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Abstract

This paper proposes a new boosting machine based on forward stagewise additive modeling
with cost-complexity pruned trees. In the Tweedie case, it deals directly with observed re-
sponses, not gradients of the loss function. Trees included in the score progressively reduce
to the root-node one, in an adaptive way. The proposed Adaptive Boosting Tree (ABT)
machine thus automatically stops at that time, avoiding to resort to the time-consuming
cross validation approach. Case studies performed on motor third-party liability insurance
claim data demonstrate the performances of the proposed ABT machine for ratemaking, in
comparison with regular gradient boosting trees.

Keywords: Risk classification, Boosting, Gradient Boosting, Regression Trees, Cost-complexity
pruning.



1 Introduction and motivation

Boosting emerged from the field of machine learning and became rapidly popular among
insurance analysts due to its outstanding performance. Broadly speaking, boosting is an
iterative fitting procedure that sequentially improves the overall model fit by incorporating
a new base learner at each step, resulting in an accurate prediction. Boosting works by
adding the newly fitted base learner to the previously estimated score in each iteration. For
a general introduction to statistical learning in insurance, we refer readers to Denuit et al.
(2019a). For an in-depth discussion of boosting in the context of insurance studies, including
applications to tree-based methods and neural networks, we refer readers to Denuit et al.
(2019b, 2020).

To simplify numerical computations, boosting is often applied on gradients of the loss
function. Rather than minimizing the deviance associated with the responses, gradient
boosting applies a least-squares principle on its gradients. This approach has made boosting
very popular among data analysts, and several open-source software packages now implement
highly effective boosting algorithms, such as the Extreme Gradient boosting (XGBoost)
algorithm. Applications of gradient boosting in insurance include studies by Guelman (2012),
Yang et al. (2018), Lee and Lin (2018), Pesantez-Narvaez et al. (2019), and Henckaerts et
al. (2021).

However, boosting is not limited to gradients and can also be regarded as an iteratively re-
weighted, or re-offseted procedure applied to the original data, as established by Hainaut et
al. (2022). Precisely, it is shown that it is unnecessary to boost gradients in some insurance
applications, as boosting can be easily performed directly with responses under Tweedie
deviance and log-link. Given that this setting is now widely adopted by actuaries to conduct
their analyzes, this result is widely applicable to insurance studies. This extends the results
previously obtained by Wüthrich and Buser (2019) in the Poisson case with canonical link
function to the whole Tweedie family under log-link. This alternative view to boosting makes
the approach very intuitive and better suited to the shape of data commonly encountered
in insurance applications, such as low counts for claim numbers in personal lines and highly
skewed severity data.

To prevent overfitting, cross validation is used to stop the boosting algorithms when its
prediction capabilities start to deteriorate. Early stopping plays a central role in ensuring
a sparse model with optimal performances on new data. The optimal stopping iteration is
the one which leads to the smallest average empirical loss on the out-of-sample test data
or as measured by cross validation. The latter technique consists in randomly splitting the
training data set into several folds. Each part is then held out of the analysis and the model
is fitted on the remaining data to predict the observed values of the response in the part
set aside. Cross-validation is a convenient way to balance the goodness of fit and model
complexity, as a model too close to the training set often produces worse predictions by
reproducing noise in the data or overfitting the training data. However, cross-validation can
be computationally expensive.

The standard boosting algorithm has another drawback in that it does not adapt along
the sequence of scores produced by the forward stagewise additive procedure. Rather than
allowing for trees with constant interaction depth at each iteration, it might be more pow-
erful to let the complexity of the newly added tree adapt to the structure remaining to be
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learned from the data. This idea leads to the proposed ABT (Adaptive Boosting Trees)
machine, where trees added to the score progressively adapt their complexity to the amount
of information left to discover from the data.

The idea behind the proposed ABT machine is based on tree pruning. Decision trees
are widely used in machine learning and are appreciated for their interpretability in various
domains. For a comprehensive overview of the latest advances in tree-based models, readers
are directed to the review by Costa and Pedreira (2022). It is noteworthy that while tree
ensemble methods such as bagging trees and boosting trees are conceptually related to trees,
they have emerged as a distinct area of study with unique considerations, challenges, and
literature. Among the techniques developed for decision trees, pruning has been extensively
investigated in the literature. However, the term “pruning” can be ambiguous in the con-
text of tree-related literature, and it is crucial to distinguish between pruning of a single
tree in the context of tree literature versus ensemble pruning as discussed in the literature
on ensemble techniques. Two pruning approaches for a single tree exist: pre-pruning and
post-pruning. For pre-pruning literature, please refer to Quinlan (1986), Wu et al. (2016)
and Garcia Leiva et al. (2019). Although post-pruning remains popular, recent innovations
have been limited, and Breiman’s cost complexity pruning (1984) remains the reference in
post-pruning methods. For additional details about tree pruning methods, readers are re-
ferred to Windeatt and Ardeshir (2001). The concept of “pruning the ensemble” has been
introduced by Margineantu and Dietterich (1997). They investigated the possibility of select-
ing a subset of decision trees constructed by the Adaboost algorithm to achieve comparable
performance. The authors presented five pruning methods, including early stopping and
KL-divergence pruning, kappa pruning, kappa error convex hull pruning, and reduced error
pruning. Their results demonstrated that, in most cases, the produced tree ensemble can be
significantly pruned (reduced). These findings have been widely accepted by the machine
learning community, and ensemble pruning has become a trendy topic explored in recent
years. As a result, numerous articles have proposed new ensemble pruning methods, includ-
ing Tamon and Xiang (2000), Hernandez-Lobato et al. (2006), Thompson (1999), Chen et
al. (2009) and Vidal and Schiffer (2020).

In this paper, we propose a novel approach to boosting algorithms by incorporating single-
tree pruning directly into the algorithm. By doing so, the ABT machine produces an added
benefit of having a built-in stopping criterion since the score stops growing when the newly
added tree reduces to the root node one. As illustrated in the second case study in Section
4.2, our approach requires significantly fewer trees than traditional boosting algorithms.
Therefore, we do not need to use ensemble pruning methods to further reduce the number
of trees. This has the potential to improve computational efficiency and reduce the risk of
overfitting, making our approach a promising alternative to existing methods in the field.

A small bag fraction can be used to avoid the ABT machine getting trapped in a sub-
optimal solution when the size of the trees considered early in the algorithm is too small,
as illustrated in Section 4.1.3. The use of a small bag fraction is thus needed only when
interaction depth is kept small, which is not required with the ABT machine. Large trees
can be fitted in the early stages with ABT machine, as shown in Section 4.2, which gradually
simplify until they reach the single-node tree where the ABT machine stops. Fitting large
trees early in the ABT algorithm is actually recommended, as illustrated in Section 4.2. The
use of a bag fraction is thus not necessary with ABT, provided that the data set comprises
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fairly numerous and rich covariates (as in the second case study in Section 4.2) to produce
sufficiently large trees. That is why we do not use a bag fraction throughout this paper
except in Section 4.1.3 where we consider for illustration purposes small trees for ABT.

The remainder of this paper is organized as follows. Section 2 recalls the boosting princi-
ple and its forward stagewise additive modeling. In Section 3, we present the ABT machine
that is proposed in this paper, detailing its underlying architecture and functioning. To
evaluate the efficiency of the proposed method, we present the results of two case studies
conducted using motor insurance data in Section 4. Section 5 summarizes the results and
concludes the paper.

2 Boosting

2.1 Supervised learning

The aim of actuarial ratemaking is to evaluate the pure premium as accurately as possible.
The target is thus the conditional expectation µ(X) = E[Y |X] of the response Y (claim
number or claim amount for instance) given the available information summarized in a
vector X of features X1, X2, . . . , Xp. The feature space X is a subset of Rp. The function
x 7→ µ(x) = E[Y |X = x] is unknown to the actuary and is approximated by a working
predictor x 7→ µ̂(x) entering premium calculation.

Lack of accuracy for µ̂(x) is defined by the generalization error

Err(µ̂) = E [L(Y, µ̂(X))] , (2.1)

where L(., .) is the loss function measuring the discrepancy between its two arguments and
the expected value is over the joint distribution of (Y,X). In actuarial studies, loss func-
tions typically correspond to the deviance of distributions within the Exponential dispersion
family, to which GLM is applicable. The objective is to find a function x 7→ µ̂(x) of the
features that minimizes the generalization error.

2.2 Ensemble learning methods

Ensemble techniques assume structural models of the form

µ(x) = g−1 (score(x)) with score(x) =
M∑
m=1

T (x; am), (2.2)

where g is the link function and T (x; am), m = 1, 2, . . . ,M , are usually simple functions of
the features x, characterized by parameters am. In (2.2), the score is the function of features
x mapped to µ(x) by the inverse of the link function g.

Let D = {(ν1, y1,x1), (ν2, y2,x2), . . . , (νn, yn,xn)} be the set of observations used to fit
model (2.2), called training set, where νi is the weight associated to observation i. Estimating
the score by minimizing the corresponding training sample estimate of the generalization
error (2.1), that is,

min
{am}M1

n∑
i=1

νiL

(
yi, g

−1

(
M∑
m=1

T (xi; am)

))
(2.3)
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is in general not feasible. This requires computationally intensive numerical optimization
technique that can be time-consuming. One way to circumvent this issue is to approximate
the solution to (2.3) by using a greedy forward stagewise approach, also known as boosting.

2.3 Forward stagewise additive modeling

Boosting, or forward stagewise additive modeling, involves fitting a single function sequen-
tially and adding it to the expansion of previously fitted terms. Unlike a stepwise approach,
where previous terms are readjusted each time a new term is added, each fitted term in
boosting is not readjusted as new terms are added to the expansion. Specifically, we start
by computing

â1 = argmin
a1

n∑
i=1

νiL
(
yi, g

−1 (ŝcore0(xi) + T (xi; a1)
))

(2.4)

where ŝcore0(x) is an initial guess (for instance, just an intercept). Then, at each iteration
m ≥ 2, we solve the subproblem

âm = argmin
am

n∑
i=1

νiL
(
yi, g

−1 (ŝcorem−1(xi) + T (xi; am)
))

(2.5)

with
ŝcorem−1(x) = ŝcorem−2(x) + T (x; âm−1).

By adopting a meaningful stopping rule, we end up at iteration M with estimates of the
form µ̂boost

D (x) = g−1
(
ŝcoreM(x)

)
, which can then be used in pure premium calculations.

The boosting algorithm is presented in Algorithm 1.

Algorithm 1 Forward Stagewise Additive Modeling.

1. Initialization :
Initialize ŝcore0(x) to be a constant. For instance:

ŝcore0(x) = argmin
β

n∑
i=1

νiL(yi, g
−1(β)).

2. Main procedure :
For m = 1 to M do

(2.1) Compute âm as defined in Equation (2.5).
(2.2) Update ŝcorem(x) = ŝcorem−1(x) + T (x; âm).

End for

3. Output:

µ̂boost
D (x) = g−1

(
ŝcoreM(x)

)
.
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Type Name
ξ < 0 Continuous -
ξ = 0 Continuous Normal
0 < ξ < 1 Non existing -
ξ = 1 Discrete Poisson
1 < ξ < 2 Mixed, non-negative Compound Poisson sums

with Gamma-distributed severities
ξ = 2 Continuous, positive Gamma
2 < ξ < 3 Continuous, positive -
ξ = 3 Continuous, positive Inverse Gaussian
ξ > 3 Continuous, positive -

Table 1: Tweedie distributions.

2.4 Tweedie deviance loss function under log-link

2.4.1 Tweedie family of distributions

In practice, actuaries often use distributions from the Tweedie class along with the log-link
function to model responses. The Tweedie class comprises members of the Exponential
Dispersion family of distributions that have power variance functions V (µ) = µξ for some ξ.

Table 1 provides a list of all Tweedie distributions, with negative values of ξ corresponding
to continuous distributions across the entire real axis. For 0 < ξ < 1, no member of the
Exponential Dispersion family exists and only cases where ξ ≥ 1 are of interest for insurance
applications. For the sake of completeness, we also consider the square loss function, thereby
allowing ξ = 0.

2.4.2 Tweedie deviance-based boosting under log-link

Tweedie deviance loss function is given by

L(y, µ̂(x)) =



(y − µ̂(x))2 for ξ = 0

2
(
y ln y

µ̂(x)
− (y − µ̂(x))

)
for ξ = 1

2
(
− ln y

µ̂(x)
+ y

µ̂(x)
− 1
)

for ξ = 2

2
(

max{y,0}2−ξ
(1−ξ)(2−ξ) −

yµ̂(x)1−ξ

1−ξ + µ̂(x)2−ξ

2−ξ

)
for ξ > 1 and ξ 6= 2.

(2.6)

For ξ = 0, the square loss function is recovered, whereas ξ = 1 and 2 correspond to the
Poisson and Gamma deviance functions, respectively.

In insurance studies, gradient boosting has often been used, where the response is replaced
with the gradient of the loss function to expedite calculations. However, this approach can
obscure the analysis and is unnecessary in the Tweedie case, as explained next. Define the
working weight

νmi = νi exp
(
ŝcorem−1(xi)

)2−ξ
and the working response

r̃mi =
yi

exp
(
ŝcorem−1(xi)

)
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at iteration m. For any loss function (2.6) and log-link, Hainaut et al. (2022) established
that

âm = argmin
am

n∑
i=1

νiL
(
yi, exp

(
ŝcorem−1(xi) + T (xi; am)

))
can be rewritten as

âm = argmin
am

n∑
i=1

νmiL
(
r̃mi, exp

(
T (xi; am)

))
, (2.7)

so that solving (2.7) amounts to fit T (xi; am) on the working training set

D(m) = {(νmi, r̃mi,xi), i = 1, . . . , n} .

Algorithm 1 simplifies to Algorithm 2 in the Tweedie case under log-link.

Algorithm 2 Tweedie Deviance-based Boosting under Log-link.

1. Initialization :
Initialize ŝcore0(x) to be a constant. For instance:

ŝcore0(x) = argmin
β

n∑
i=1

νiL(yi, exp(β)).

2. Main procedure :
For m = 1 to M do

(2.1) Fit T (x; am) on the working training set

D(m) = {(νmi, r̃mi,xi), i = 1, . . . , n} .

(2.2) Update ŝcorem(x) = ŝcorem−1(x) + T (x; âm).
End for

3. Output:

µ̂boost
D (x) = exp

(
ŝcoreM(x)

)
.

In the Tweedie case, boosting should be preferred to gradient boosting since the latter
procedure introduces an extra step which is unnecessary and leads to an approximation that
can be easily avoided. This extends the point made by Wüthrich and Buser (2019) for the
Poisson distribution under canonical link to the whole Tweedie class under log-link. The
gradient boosting applies a least-squares principle on the gradients of the deviance. As the
sum of least squares corresponds to the log-likelihood of a Gaussian model, choosing this
optimization criterion is equivalent to assume that gradients are realizations of a Normal
random variable. But under Tweedie deviance loss function and log-link, equation (3.7) in
Hainaut et al. (2022) shows that the gradient inherits from the distribution of the response
Y that is scaled and translated. Except in the normal case (ξ = 1), applying the least
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squares principle is then ineffective and slows down the convergence compared to the Tweedie
boosting as illustrated in Hainaut et al. (2022). In the rest of the paper, we work with
Tweedie loss functions under log-link.

2.5 Binary regression trees as base learners

In this paper, we use binary regression trees as base learners. This is the case in the majority
of applications of boosting to insurance. That is, we consider base learners T (x; am) of the
form

T (x; am) =
∑
t∈Tm

ctmI
[
x ∈ χ(m)

t

]
, (2.8)

where
{
χ
(m)
t

}
t∈Tm

is the partition of the feature space χ induced by the regression tree

T (x; am) and {ctm}t∈Tm contains the corresponding predictions for the score in each terminal
node. For regression trees, am gathers the splitting variables and their split values as well
as the corresponding predictions in the terminal nodes, that is,

am =
{
ctm, χ

(m)
t

}
t∈Tm

.

For details on the recursive partitioning algorithm used to build binary regression trees,
we refer the reader to the seminal book by Breiman et al. (1984). For an overview of
tree-based methods applied to insurance, please refer to Denuit et al. (2020).

With regression trees, a shrinkage parameter 0 ≤ γ < 1 is often used to slow the learning
rate of the training procedure, so that instead of adding tree T (x; am) to the score in Step
2.2 of Algorithm 2, we rather add γT (x; am). Small values for γ work best but result in
larger computation time since more regression trees are needed. Empirically, values for
the shrinkage parameter γ smaller than 10% yield dramatic improvements for regression
estimation. Typically, γ is fixed at the lowest possible value within the computational
constraints (see Friedman, 2001). In this paper, we run the models of Section 4 with shrinkage
parameter γ = 1%.

2.6 Size of the trees

Boosting trees involve two significant parameters that need to be tuned, namely the number
of trees M and the size of the trees. The number of trees M is determined by a stopping
criterion checked at each iteration of the boosting algorithm, while the size of the trees is
selected by the analyst before the boosting process begins. The size of trees can be specified
in various ways, such as the number of terminal nodes J or the depth of the tree D. A
regression tree with depth D has 2D terminal nodes, each with D ancestors.

In the context of boosting, the size of the trees is typically controlled by the interaction
depth parameter ID. Each subsequent split represents a higher level of interaction with
the previous split features. Trees with an interaction depth of ID correspond to trees with
J = ID+1 terminal nodes. By setting ID = 1, only single-split regression trees are produced,
which allows capturing only the main effects of the features in the score. On the other hand,
for ID = 2, two-way interactions are permitted, and for ID = 3, three-way interactions are

7



allowed, and so on. Thus, the value of ID determines the level of interactions permitted in
the score, and a larger value of ID allows the model to learn deeper patterns in the data,
such as illustrated in Figure 1.

In practice, the appropriate level of interaction required is often unknown, and thus, ID
is a tuning parameter that needs to be selected carefully by considering different values and
selecting the one that minimizes the generalization error estimated on a validation set or
through cross-validation.

t0

t1 t2

(a) ID = 1.

t0

t1 t2

t3 t4

(b) ID = 2.

t0

t1 t2

t3 t4

t5 t6

(c) ID = 3.

t0

t1 t2

t3 t4

t5 t6

t7 t8

(d) ID = 4.

Figure 1: Example of binary regression trees with ID = 1, 2, 3, 4. Circles indicate non-
terminal nodes and square boxes represent terminal nodes.
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3 ABT machine

Now that the machinery behind boosting trees has been recalled, and that can be summarized
by Algortihm 3, we are now prepared to describe the new machine learning tool proposed in
this paper.

Algorithm 3 Tweedie Deviance-based Boosting Trees under Log-link.

1. Initialization :
Initialize ŝcore0(x) to be a constant. For instance:

ŝcore0(x) = argmin
β

n∑
i=1

νiL(yi, exp(β)).

2. Main procedure :
For m = 1 to M do

(2.1) Fit a regression tree T (x; am) of size ID on the working training set

D(m) = {(νmi, r̃mi,xi), i = 1, . . . , n} .

(2.2) Update ŝcorem(x) = ŝcorem−1(x) + γT (x; âm).
End for

3. Output:

µ̂BT
D (x) = exp

(
ŝcoreM(x)

)
.

Our approach involves fitting cost-complexity pruned trees in a forward stagewise and
additive way, hence the acronym ABT for Adaptive Boosting Trees. The algorithm begins
by fitting larger trees in the early stages, which then gradually simplify until they reach
the single-node tree where the ABT machine stops. The stopping criterion is built into the
ABT algorithm, eliminating the need for computationally-intensive cross-validation steps.
Moreover, the stopping criterion embedded in the ABT machine allows the algorithm to
stop automatically once the single-node tree is reached, so that there is not one tree too
many that will be estimated with ABT. Additionally, ID or J can vary among the trees
included in the score, allowing the model complexity to adapt to the data structure not yet
captured by the ABT machine. The next sections carefully explain how the ABT algorithm
proceeds.

3.1 Cost-complexity measure

The cost-complexity measure of tree T (x; am) is defined as

Rα(T (x; am)) =
n∑
i=1

νmiL
(
r̃mi, exp

(
T (xi; am)

))
+ α|T (x; am)|, (3.1)
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where the parameter α is a positive real number and |T (x; am)| denotes the number of
terminal nodes of T (x; am), called the complexity of tree T (x; am). The cost-complexity
measure is thus a combination of the in-sample deviance and a penalty for the complexity
of the tree under consideration. As more terminal nodes result in a more flexible, and hence
complex model, increasing the number of terminal nodes of a tree T (x; am) by splitting one of
its terminal nodes into two children nodes will reduce the in-sample deviance of the resulting
tree T (x; a′m) compared to the original tree T (x; am). Therefore, the in-sample deviance
always favors the more complex tree T (x; a′m) over T (x; am). However, by introducing a
penalty for the complexity of the tree, the cost-complexity measure may now prefer the
original tree T (x; am) over the more complex one T (x; a′m). Rα(T (x; a′m)) ≥ Rα(T (x; am))
if, and only if,

α ≥
n∑
i=1

νmiL
(
r̃mi, exp

(
T (xi; am)

))
−

n∑
i=1

νmiL
(
r̃mi, exp

(
T (xi; a

′
m)
))
. (3.2)

In fact, Rα(T (x; a′m)) ≥ Rα(T (x; am)) if, and only if, the deviance reduction that we get
by producing tree T (x; a′m) is smaller than the increase in the penalty for having one more
terminal node. In situations where the reduction in deviance is insufficient to compensate
the corresponding increase in penalty, we do not switch from the simpler model T (x; am)
to the more intricate T (x; a′m). The parameter α can be interpreted as the increase in the
penalty for having one more terminal node.

3.2 Minimal cost-complexity pruning

A tree T (x; am) obtained by pruning branches from T (x; a′m) is referred to as a pruned
subtree, or simply a subtree, of T (x; a′m). This is denoted as T (x; am) � T (x; a′m).

The pruning process of an initial tree Tinit consists of constructing a sequence of progres-
sively smaller trees

Tinit, T|Tinit|−1, . . . , T1, (3.3)

where Tk is a subtree of Tinit with k terminal nodes, k = 1, · · · , |Tinit| − 1. In particular,
T1 is only composed of the root node t0 of Tinit. If we denote by C(Tinit, k) the class of all
subtrees of Tinit having k terminal nodes, an intuitive procedure to produce the sequence of
trees (3.3) is then to select for every k = 1, · · · , |Tinit| − 1, the tree Tk ∈ C(Tinit, k) which
minimises the in-sample deviance. This procedure may generate subtrees of Tinit that are
not nested, meaning that subtree Tk may not necessarily be a subtree of Tk+1. Therefore, a
node t from Tinit may reappear in tree Tk even though it was previously cut off in tree Tk+1.
That is why the minimal cost-complexity pruning described next is often preferred over the
latter approach.

Consider tree T (x; am). For a fixed value of α, we define T (x; am(α)) as the subtree of
T (x; am) that minimises the cost-complexity measure Rα(.), namely

Rα(T (x; am(α))) = min
T (x;a)�T (x;am)

Rα(T (x; a)). (3.4)

Hence, at this value of α, there is no subtree of T (x; am) with lower cost-complexity measure
than T (x; am(α)). Because there can be more than one subtree of T (x; am) minimising
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Rα(.), we supplement condition (3.4) with

Rα(T (x; a)) = Rα(T (x; am(α)))⇒ T (x; am(α)) � T (x; a). (3.5)

To break ties in the cost-complexity measure Rα(.) when multiple subtrees of T (x; am)
have the same minimum value, an additional condition is used. We select the smallest tree
among these subtrees that satisfies condition (3.4). These smallest subtrees T (x; am(α)) are
called the smallest minimising subtrees. While there is at least one subtree of T (x; am) that
minimises Rα(.) for every value of α (since there are only finitely many pruned subtrees of
T (x; am)), it is not clear if the additional condition (3.5) can be satisfied for all values of α.
In other words, it is not clear whether there can exist two subtrees that minimize Rα(.) and
are not subtrees of each other. However, Breiman et al. (1984, Theorem 10.7) proved that
the additional condition (3.5) is indeed valid, meaning that there exists a smallest minimising
subtree T (x; am(α)) for every value of α.

When α = 0, Rα(.) coincides with the in-sample deviance, the biggest tree is chosen
because the complexity penalty term is essentially dropped. This leads to the selection of
the tree T (x; am) which minimizes Rα(.). As the parameter α increases, the penalty for
having a large tree increases, resulting in subtrees T (x; am(α)) with fewer terminal nodes.
For sufficiently large values of α, the subtree T (x; am(α)) consists of the root node only.
Since tree T (x; am) has only a finite number of subtrees, the set of the smallest minimizing
subtrees {T (x; am(α))}α≥0 contains only a finite number of subtrees of T (x; am) even if α
varies continuously from zero to infinity. Breiman et al. (1984) established in Section 10.2
that an increasing sequence 0 = α0 < α1 < . . . < ακm < ακm+1 =∞ exists, such that, for all
k = 0, 1, . . . , κm

T (x; am(α)) = T (x; am(αk)) for all α ∈ [αk, αk+1)

with T (x; am(α0)) = T (x; am) and |T (x; am(ακm))| = 1. Moreover,

T (x; am(ακm)) � T (x; am(ακm−1)) � . . . � T (x; am(α1)) � T (x; am(α0)).

The sequence of subtrees is found to be nested, indicating that any subtree T (x; am(αk))
in the sequence {T (x; am(αk))}k=1,...,κm can be obtained by pruning the previous subtree
T (x; am(αk−1)). This sequence corresponds to the so-called minimal cost-complexity pruning
procedure.

Remark 3.1. The parameter α is referred to as the regularization parameter and shares the
same unit as deviance. For ease of interpretation, it is often normalized by the in-sample
deviance of the root tree, denoted Droot, which leads to the cost-complexity parameter

cp =
α

Droot

.

The cost-complexity measure Rα(T (x; am)) can thus be rewritten as

Rα(T (x; am)) =
n∑
i=1

νmiL
(
r̃mi, exp

(
T (xi; am)

))
+ cpDroot|T (x; am)|, (3.6)
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and the sequence {αk}k=1,...,κm of regularization parameters defines the sequence {cpk}k=1,...,κm

of cost-complexity parameters, with cpk =
αk
Droot

. Note that the function rpart from the R

package rpart used in Section 4 to produce the sequence of nested trees {T (x; am(αk))}k=1,...,κm

provides the cost-complexity parameters {cpk}k=1,...,κm rather than the regularization param-
eters {αk}k=1,...,κm .

3.3 ABT algorithm

Algorithm 3 generates decision trees of a fixed size across all iterations, where the size is
determined by the interaction depth ID or equivalently by the number of terminal nodes J .
We propose an adaptation of Algorithm 3 that allows the model complexity to adapt to the
data structure not yet captured by the model fitted so far.

At iteration m, we first fit a tree with depth D = J − 1, denoted as T (x; âm(α0)), on the
working training set D(m) = {(νmi, r̃mi,xi), i = 1, . . . , n}. Note that the case J = 1 is not
considered since it corresponds to fitting root node trees at each iteration (which is obviously
useless once the initial score ŝcore0(x) = argminβ

∑n
i=1 νiL(yi, g

−1(β)) has been estimated),
so that we assume J ≥ 2. Tree T (x; âm(α0)) is the smallest tree guaranteeing that any
tree with J terminal nodes solution of Step 2.2 in Algorithm 3 is a subtree of it. Any tree
solution of Step 2.2 in Algorithm 3 can thus be obtained by pruning T (x; âm(α0)). It is
interesting to notice that the selected tree with J terminal nodes at iteration m obtained
by pruning T (x; âm(α0)) can be different from the tree that would have been obtained by
using a greedy strategy typically used in the boosting trees algorithm. Here, we improve
this greedy strategy by assessing the goodness of the splits by also looking at those deeper
in the tree.

Then, we prune T (x; âm(α0)) following the minimal cost-complexity pruning recalled
in Section 3.2 up to get tree T (x; âm(αk∗m)) defined as the subtree of the nested sequence
{T (x; âm(αk))}k=0,...,κm with J terminal nodes, that is,

|T (x; âm(αk∗m))| = J.

However, the nested sequence {T (x; âm(αk))}k=0,...,κm does not necessarily contain a tree
with J terminal nodes. The mth tree T (x; âm(αk∗m)) in the score has thus J terminal nodes
unless there is no tree in the sequence {T (x; âm(αk))}k=0,...,κm of that size, in which case tree
T (x; âm(αk∗m)) has a smaller size and is such that

|T (x; âm(αk∗m−1))| > J and |T (x; âm(αk∗m))| ≤ J.

The ABT approach can thus be summarized as follows:

12



Algorithm 4 Adaptive Boosting Trees under Log-link.

1. Initialization :
Initialize ŝcore0(x) to be a constant. For instance:

ŝcore0(x) = argmin
β

n∑
i=1

νiL(yi, exp(β)).

2. Main procedure :
For m = 1 to M do

(2.1) Fit a regression tree T (x; âm(α0)) with depth D = J − 1 on the working
training set

D(m) = {(νmi, r̃mi,xi), i = 1, . . . , n} .

(2.2) Prune T (x; âm(α0)) following the minimal cost-complexity pruning up to
get tree T (x; âm(αk∗m)) which is such that

|T (x; âm(αk∗m−1))| > J and |T (x; âm(αk∗m))| ≤ J.

(2.3) Update ŝcorem(x) = ŝcorem−1(x) + γT (x; âm(αk∗m)).
End for

3. Output:

µ̂ABT
D (x) = exp

(
ŝcoreM(x)

)
.

This adaptive boosting algorithm enables to reduce overfitting, as shown in the case
study worked out in the next section, without requiring to perform cross validation at each
step, which can be very time-consuming in practice.

4 Numerical illustrations

To end this paper, we illustrate the performance of the proposed ABT machine by presenting
two case studies conducted using motor insurance data. The case studies both deal with
motor liability claim numbers. However, the ABT algorithm works for any type of Tweedie
response under log-link.

4.1 Case study 1

4.1.1 Data set

First, we consider the motor third-party liability insurance portfolio used in Denuit et al.
(2020). This portfolio pertains to an insurance company operating in the EU which was
observed over the course of one year. The portfolio comprises 160 944 insurance policies. Each
policy, denoted as i, includes information on the number of claims Yi filed by policyholder i,
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Number Exposure-
of claims to-risk

0 126 499.7
1 15 160.4
2 1424.9
3 145.4
4 14.3
5 1.4
≥ 6 0

Table 2: Descriptive statistics for the number of claims.

the corresponding exposure-to-risk ei ≤ 1 (expressed in policy-year), and the eight features
X i = (Xi1, . . . , Xi8), namely

- Xi1 = AgePh: policyholder’s age;

- Xi2 = AgeCar: age of the car;

- Xi3 = Fuel: fuel of the car, with two categories (gas or diesel);

- Xi4 = Split: splitting of the premium, with four categories (annually, semi-annually,
quarterly or monthly);

- Xi5 = Cover: extent of the coverage, with three categories (from compulsory third-
party liability cover to comprehensive);

- Xi6 = Gender: policyholder’s gender, with two categories (female or male);

- Xi7 = Use: use of the car, with two categories (private or professional);

- Xi8 = PowerCat: the engine’s power, with five categories.

Figure 2 displays the exposure-to-risk by category/value for each of the eight features
and Table 5 shows the observed numbers of claims with corresponding exposures-to-risk. We
refer the reader to Denuit et al. (2020) for a detailed presentation of the data set.

4.1.2 Results produced by the ABT machine

In this study, we adopt the Poisson deviance as the loss function when working with claim
counts. Additionally, we utilize the log-link function, which is the canonical link in the
Poisson case.

To produce each of the M constituent trees, we use the R functions rpart and printcp

from the R package rpart. At iteration m, the trees of the sequence {T (x; âm(αk))}k=0,...,κm

are first produced with the function rpart. Then, the right tree T (x; âm(αk∗m)) is selected
from {T (x; âm(αk))}k=0,...,κm by using the function printcp which provides the trees of the
sequence {T (x; âm(αk))}k=0,...,κm together with their corresponding number of splits (and

hence their number of terminal nodes) and cost-complexity parameters cpk =
αk
Droot

. Notice
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Figure 2: Levels/values of the features and corresponding exposures-to-risk.
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that the function rpart automatically produces the sequence {T (x; âm(αk))}k=0,...,κm so that
the computational time remains unaffected compared to boosting trees with depth D = J−1.

We run the ABT machine on a training set comprising 80% of the data set with J =
20, 15, 10, 5 and shrinkage coefficient γ = 1%. The remaining 20% of the observations are
used to compute the out-of-sample estimates of the generalization error. We also build
gradient boosting trees (GBT) algorithm using the Poisson deviance as loss function and the
log-link function on the training set with the R package gbm. The size of the trees is controlled
by the interaction depth ID = J−1. Figure 3 displays in-sample and out-of-sample estimates
of the generalization error with respect to the number of iterations for J = 20, 15, 10, 5,
respectively. The corresponding number of terminal nodes of the constituent trees for the
ABT machine are presented in Figure 4.

Figure 3: In-sample (solid blue line for ABT, solid red line for GBT) and out-of-sample
(dotted blue line for ABT, dotted red line for GBT) estimates of the generalization error
for J = 20 (upper left panel), J = 15 (upper right panel), J = 10 (bottom left panel), and
J = 5 (bottom right panel).
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Figure 4: Number of terminal nodes of the constituent trees for the ABT machine with
J = 20 (upper left panel), J = 15 (upper right panel), J = 10 (bottom left panel), and
J = 5 (bottom right panel).

The proposed ABT machine has an advantage over GBT in that it avoids overfitting.
Since the size of the trees does not adapt to the data with GBT, the model tends to overfit
the training data, leading to a higher generalization error on the test sample. In contrast, the
ABT machine adapts the size of the trees by gradually decreasing the number of terminal
nodes to reach a root node tree. This progressive decrease is visible in Figure 4, which
shows the corresponding number of terminal nodes for the ABT machine. To illustrate the
progression leading to a single-node tree with the ABT machine, we closely examine the
last five iterations for ABT with J = 20, namely iterations 305 to 309. At iteration 305,
the printcp command of the rpart package yields the information summarized in Table 3.
Specifically, as no tree within the list possesses exactly 19 splits, the algorithm selects here
the tree with 5 splits, which corresponds to a cost-complexity parameter of 8.0927e-05. The
resultant pruned tree is represented in Figure 5. Each rectangle represents a node of the
tree. In each node, one can see the weighted mean of the working response in that node,
the number of claims, the number of observations as well as the proportion of the training
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CP nsplit rel error
1.0159e-04 0 1.00000
9.9330e-05 2 0.99980
8.0927e-05 5 0.99950
7.7784e-05 21 0.99818
· · · · · · · · ·

Table 3: Trees produced at iteration 305.

set in the node. The darker the grey of a node, the higher the estimated expected working
response in that node.

Fuel = Gasoline

PowerCat = C1 AgeCar < 4

AgeCar >= 3

Split = Half−Yearly,Monthly,Yearly

1
16e+3 / 129e+3

100%

0.99
10e+3 / 89e+3

69%

0.96
3679 / 34e+3

27%

1
6625 / 54e+3

42%

1
5630 / 40e+3

31%

0.98
1375 / 11e+3

9%

0.89
463 / 4256

3%

1
912 / 6797

5%

1
794 / 6317

5%

1.3
118 / 480

0%

1.1
4255 / 29e+3

23%

yes no

1

2

4 5

3

6

12

13

26 27 7

Figure 5: Tree at iteration 305.

The same results for iterations 306 to 309 are shown in Table 4 and Figure 6. The ABT
algorithm finally stops at iteration 309 where a single-node tree is obtained for the first time.
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CP nsplit rel error
9.3350e-05 0 1.00000
8.5623e-05 4 0.99962
7.9060e-05 22 0.99799
7.7079e-05 24 0.99784
· · · · · · · · ·

CP nsplit rel error
9.3075e-05 0 1.00000
8.4815e-05 1 0.99991
7.9002e-05 31 0.99728
7.4593e-05 43 0.99630
· · · · · · · · ·

CP nsplit rel error
9.2538e-05 0 1.00000
7.9623e-05 1 0.99991
7.9054e-05 2 0.99983
7.8639e-05 41 0.99657
· · · · · · · · ·

CP nsplit rel error
9.1242e-05 0 1.00000
8.6894e-05 21 0.99797
8.6179e-05 23 0.99780
8.0010e-05 25 0.99762
· · · · · · · · ·

Table 4: Trees produced at iteration 306 (top-left), 307 (top-right), 308 (bottom-left) and
309 (bottom-right).

Split = Half−Yearly,Yearly

Cover = Comprehensive,Limited.MD

AgeCar >= 2

AgePh < 84

1
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Figure 6: Trees at iteration 306 (top-left), 307 (top-right), 308 (bottom-left) and 309
(bottom-right). 19



The stopping criterion embedded in the ABT machine enables the avoidance of the
time-consuming cross-validation step, thus saving computational time. Moreover, the ABT
machine reduces overfitting compared to GBT, as illustrated in Figure 3, where in-sample and
out-of-sample estimates of the generalization error with respect to the number of iterations
are presented for both methods. While the size of the first trees for ABT is equal to J , it
decreases on average with the number of iterations.

The proposed ABT machine is a promising alternative to GBT due to its similar or
slightly better performance in terms of out-of-sample deviance or generalization error. One
advantage of ABT is that it does not require cross-validation and operates directly on the
response variables rather than gradients, making it a more efficient approach.

The only exception is with J = 5, where the proposed learning procedure stops too
quickly. The larger the value of J , the more the selection of the root node tree in the
sequence reveals that there is no more information to capture in the training set. This is
because there is no larger tree with at most J terminal nodes that is more relevant than
the root node tree. It is more likely that the first root node tree in the ensemble appears
early for small J than for larger ones, which can be an issue since the learning procedure
automatically stops. A way to overcome this issue is proposed next.

4.1.3 ABT with bagging fraction

The stopping criterion embedded within the ABT machine may sometimes result in stopping
too early, especially for small J . To prevent this from occurring, it may be helpful to allow
for a bagging fraction, exactly as with standard boosting procedure. The bagging fraction
β represents the fraction of observations randomly selected from the training set to fit the
next tree in the expansion. Therefore, β% of the training sample is used at each iteration
with a common value of 50% or higher (if the training sample is small). For β = 100%, we
recover the results obtained in the preceding section. Randomizing the data used to fit the
new tree then avoids that ABT gets trapped too early in the single-root node tree when the
number of terminal nodes J is small.

Figure 7 displays the results obtained with β ∈ {50%, 70%, 90%} for the different values
of J . Results for β = 100% are those displayed in Figure 3. For any value of J , the larger the
bagging fraction β, the more ABT prevents overfitting. When β = 100%, ABT stops once
a root-node tree is reached. When β < 100%, a root-node tree can be followed by a larger
tree since the data set changes. In fact, it is enough to consider β slightly smaller than one,
which almost avoids overfitting while outperforming GBT, as illustrated in Figure 8 where
we consider β = 99%. It is worth mentioning that when β < 100%, the stopping criterion is
not embedded within the ABT machine anymore, so that an out-of-sample estimate of the
generalization error must be used as in classical boosting or gradient boosting. As shown in
Figures 7 and 8, the ABT machine with β < 100% is much less prone to overfitting than the
classical gradient boosting widely used by practitioners.
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Figure 7: In-sample (solid blue line for ABT, solid red line for GBT) and out-of-sample
(dotted blue line for ABT, dotted red line for GBT) estimates of the generalization error.
From up to bottom: J = 20, J = 15, J = 10, and J = 5 (bottom panel). From left to right:
β = 50%, β = 70%, and β = 90%.
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Figure 8: In-sample (solid blue line for ABT, solid red line for GBT) and out-of-sample
(dotted blue line for ABT, dotted red line for GBT) estimates of the generalization error for
J = 5 and β = 99% (left panel) and number of terminal nodes of the constituent trees for
ABT (right panel).

The data set considered in this first case study is actually quite simple in the sense that
six of the eight features are categorical variables with at most four categories. The next case
study is more realistic for practitioners, the data set comprising features with much more
categories. Considering large trees at the early stage of the ABT algorithm makes more
sense in the next case study since the number of possible splits at each node of a tree is
much higher in the next case study.

4.2 Case study 2

4.2.1 Data set

Finally, we consider a data set corresponding to a French motor third-party liability insurance
portfolio available in the CASdatasets package in R. Specifically, we look at the data set
freMTPL2freq which contains 678 013 insurance policies. For each policy i, the data set
describes the numbers of claims Yi filed by policyholder i, the corresponding exposure-to-
risk ei ≤ 1 and the following features Xi = (Xi1, . . . , Xi8) :

- Xi1 = DrivAge: policyholder’s age;

- Xi2 = VehAge: age of the car in years;

- Xi3 = VehPower: power of the car, with 12 categories;

- Xi4 = VehBrand: car brand, with 11 categories;

- Xi5 = VehGas : Gas or diesel, with 2 categories;

- Xi6 = Area: area code, with 6 categories;
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- Xi7 = Region: region in France, with 21 categories;

- Xi8 = Density: density of inhabitants per km2 in the city of the living place of the
driver.

Figure 9: Levels/values of the features and corresponding exposures-to-risk.
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Number Exposure-
of claims to-risk

0 335 311.2
1 20 615.6
2 1 150.1
3 52.8
4 3.0
5 1.1
≥ 6 2.3

Table 5: Descriptive statistics for the number of claims.

Figure 7 displays the exposure-to-risk by category/value for each of the eight features
and Table 3 shows the observed numbers of claims with corresponding exposures-to-risk.
This data set has been used with different statistical and machine learning techniques by
several authors, including Noll et al. (2018). We refer the reader to the latter reference for
an accurate description of the data set.

4.2.2 Results produced by the ABT machine

Firstly, we train the ABT machine using 80% of the data set with different values of ID =
J − 1 = 15, 20, 25, 30, along with a shrinkage coefficient γ = 1%. The remaining 20% of the
observations was used to compute the out-of-sample estimates of the generalization error.
We begin by fitting large trees in the early stages (ID = 15, 20, 25, 30), which then gradually
simplify until they reach the single-node tree where the ABT machine stops. Next, we
build GBT on the training set with the R package gbm using the Poisson deviance as loss
function and the log-link function. The size of the trees is controlled by the interaction depth
ID = J − 1. We consider ID = 1, 2, 3, 4, 5, 6 with GBT, which are typical values for GBT,
and we use a bag fraction of 50%, which is also a typical value for the bag fraction with
GBT.
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Figure 10: Out-of-sample estimates of the generalization error for GBT in red (ID =
1, 2, 3, 4, 5, 6) and ABT in blue (ID = 15, 20, 25, 30).

The results are depicted in Figure 10. Larger initial trees for ABT lead to lower out-of-
sample estimates of the generalization error (0.3174263 for ID = 15, 0.3167534 for ID = 20,
0.3164238 for ID = 25 and 0.3163478 for ID = 30). ABT with ID = 25 and ABT with ID = 30
perform quite similarly in terms of predictive accuracy. Increasing the interaction depth by
5 again (and hence considering ABT with ID = 35) produces similar results than the ones
obtained with ID = 30 so that we did not show the errors in Figure 10 for ID = 35. Using
ABT with sufficiently large trees at the early stage of the algorithm appears to be effective
in this example, the trees progressively simplify during the algorithm. The out-of sample
estimate of the generalization error for the best ABT model with ID = 30 is significantly
lower than the error for the best GBM with ID = 5. Moreover, we can see that the ABT
method with large initial trees requires significantly fewer trees than the GBT approach.
Specifically, the error stabilizes after more or less 700 trees for ABT with ID = 30, whereas
the lowest error for GBM with ID = 5 is achieved after more or less 8000 trees. These
findings suggest that our ABT method shows promise in terms of both prediction accuracy
and computation time.

5 Conclusion

To simplify numerical computations, boosting is often applied to gradients of the loss func-
tion. Instead of minimizing the deviance associated with the responses, gradient boosting
applies a least-squares principle on its gradients, which has made it a popular choice among
data analysts. Open-source software packages such as the Extreme Gradient Boosting (XG-
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Boost) algorithm have implemented highly effective boosting algorithms.
However, boosting is not limited to gradients and can be regarded as an iteratively re-

weighted or re-offsetted procedure applied to the original data. Hainaut et al. (2022) have
shown that it is often unnecessary to boost gradients in insurance applications and that
boosting can be performed directly with responses under Tweedie deviance and log-link.

To prevent overfitting, cross-validation is commonly used to stop the boosting algorithm
when prediction capabilities begin to deteriorate. Early stopping is crucial in ensuring a
sparse model with optimal performance on new data. However, cross-validation can be
computationally expensive.

This paper presents a new procedure called “ABT” for adaptive boosting trees. The idea
behind ABT is to fit cost-complexity pruned trees in an adaptive way at each boosting step.
In this approach, larger trees are fitted at earlier stages and progressively simplify until the
ABT machine stops at a single-node tree. The stopping criterion is built within the ABT
algorithm, eliminating the need for computationally-intensive cross-validation.

Using two datasets from motor insurance, we have shown that the ABT machine allows
for better adaptation to the data at each iteration, improving the prediction and reduc-
ing overfitting. The numerical analysis results clearly demonstrate the effectiveness of the
algorithm in terms of predictive performance.

In conclusion, our paper presents an easily interpretable and implementable boosting
algorithm that integrates the stopping criterion within the algorithm. The combination of
results from Hainaut et al. (2022) and the pruning process offers a better prediction and
prevents overfitting.
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