-variant aggregation tests for testing association among 

unrelated individuals, sequenced by WES, and using a case-control (binary outcome) design. 

An extensive literature for other settings exists (e.g. family-based [113], quantitative traits 

[121]). Most of the observations and conclusions drawn here may directly apply to other 

sequencing technologies (e.g. WGS [16]), although, each design comes with its own challenges. 

In the past few years, the decreasing cost of sequencing has facilitated data procurement. These 

databases, along with modern statistical methods, have allowed to overcome the classical 

limitations of GWAS imposed by low allelic frequency. Therefore, the literature on association 

studies has mainly focused on such variants, which has led to the explosion in the number of 

methods available to perform such analysis. These aggregation tests have increased sensitivity 

and constitute a new powerful way to explore genetic data in order to improve our 

understanding of a wide range of disease mechanisms (e.g. Mendelian, oligogenic and 

complex). They already have proven to be useful to uncover genetic regions associated with 

many traits (e.g. see Table 2, real data), although the identification of causal variants must yet 

to be documented for the majority of the studies [105]. Indeed, a challenging task will be to 

establish biological methodologies to confirm (e.g. in vitro, in vivo) such discoveries. 
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Nonetheless, aggregation tools can be used to prioritize genetic regions in a complete new way 

compared to classical bioinformatics tools that only handle single variants.  

Our growing understanding of the benefits of each class of methods (e.g. underlying 

assumptions behind the models, type I error, power, computational efficiency), have facilitated 

the informed choices about which aggregation test to use for a particular scenario. This is 

imperative to ensure minimizing false positive discoveries [18]. Developing new methods for 

the analysis of rare variants should not prevent future work to focus on comparing already 

existing ones. Indeed, the robustness and power of the statistical models still needs to be 

assessed and compared in a wide variety of contexts in order to enhance our ability to choose 

the right statistical test for a problem at hand [103]. An important field of investigation to 

overcome current limitations in aggregation tests consists of follow-up studies and meta-

analysis [18, 122] that were not discussed here. 
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