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Abstract

Ice shelves, which regulate ice flow from the Antarctic ice sheet towards the ocean, are shaped by
spatiotemporal patterns of surface accumulation, surface/basal melt and ice dynamics. Therefore,
an ice dynamic and accumulation history are imprinted in the internal ice stratigraphy, which can
be imaged by radar in the form of internal reflection horizons (IRHs). Here, IRHs were derived
from radar data combined across radar platforms (airborne and ground-based) in coastal eastern
Dronning Maud Land (East Antarctica), comprising three ice rises and adjacent two ice shelves.
To facilitate interpretation of dominant spatiotemporal patterns of processes shaping the local
IRH geometry, traced IRHs are classified into three different types (laterally continuous, discon-
tinuous or absent/IRH-free). Near-surface laterally continuous IRHs reveal local accumulation
patterns, reflecting the mean easterly wind direction, and correlate with surface slopes. Areas
of current and past increased ice flow and internal deformation are marked by discontinuous
or IRH-free zones, and can inform about paleo ice-stream dynamics. The established IRH data-
sets extend continent-wide mapping efforts of IRHs to an important and climatically sensitive ice
marginal region of Antarctica and are ready for integration into ice-flow models to improve pre-
dictions of Antarctic ice drainage.

1. Introduction

Most of the observed ice-mass loss in Antarctica over the last decades has been attributed to
increased heat transport from the ocean resulting in ice-shelf thinning and ice-stream acceler-
ation (Schmidtko and others, 2014; Paolo and others, 2015; Rignot and others, 2019). Ice
shelves surround ∼70% of the Antarctic continent (Bindschadler and others, 2011) and but-
tress ice transport from the interior towards the ocean (Dupont and Alley, 2005;
Gudmundsson, 2013; Fürst and others, 2016). Further corroborating the buffering effect of
ice shelves are areas where ice shelves are grounded, i.e. at ice rises and ice rumples
(Matsuoka and others, 2015; Berger and others, 2016; Goel and others, 2020). It has been
shown that these pinning points can delay grounding-line retreat of the Antarctic marine
ice sheets (Favier and others, 2016). In order to improve current assessments and predictions
of Antarctica’s ice mass loss, not only the presence but also the internal structure of ice mar-
ginal features needs to be known. Hereby the internal stratigraphy of ice shelves provides an
integrated memory of the atmospheric-, oceanographic- and ice dynamic history (Das and
others, 2020; Drews and others, 2020). For ice rises, prior information about areas where
the stratigraphy is flat and continuous would allow for the identification of suitable ice core-
drilling locations (Steig and others, 2006).

The internal ice stratigraphy can be obtained by mapping internal reflection horizons
(IRHs). IRHs represent interfaces of dielectric contrasts originating from impurities on former
snow surfaces that were buried and subsequently deformed by ice flow (Eisen and others,
2004). Antarctica’s ice-sheet stratigraphy has been extensively mapped by airborne radars
over the grounded ice-sheet interior (e.g. Karlsson and others, 2009; Winter and others,
2019; Ashmore and others, 2020; Schroeder and others, 2020; Cavitte and others, 2021).
IRH data are increasingly becoming publicly available (Winter and others, 2019; Ashmore
and others, 2020; Bodart and others, 2021; Cavitte and others, 2021), and cross-system calibra-
tions indicate that some IRHs appear similar in different radar systems (Winter and others,
2017; Cavitte and others, 2021). More recent studies have also focused on Antarctica’s ice mar-
ginal areas (e.g. Das and others, 2020; Bodart and others, 2021) and current scientific commu-
nity efforts are planning to further expand these datasets, e.g. the SCAR Scientific Research
Program INStabilities & Thresholds in ANTarctica (INSTANT) or SCAR Action Groups,
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such as AntArchitecture (Bingham and others, 2020) and RINGS
(Matsuoka and others, 2022).

In Antarctica, most mapping of IRHs is focused on
Antarctica’s interior, particularly near the deep ice core-drilling
sites where the stratigraphy is well preserved (e.g. Ashmore and
others, 2020; Cavitte and others, 2021; Van Liefferinge and others,
2021). However, in coastal areas the ice stratigraphy generally has
more variable patterns. Here, IRH geometries are shaped by pro-
cesses operating on small spatial scales, e.g. across the grounding
line where ice dynamics, surface accumulation (Lenaerts and
others, 2014, 2017) and ocean-induced melting can change sig-
nificantly over only a few kilometres distance (Marsh and others,
2016; Sun and others, 2019). This requires dense and thus typic-
ally ground-based surveys that often only cover isolated areas such
as ice rises (Matsuoka and others, 2015; Goel and others, 2020),
or ice-shelf channels (Drews and others, 2020) and only rarely
cover larger distances to include several features such as two ice
rises and an ice shelf (Pratap and others, 2022).

In this study, we have analysed radar data from several ground-
based and airborne radar systems collected in 2010, 2012 and
2019 over three ice shelves and neighbouring ice rises in eastern
Dronning Maud Land, East Antarctica, in order to generate a
comprehensive picture of current and past ice dynamics and sur-
face accumulation patterns over an ice marginal catchment. These
catchment-wide IRHs from multiple radar surveys provide infor-
mation on spatial variations in surface accumulation (variability
in IRH depth of continuous IRHs), current or past localised
increased ice flow (discontinuous IRHs), localised basal melting
(discontinuous and truncated IRHs) and current and past
enhanced englacial deformation (IRH-free zones). IRHs can be
integrated into ice-flow models (e.g. Nereson and Waddington,
2002; Karlsson and others, 2014; Drews and others, 2015;
Koutnik and others, 2016; Sutter and others, 2021; Višnjević
and others, 2022) for validation or calibration purposes in subse-
quent work, contributing to a better understanding of the spatial
and temporal scales of processes acting on ice shelves and ice rises
in the past, present and future which ultimately determines the
discharge of Antarctic inland ice (Schanwell et al., 2020).

2. Site description

The study area is located on the Princess Ragnhild Coast in
Dronning Maud Land, East Antarctica (20°E–28°E). It includes
the western Roi Baudouin Ice Shelf (RBIS), the Jotneisen Ice
Shelf (JIS) and the eastern Munisen Ice Shelf (MIS) as well as
the three ice rises Hamarryggen (HIR), Lokeryggen (LIR) and
Derwael (DIR) (Fig. 1). Even though the Princess Ragnhild
coast has been close to balance in recent decades (Gardner and
others, 2018) and is likely dynamically stable (Drews and others,
2015; Berger and others, 2016; Callens and others, 2016), the indi-
vidual catchments are sensitive to increased ocean melting
(Callens and others, 2014; Favier and others, 2016) because
some tributary glaciers rest on a retrograde, landward sloping
bed (Callens and others, 2014; Goel and others, 2020).
Together, the catchments drain a land ice mass with a eustatic
sea-level equivalent of 2 m (Eisermann and others, 2021).

Surface accumulation rates are orographically controlled in
many places along the Dronning Maud Land coast where many
small ice shelves are bounded by promontory-type ice rises.
There, increased snow deposition is observed on the eastern
slopes (facing the mean wind direction) of all ice rises (Lenaerts
and others, 2014; Goel and others, 2017, 2018; Kausch and others,
2020; Pratap and others, 2022). Surface accumulation rates also
vary across topographic incisions that correspond to ice-shelf
channels (Drews and others, 2020). Little temporal changes in
surface accumulation rates have been inferred from IRHs over

the last few decades (Callens and others, 2016; Cavitte and others,
2022), but ice core data on DIR suggest increasing accumulation
rates over the second half of the 20th century (Philippe and
others, 2016). Extensive surface melting and ponding have been
observed close to the grounding line in the blue-ice area of west-
ern RBIS (Lenaerts and others, 2017) and JIS giving rise to several
surface lakes that are also visible in satellite imagery (Stokes and
others, 2019). Their presence has been attributed to erosive kata-
batic winds blowing down from the ice sheet to the ice shelf where
they expose blue ice which has a lower albedo and in turn absorbs
more heat (Lenaerts and others, 2014). The RBIS receives little to
no basal freeze-on (Berger and others, 2017) of marine ice (Tison
and others, 1993; Jansen and others, 2013; Koch and others,
2015). Instead, it experiences widespread moderate basal melting
of a few meters per year (Pattyn and others, 2012; Berger and
others, 2017; Sun and others, 2019) and enhanced localised
basal melting in ice-shelf channels (Drews and others, 2017).

3. Methods

Changes in the density and ice crystal orientation influence
dielectric permittivity and together with changes in conductivity
are the major causes for radar reflections from within the ice
forming IRHs (Fujita and others, 2006). In the well-stratified
interior of the Antarctic Ice Sheet, long sections of IRHs are
clearly visible in many radar datasets (Winter and others, 2019;
Cavitte and others, 2021). In coastal areas, however, surface melt-
water infiltration or ice-dynamic buckling and shearing can ren-
der this stratigraphy invisible to radar (e.g. Karlsson and others,
2012) also leading to disrupted IRHs (Karlsson and others,
2012; Keisling and others, 2014). In that sense also the absence
of IRHs contains valuable information, although more difficult
to interpret as no IRHs can also be a result of insufficient radar
system sensitivity at larger depths and in regions of high englacial
attenuation (Drews and others, 2009).

Here, we have analysed data from two ground-based radar
surveys with an airborne survey using the multichannel ultra-
wideband (UWB) radar of the Alfred Wegener Institute (AWI)
(Table 1). All three radar campaigns together cover three ice
rises and large parts of the ice shelves in this region (Table 1;
Fig. 1).

3.1 Collection and processing of (cross-platform) radar data

3.1.1 Airborne radar profiling
In austral summer 2018/19, AWI’s airborne UWB radar (multi-
channel coherent radar depth sounder; MCoRDS5;
Rodriguez-Morales and others, 2014; Hale and others, 2016;
Franke and others, 2021) mounted on the Polar6 aircraft
(Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung, 2016) was used to acquire radar data over the
area of interest (CHIRP campaign; Fig. 1, Table 1). The transmis-
sion signal is composed of three-staged linear modulated chirp
signal (1 μs unamplified, 1 μs high-gain and 3 μs high-gain) oper-
ating at a frequency range of 150–520MHz. The 1 μs low-gain
waveform is used to detect the ice surface and to resolve layers
in the upper ice column. The short transmit signal without amp-
lification avoids clipping of the surface reflection and does not
mask reflections in the firn column. Standard processing techni-
ques using the CReSIS Toolbox (CReSIS, 2021) for pulse com-
pression, synthetic aperture radar (SAR) focusing and array
processing were performed (for further details on radar data
acquisition and processing, see Rodriguez-Morales and others,
2014; Hale and others, 2016; Franke and others, 2022).
Additionally, the data were SAR-processed with a wider angular
range (Franke and others, 2022), which improves the
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signal-to-noise ratio for steeply inclined IRHs. The final radar
data product has a range resolution of ∼0.35 m and an along-
track trace spacing of ∼6 m.

In the airborne radar dataset, the surface multiple (i.e. a mul-
tiple reflection between the plane and the surface), as well as mul-
tiple reflections of shallow IRHs appear at about 50% of the ice
thickness (Figs 2b, c). These multiple internal reflections below
the surface multiples are mostly so prominent that they strongly
limit visibility of IRHs at the corresponding depth and make
them undetectable (Fig. 8). Therefore, IRH analysis of the air-
borne dataset is restricted to depths above these surface multiples.
The ice–bed and ice–ocean interfaces can always be unambigu-
ously identified. Internal stratigraphy is clearly visible in the
firn layer (Fig. 7), with an approximate layer resolution (here
defined as the ability to distinguish between two horizons) of 1 m.

3.1.2 Ground-based radar profiling
Ground-based radar data were acquired in 2010 (BELARE cam-
paign) and 2012 (Be:Wise campaign) over the western RBIS
(Fig. 1). These data were partly analysed in previous studies
(Pattyn and others, 2012; Drews, 2015; Drews and others, 2020),
however, not in terms of assembling the IRH stratigraphy.
BELARE and Be:Wise data were collected using a monopulsed
transmitter and resistively loaded dipole antennas (Matsuoka and
others, 2012) operating at frequencies 5 and 20MHz, respectively
(Table 1). The system was towed at an average speed of 10 km
h−1, resulting in an average trace spacing of <10m. The data were
dewowed and bandpass filtered prior to IRH tracing. Higher fre-
quency ground-based radar data also previously collected in this
area are covered in a different study (Cavitte and others, 2022).

3.2. Semi-automatic tracing of IRHs

We implemented a trace-by-trace IRH-tracking scheme that fol-
lows distinguishable maxima (or minima) within a window of

similar travel time across traces and can be used with airborne
and ground-based datasets. For the airborne data, seed points
are initially calculated using a continuous wavelet transform
(Xiong and others, 2017) and then combined with the max-
imum/minimum tracking. More details of the layer tracing can
be found in Appendix A.1. In some cases, pattern matching of
characteristic layer packages across observational gaps/shear
zones in a single dataset was possible (Fig. 3), and this informa-
tion is tagged in the available IRH datafiles (Table 2).

The travel time of IRHs was converted to depth using an
empirical density–permittivity relationship (Kovacs and others,
1995), and average depth–density profiles from two ice cores in
our research area (Hubbard and others, 2013; Philippe and
others, 2016). Following suggestions of earlier studies (e.g.
Rippin and others, 2006; Karlsson and others, 2009; Karlsson
and others, 2012), we classified zones with (1) well-preserved
and laterally continuous IRHs that can be traced over several
tens of kilometres, (2) discontinuous and buckled IRHs,
where tracing across the whole radar profile is difficult, and
(3) zones in which IRHs are absent. The top and lateral extent
of a distinct elongated IRH-free zone was mapped out manually
as well as the location of other near-surface IRH-free zones near
ice rises.

3.3 Derivation of surface accumulation rates from shallow IRHs

We used a shallow (<20 m) and laterally continuous IRH from
airborne data to estimate the spatial variability of surface accumu-
lation rates (IRH 2 in airborne radar data, Figs 9, 10). Our
approach followed those of many others (e.g. Eisen and others,
2004; Cavitte and others, 2022; Pratap and others, 2022) assuming
that IRH depth is proportional to the surface accumulation rates
(i.e. the shallow layer approximation (SLA, Waddington and
others, 2017)) and ice dynamic thinning (e.g. Theofilopoulos
and Born, 2023) is neglected. Although along-flow strain rates
on ice shelves and ice rises in our research area are similar, the

Figure 1. (a) Princess Ragnhild Coast with the location of airborne and ground-based radar profiles. MEaSUREs surface velocities (Rignot and others, 2019) and
surface lakes (Stokes and others, 2019) are shown for context. The inset (b) details the location of a relevant ice core and a previous radar survey (‘Callens 400 MHz’
from Callens and others, 2016) used to date the IRHs in this study. Capital letters mark the start and end points of sections shown in Figures 2 and 6. Surface
elevation contours are shown every 50 m. The coordinate system is EPSG:3031 – WGS 84/Antarctic Polar Stereographic (units are in km). See Table 1 for survey
details of CHIRP, BELARE and Be:Wise.
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assumptions of the SLA are less well justified on ice shelves (1)
because of the strong horizontal advection (spatially misplacing
the SMB estimate) and (2) because of basal melting which, albeit
to a lesser extent than the surface accumulation, also imprints on
the vertical advection (Drews and others, 2020). However, the
relative magnitude of the spatial variability in surface accumula-
tion that we infer can be retained in spite of these limitations.

To obtain an age estimate on the traced IRHs, we assumed a
steady age–depth relationship at DIR and tied the age of the airborne
IRHs of this study collected in 2019 to those derived from a ground-
based 400MHz radar survey conducted in 2012 (Callens and others,
2016), which was dated using a directly adjacent ice core (Philippe
and others, 2016). This approach is comparable to Ashmore and
others (2020) who also tied newly traced IRHs to IRHs from a
previous radar survey that was dated by an adjacent ice core. The

age–depth scale was transferred individually at five cross-over points
with the CHIRP survey. As the IRHs in the two surveys occur at dif-
ferent depths, we interpolated the age–depth scale between IRHs
with a third-order polynomial (Fig. 4). IRHs 2, 3 and 4 of the air-
borne CHIRP data are dated like this with years before 2019 of
16.4 ± 0.6, 27.1 ± 0.8 and 40.3 ± 0.6, respectively.

The IRHs were pattern-matched across data gaps by manually
identifying distinct internal layer packages as in previous studies
(e.g. MacGregor and others, 2015). For quality control, IRHs
were visually matched across intersecting transects at cross-points
and in closed loops when possible (e.g. Bodart and others, 2021;
Cavitte and others, 2022), such as at DIR. IRH2 was taken to
derive past surface accumulation rates in the Princess Ragnhild
Region since it is the IRH that allows the deepest almost continu-
ous tracing in the area.

Figure 2. IRHs in two near-parallel radar profiles: low-frequency ground-based profile (A–A’) and UWB airborne CHIRP profile (B–B’ and C–C’). See Figure 1 for
profile locations. Zones of predominant IRH types (continuous, discontinuous or absent/IRH-free zones) over depth are denoted for radar profiles above and
below. Airborne data (B–B’ and C–C’) show a prominent surface multiple at mid-depth through the ice column (preventing any deeper detection of IRHs). Blue
boxes indicate the location of pattern matching zones, shown in more detail in Figure 3. Green boxes denote the location of radar profiles highlighting
IRH-free zones in G–G’ and H–H’ as shown in Figure 6.

Figure 3. Pattern-matched IRHs 2 and 5 across two ice rises and two ice shelves (JIS, Jotneisen Ice Shelf; LIR, Lokeryggen Ice Rise; RBIS, Roi Baudouin Ice Shelf;
DIR, Derwael Ice Rise). Pattern matching was necessary across two shear zones and one data gap of ∼24 km. Layers identified and used to pattern match across the
data gaps are denoted with stars (--P-- for pattern match).
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Uncertainties in the magnitude of surface accumulation rates
result from the steady-state assumption between 2012 and 2019
(the years of the airborne and ground-based radar surveys), errors
in the travel time-to-depth conversion (∼0.25 m or 0.25 years at
this depth), spatial variability in the depth–density profile, picking
errors and uncertainties in the age–depth profile from the ice core
itself (±1 year; Philippe and others, 2016). We accounted for this
in bulk by assuming ±2 years in age uncertainty, and by calculat-
ing upper and lower estimates of surface accumulation rates in
which all other factors reinforce each other (e.g. the lower estimate
assumes an older, shallower IRH with a density profile resulting
in less cumulative mass above the IRH). This resulted in a conser-
vative error envelope for the inferred magnitudes (Fig. 5). The
uncertainty of the surface accumulation rates can be reduced in
future studies, e.g. by including an inverse-distance weighted aver-
age of the density profile from the various ice cores available in
this area. Surface accumulation rates were additionally low-pass
filtered with a cut-off period of 1 km to remove smaller-scale
uncertainties that occur during picking. Even though the absolute
uncertainties are large, the relative spatial variability of the accu-
mulation signal can be interpreted across the whole dataset.

4. Results

4.1 Overview and characteristics of traced IRHs

We traced 77 IRHs with a total length of ∼3700 km in the air-
borne datasets and ∼2200 km in the ground-based datasets
(Table 2). IRHs were traced continuously across individual seg-
ments and, when clearly visible, around bends in the radar trans-
ects. They are on average 190 km long in the airborne radar data
and 25 or 62 km long in the ground-based radar data. In the

airborne data, 24 IRHs were traced with the longest IRH as 314
km long (Figs 9, 10; Table 2). The shallowest IRH was traced at
a minimum depth of a couple of metres below the surface and
the deepest IRH was traced at a maximum depth of 222 m. At lar-
ger depths, the multiple reflection of the surface makes it more
challenging to trace IRHs reliably (Fig. 8). In the ground-based
data, 53 IRHs were traced at depths larger than 35 m and down
to the ice–ocean interface (Figs 11, 12; Table 2). The maximal
traced depth in these IRHs derived from the ground-based
radar data is 416 m.

In general, continuous IRHs occur across all ice rises and also
in large parts of the adjacent ice shelves, in particular when these
are fed by the slower-moving ice from ice rises and the continen-
tal ice sheet (Fig. 1). Continuous IRH arches occur beneath ice
divides of ice rises DIR (Figs 2c, 10), and near the saddles of
HIR and LIR (Figs 2a, b, 9), likely as a combined result of the
Raymond effect (Raymond, 1983) and local surface accumulation
rate anomalies (Drews and others, 2015; Kausch and others,
2020). The IRH arches will be considered in a different study con-
straining ice-rise evolution. Discontinuous or buckled IRHs were
mostly detected at greater depths and predominantly in
fast-flowing parts (Fig. 1) of shelf ice (below 100 m and extending
to the ice–ocean interface whereby the lowermost IRHs are trun-
cated, Figs 2a, 11, 12). IRH-free zones occur close to the ground-
ing zones and in areas of horizontal shear.

In the grounding zones surrounding the ice rises, IRHs exhibit
steep synclines resulting in IRH data gaps in numerous transects
across ice rises into ice shelves (Figs 2a, b, c). These zones are typ-
ically subject to large gradients in ice surface flow velocities and
associated with horizontal shear zones at the ice-shelf ice-rise
transition (Fig. 6a). An exception is a transition from LIR into
the RBIS where horizontal shearing is weaker (Figs 2a, b, 6).

Table 1. Airborne and ground-based radar data investigated in this study

Sensor Resolution Location Date Campaign name Reference

Ground-based (5 MHz) Vertical resolution: ∼8.4 m;
trace spacing: <10 m

Across-flow of RBIS
transect connecting two
ice rises

2010/11 BELARE Matsuoka and others
(2012)

Ground-based (20 MHz) Vertical resolution: ∼2.1 m;
trace spacing: <10 m

Fence-type survey near the
RBIS front

2012/13 Be:Wise Drews (2015); Drews (2019)
(data); Drews and others
(2020)

Airborne multichannel UWB
radar (MCoRDS5, 150–520
MHz)

Vertical resolution: ∼0.35 m;
trace spacing: ∼6 m

Across ice rises (DIR, LIR,
HIR) and ice shelves (RBIS,
JIS, MIS)

2018/19 CHIRP Jansen and others (2019)
(field report); Franke and
others (2023) (radar data);
Franke and others (2020)
(ice thickness data)

See also Figure 1.

Table 2. IRH datasets generated in this study with basic statistics of IRH packages

Survey
Number of
IRHs

Total
length (km)

Mean
length (km)

Min length
(km)

Max length
(km)

Mean
depth (m)

Min
depth (m)

Max
depth (m) Reference and DOI

CHIRP:
20190106_02

12 829 69 10 229 (IRH2) 68 2 210 Koch and others (2023b); https://doi.
pangaea.de/10.1594/PANGAEA.950382;
Figure 9

CHIRP:
20190107_01

12 2904 242 210 314 (IRH2) 74 3 222 Koch and others (2023c); https://doi.
pangaea.de/10.1594/PANGAEA.950235;
Figure 10

BELARE 2010 29 714 25 1 78 205 66 416 Koch and others (2023d); https://doi.
pangaea.de/10.1594/PANGAEA.950388;
Figure 11

Be:Wise 2012 24 1478 62 2 213 170 37 299 Koch and others (2023e); https://doi.
pangaea.de/10.1594/PANGAEA.950389;
Figure 12

The airborne radar dataset was separated into two geographic regions: Daerwell (CHIRP: line 20190107_01) and all other ice rises and ice shelves in this region (CHIRP: line 20190106_02). All
IRHs are available at PANGEA (Koch and others, 2023a).
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Two IRHs (IRH 2 and IRH 5) in airborne radar data were pattern-
matched across two shear zones and a 24 km wide data gap based
on the occurrence of characteristic layer packages (Fig. 3). While
this approach increases uncertainties, it is currently the only way
to transfer absolute accumulations rates from DIR to the other ice
rises in the area (section 4.2). A localised IRH-free zone appears
in all ground-based and airborne profiles at the RBIS (e.g. G–G’ in
Fig. 2a) that are presented in section 4.3.

4.2 Surface accumulation rates across ice shelves and ice rises

The longest traced continuous IRH (IRH2 in airborne radar data)
connects all three ice rises in the near-surface in east–west oriented
transects (D–D’ and E–E’, Fig. 1) over ∼250 km (Fig. 5).
Accumulation rates are lower on ice shelves than on ice rises
and are higher on south-eastern (or windward) slopes (Fig. 5).
Surface accumulation rates on ice shelves vary more strongly on
sub-kilometre scales, particularly across surface depressions of ice-
shelf channels (Fig. 5). The largest variability occurs across
grounding lines and corresponding horizontal shear zones where
characteristic synclines are most prominent (Figs 5, 6).

4.3 IRH-free zones

IRHs are absent in several areas: (1) in a distinct ∼15 km-wide
and ∼100 m-thick laterally constrained elongated IRH-free zone
or thick band that extends from the grounding line to the RBIS
front to the west of the Ragnhild Glacier and (2) in the shear
zones between the LIR and DIR and their adjacent ice shelves
(Figs 2a, b, c, 6). The western limit of the IRH-free zone is defined
with a comparatively abrupt transition from continuous IRHs to
absent IRHs as visible in the ground-based data near the ice-shelf
front (Fig. 2a, transect A–A’, box G–G’ and Fig. 6, transects F–F’
and G–G’). The eastern limit is more subtle and transitions across
an ice-shelf channel east of which discontinuous IRHs emerge
(Fig. 2a, transect A–A’, box G–G’). The ground-based radar pro-
files show a strong bright reflector above the elongated IRH-free
zone (Fig. 6, transects F–F’ and G–G’). This zone is also detected
in airborne profiles further upstream at shallower depths (Fig. 2b,
transect B–B’, box H–H’ and Fig. 6, transect H–H’). Closer to the
grounding zone, the lateral limits are more diffuse as IRH-free
zones occur essentially across the entire ice shelf with a higher fre-
quency to the west, where more surface lakes have been observed
(Fig. 6a). The IRH-free zone progressively deepens downstream
towards the ice-shelf front as continuous IRHs progressively
develop near the surface from local snow accumulation (Lenaerts
and others, 2017; Višnjević and others, 2022). Consequently, the
IRH-free zone, which forms a flow-parallel elongated band when
connected in the across-flow radar profiles, is overlain by ∼120
m continuous IRHs near the ice-shelf front (Fig. 6).

5. Discussion

5.1 Overview of IRH occurrence and contemporary ice dynamic
setting

Occurrence of continuous IRHs, discontinuous IRHs or IRH-free
zones generally coincides with respectively: (1) slow-flowing ice
velocities over ice rises or within the top ten to hundreds of
metres of ice shelves (Figs 1, 2) (IRH presence); (2) areas of fast
ice flow such as the advected Ragnhild outlet glacier (Figs 1, 2)
(IRH presence); and (3) areas of horizontal shearing (Fig. 6a)
(IRH absence). In radar cross-section A–A’ in Figure 2, different
ice bodies with continuous and discontinuous IRHs were classi-
fied and those zones are situated in slow and fast-flowing ice,
respectively (Fig. 1). The link of IRH buckling to a fast-flow

regime was observed in previous studies (e.g. Karlsson and others,
2014; Ashmore and others, 2020; Bodart and others, 2021). Since
the undulated discontinuous IRHs occur at greater depth within
RBIS (Fig. 2a), they have been advected from the land and subse-
quently further submerged because of continuing accumulation at
the surface; such discontinuous IRHs have been previously asso-
ciated with ice streams (e.g. Conway and others, 2002). Once
advected into the ice shelf, discontinuous IRHs were also further
shaped by differential basal melting (Berger and others, 2017) and
by spatially variable surface accumulation rates (Drews and
others, 2020) considered in further detail in the following section.

Figure 4. Dating of AWI UWB airborne radar-derived IRHs by linking with previously
dated IRHs based on 400 MHz GPR profiles by Callens and others (2016) that extend
to the ice core site. In (a) the original radar data and IRHs are shown with 400 MHz
profiles on the left and the airborne radar profile (this paper) on the right. A blue ver-
tical line denotes the crossing point of the two radar datasets. A third-order polyno-
mial (forced through zero with zero depth equal to zero age) is fitted to the age–
depth relationship at each cross-point site of both radar datasets. One age–depth
relationship at one cross-point of the two radar datasets is displayed in (b) in com-
parison to the ice core depth–age relationship.
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Increased localised basal melting also truncates IRHs (Figs 2a, 11,
12) at the ice-shelf base. This is most frequently observed at the
basal incisions of ice-shelf channels within RBIS (Figs 11, 12).
This strengthens previous assertions that basal melting can be
heavily localised in ice-shelf channels (Marsh and others, 2016;
Drews and others, 2020; Schmidt and others, 2023). While the
processes for discontinuous IRH generation seem straightforward,
we discuss further processes important for the development and
interpretation of continuous IRH characteristics and those of
IRH-free zones in the following two subsections.

5.2 Surface accumulation patterns over three ice rises and two
ice shelves

Magnitudes and general patterns of the IRH-derived surface accu-
mulation rates on RBIS (Fig. 5) compare in principle with atmos-
pheric modelling results and previous observations. Increased
orographic precipitation signatures on windward slopes with respect
to mean wind direction are visible at the two eastern ice rises
(DIR and LIR) and to a lesser degree also at the most western
HIR (Fig. 5). This is in line with results from atmospheric
modelling (RACMO (Fig. 5); Lenaerts and others, 2013) and
observations at the same sites (Drews and others, 2015; Callens
and others, 2016; Cavitte and others, 2022). However, RACMO
overestimates precipitation on the windward and underestimates
precipitation on the leeward sides of the ice rises (Fig. 5). Such dis-
crepancies in observed and simulated precipitation patterns should
be accounted for in 3D modelling attempts of DIR, but also high-
light the importance to obtain such spatially extensive in situ obser-
vations on a local to regional scale. Independent of these spatial
differences, the good match in magnitude with previous observa-
tions and modelling results corroborates the accuracy of the dating
and pattern matching approaches employed in this study.

Even though atmospheric modelling predicts spatially homoge-
neous surface accumulation rates over ice shelves (Lenaerts and
others, 2014), IRH-derived accumulation rates show variability
on spatial scales of less than about 3 km (Fig. 5). For example, sur-
face depressions that occur near ice-shelf channels show signatures
of wind erosion and re-deposition that have been observed previ-
ously in the Be:Wise dataset (Drews and others, 2020). Here, we
observe these patterns on all three ice shelves, emphasising that
surface accumulation changes with the surface gradient especially
across ice-shelf channels (Fig. 5). This is in line with several previ-
ous studies which have established this link over a wide range of

spatial scales (e.g. Black and Budd, 1964; Spikes and others,
2004; Drews and others, 2013, 2020; Goel and others, 2017; Van
Liefferinge and others, 2021). Insufficient resolution of surface
topography could therefore be the primary reason for the mis-
match on small spatial scales between radar-based accumulation
rates and regional high resolution as well as continental- and
regional-scale surface accumulation products. The observed
smaller-scale variability becomes relevant, for example, when
deriving basal melt rates with mass conservation near ice-shelf
channels (e.g. Berger and others, 2017).

The largest oscillations in surface accumulation rates occur
across the grounding zones between ice rises and adjacent ice
shelves (Fig. 5). This variability coincides with a strong change
in surface slope from the ice rise to the ice shelf (Fig. 5) as well
as large horizontal shearing (Fig. 6a). Since the IRH2, from
which accumulation rates were derived, is located at a depth
that is within the upper 5% of the ice thickness where the SLA
typically applies, it is indeed likely that variable snow deposition
might be the primary cause. Nonetheless, the calculated accumu-
lation signal may be overprinted by four other factors: (1)
unaccounted strain-induced effects in firn densification
(Riverman and others, 2019; Oraschewski and Grinsted, 2022)
impacting the travel time to depth and hence snow water equiva-
lent conversion, (2) increased basal melt rates at the grounding
line (Pattyn and others, 2012; Berger and others, 2017), (3) char-
acteristic down warping of the IRH geometry (Figs 2b, c) as a
result of persistent horizontal shearing (Hambrey and Lawson,
2000) (Fig. 6a) and (4) small vertical ice velocities that are inher-
ent to ice dynamics across grounding zones (Lestringant, 1994;
Durand and others, 2009). All these factors also increase the near-
surface depression and hence contribute to increased topograph-
ically induced accumulation in the grounding zones.
Disentangling all mechanisms would require a full-Stokes ice-flow
model beyond the scope of this study. Nonetheless, the newly
derived dataset of surface accumulation rates across three ice
rises and two ice shelves now allows for catchment-wide accumu-
lation assessment over the same time period.

5.3 Evidence for paleo-ice-stream activity advected into the
ice shelf

The IRH-free zone or band of absent IRHs in the western part
of the RBIS extends from the grounding zone to the ice-shelf
front (Fig. 6a) as revealed by radar data presented in this

Figure 5. Average surface accumulation rates (from mind 2002 until the end of 2019) derived from IRH 2 of airborne radar data using the shallow layer approxi-
mation (SLA) (bottom) in comparison to RACMO surface accumulation from Lenaerts and others (2013) (bottom) and topography (elevation and slope) (top). The
shaded area in the lower plot includes the calculated error.
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study. Lenaerts and others (2017) and Drews and others (2020)
already detected the presence of an IRH-free zone in ground-
based radar data near the ice-shelf grounding line but did not
yet determine its full spatial extent toward the ice-shelf front,
required to establish its origin. Here we discuss the possible
physical processes that caused this elongated feature. We con-
sider three main processes: internal lateral shearing, surface
meltwater penetration and refreezing and blue-ice area advec-
tion. Given that this IRH-free zone or band is bound by con-
tinuous and discontinuous IRHs that were imaged much
deeper on either side of the zone (e.g. Fig. 2a) by all radar sys-
tems, a lack of system sensitivity as an explanation can be
excluded.

We suggest horizontal shearing as the primary cause for the
existence of the IRH-free zone or band. Previous studies have
found discontinuous IRHs or IRH-free zones to be associated
with shear zones or basal ice deformation zones (Clarke and
others, 2000; Jacobel and others, 2000; Karlsson and others,
2012; Holschuh and others, 2019; Ross and others, 2020;
Franke and others, 2022). While persistent lateral shearing causes
fold (syncline) formation (Jennings and Hambrey, 2021), IRH
slopes progressively steepen with depth in RBIS similar to those
created in land ice masses due to differential deformation (e.g.
Hudleston and others, 2015) until they cannot be imaged by
radar anymore (Holschuh and others, 2014). Small IRH-free
zones occur together with such IRH synclines in our study area

Figure 6. (a) Elongated IRH-free zone marked as green dots that also denote its top depth, derived from airborne and ground-based radar data. In addition, the
transparent green circles denote locations of small IRH-free zones adjacent to ice rises. The locations of the ground-based (F–F’ and G–G’) and one airborne (H–H’)
radargrams (as shown in b) are shown as yellow lines, overlain by the IRH-free depth markers on the map. Flowlines are shown as dotted positions for every 50
years. For context, surface ice-flow velocities are plotted in red, and horizontal shear strain rates in purple (Alley and others, 2018) on the map. Panel (b) shows
selected radargrams in which the IRH-free zone (that is marked in pink) is clearly visible. The ground-based radar data profiles F–F’ and G–G’ were filtered prior to
analysis and the original amplitudes are thus not preserved. Therefore, the scale bar is left unitless.
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at the western limits of DIR where horizontal shear strain rates are
highest within RBIS (Fig. 6a).

The syncline amplitude increases within the deeper IRHs
(∼15–50 m, Figs 2a, c) that have been exposed to strain for longer.
However, these synclines of structural deformation origin are also
influenced by increased local basal melting (Berger and others,
2017) and spatially variable surface accumulation at this location
(section 5.2). In the IRH-free elongated zone or band within the
western part of RBIS, however, no shallow synclines are observed
at the side of the zone, even though lateral shearing occurs, par-
tially induced by (1) a pinning point located at the ice-shelf front
(Berger and others, 2016) and (2) two ice masses of different ori-
gins and speed that merge as revealed by flowline tracing (Fig. 6a).
The absence of synclines at the edges of the elongated IRH-free
zone or band suggests that the horizontal strain rates within the
ice shelf were not strong enough to visibly alter the continuous
IRH geometry since deposition. This is corroborated by the pres-
ence of only slightly undulated continuous IRHs above and adja-
cent to the IRH-free zone (Fig. 6b, section G–G’). These
continuous IRHs progressively developed downflow from the
grounding line everywhere on the shelf towards the ice-shelf
front, forming a local ice body of a maximum total depth of
∼120 m (Višnjević and others, 2022) (Fig. 6a). The interpretation
of their localised formation downflow from the grounding line is
consistent with the derived average surface accumulation rate of
300 kg m−2 a−1 over 400 years (advection time for shelf ice from
the grounding line to the ice-shelf front using current flow speeds
from Rignot and others, 2019), but it also matches the accumula-
tion rates calculated from the SLA (section 4.2, Fig. 5).

A bright IRH (e.g. Dunmire and others, 2020) at the top of the
IRH-free zone (Fig. 6b) further supports this scenario, since it
likely originates from refrozen surface meltwater from the
grounding zone area where many surface lakes have been
observed (Lenaerts and others, 2017; Stokes and others, 2019).
The reflector is slightly patchy (Supplementary Figs 3, 4, 7 and
11 in Drews and others, 2020) in line with disconnected surface
lakes. Since we present evidence that the relatively weak shear
strain rates in the ice shelf were not strong enough to significantly
alter the shape of IRHs since their formation at the grounding
line, the IRH-free zone could constitute a remnant of a previous
continental ice shear zone originating from the grounded shear
zone of the Ragnhild glacier. Further corroborating the interpret-
ation as a remnant and advected strain zone is that the location of
the elongated IRH-free zone or band does not fully line up with
today’s surface strain field within the ice shelf. Most notably, it
is offset by ∼5 km eastwards in the Be:Wise data relative to the
pinning point. Whether or not this signifies some temporal
changes in the shear margin should be investigated in further
studies which use this feature as a proxy for shear-margin migra-
tion over time.

There is weak evidence for an alternative explanation for the
origin of the elongated IRH-free zone or band, i.e. that surface
lakes have shaped this zone. It is not yet clear if surface meltwater
infiltration and refreezing alone could also obscure deeper radio-
stratigraphy, e.g. by disrupting the stratigraphy and creating a
zone of warmer refrozen ice. It has been observed that ice-shelf
surface lakes can drain abruptly (Banwell and others, 2019;
Dunmire and others, 2020), and although direct evidence is yet
missing, it appears that lake drainage is facilitated through vertical
fractures into the deeper ice of the RBIS near its grounding line
(Lenaerts and others, 2017; Dunmire and others, 2020). Current
flowlines at the eastern RBIS allow tracing back of the elongated
IRH-free zone ice upstream into a grounded region that shows
much blue ice and lakes (Fig. 6a). Whereas individual supra-
glacial lakes at the grounding zone are only a few metres in
water depth (Dunmire and others, 2020), the elongated

IRH-free zone within RBIS extends continuously to the ice-shelf
base. Hence, the IRH-free band could be a temporally integrated
signal of lake formation and near-surface refreezing. Hereby, slow
ice advection over several hundred years, as flowline tracing
upstream from the grounding line revealed, through an area of
surface lakes before and after the grounding line (Stokes and
others, 2019) (Fig. 6a) could have contributed to shaping the
zone. Especially if these surface lakes were topographically con-
trolled by undulations in the underlying bed, with expression at
the ice surface, they could have continuously formed in the
same location. This would have created a refrozen lake upon a
refrozen lake, stacked within the ice-shelf stratigraphy (and dis-
turbing IRHs). However, this scenario is unlikely in shaping
such a distinct elongated zone only, as lakes were extending across
the whole ice-shelf grounding zone in recent satellite observations
(Stokes and others, 2019) and not just upstream of the elongated
IRH-free zone. Hence this interpretation would be only plausible
if surface lake presence and extent was a transient signal. It would
require surface lakes at the grounding line to extend across almost
the whole ice-shelf width having developed in recent years,
whereas the lake presence upstream of the grounding line (in
the blue-ice area) would have existed for several hundred or thou-
sand years.

Another influence on the presence of the elongated IRH-free
zone could be blue-ice areas that exist upstream of western
RBIS next to Ragnhild Glacier (Fig. 1). Blue-ice areas have a nega-
tive (or zero) surface mass balance (Markov and others, 2019) and
the high local surface mass loss rates allow older and originally
deeper ice stratigraphy to emerge at the surface (e.g. Koch and
others, 2015; Baggenstos and others, 2018). According to the cur-
rent flow field, the deeper continental ice at depth in western RBIS
would have travelled through a blue-ice area for several thousand
years. The localised surface ablation would result in deep ice
layers coming to the surface that may not show continuous stra-
tigraphy due to a previous intense deformation history of the deep
ice on the continent.

Considering the ice dynamic context and the fact that the elon-
gated IRH-free zone or band within RBIS has a very distinct lat-
eral, longitudinal as well as vertical extent, we consider the
interpretation as an advected remnant or paleo shear zone of
the Ragnhild outlet glacier as the most likely one. This is more
strongly backed up by the best observational evidence, even
though this interpretation should be validated through modelling.
Detailed stratigraphical investigations of ice shelves could hence
also provide valuable information on the paleo strain history of
the previous continental ice.

5.4 Scientific applications for mapped IRH stratigraphy in
coastal regions

The IRH data presented in this study of the near-surface and
internal ice stratigraphy allow for calibrations of as well as assimi-
lation in ice-flow models applied to ice shelves and ice rises. For
instance, Višnjević and others (2022) modelled the stratigraphy of
the locally accumulated ice of RBIS, and validated results with the
mapped shape and patterns of near-surface continuous IRHs
from airborne radar (Koch and others, 2023a). The mapped
IRH stratigraphy could also be used to test whether or not the
ice shelf has been in a steady state by comparing the observations
with steady-state predictions of ice-flow models over the last hun-
dreds of years (Višnjević and others, 2022). Since the ice-shelf
stratigraphy is affected by both surface accumulation and basal
melting, it would now be feasible to use an inverse approach
that distinguishes between these two factors incorporating deeper
stratigraphy, such as discontinuous internal radar horizons. In
terms of ice rises, our dataset fully unravels the 3D internal
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stratigraphy of DIR with a sufficient density that allows constrain-
ing 3D ice rise models (e.g. Pattyn and others, 2012; Henry and
others, 2022). The mapped stratigraphy would help to constrain
vertical velocities, which have thus far been derived through tun-
ing snapshot inversions based on matching surface velocity obser-
vations to model output with varying basal slipperiness
(Schannwell and others, 2019, 2020). With the full 3D stratig-
raphy, Raymond arches can be adequately represented which
would also mean that vertical velocities would have been
adequately modelled. The IRH stratigraphy that links HIR, LIR
and – via pattern matching – DIR could also be used to study
the coupled evolution of ice rises in neighbouring catchments.
In addition, mapping and modelling the current and past loca-
tions of Raymond arches would also allow for the identification
of the best suitable ice core-drilling locations (Steig and others,
2006).

Shallow IRHs as well as those from deep within-ice shelves are
also useful for improving (1) surface accumulation products and
potentially (2) basal melt rate products that feed numerical simu-
lations, allowing for more accurate ice dynamic reconstructions or
predictions. Ice-shelf models are often fed by coarse input data of
surface accumulation (e.g. RACMO; Lenaerts and others, 2014).
The current accumulation rates derived from IRHs in this study
could be used for bias correction, which is especially important
since surface accumulation was established as the dominating for-
cing when modelling ice-shelf stratigraphy (Drews and others,
2020; Theofilopoulos and Born, 2023). In order to improve esti-
mations of basal melt rates, traced synclines across grounding
zones could be used to derive basal melt rates in combination
with numerical simulations (e.g. Catania and others, 2006;
Pattyn and others, 2012).

5.5 Need for standardised derivation and archiving of IRHs

We provide a stratigraphic dataset of IRHs derived from airborne
as well as ground-based radar data, extending from the near-
surface to the ice-shelf base and across ice rises and are hereby
expanding IRH datasets in coastal areas of Antarctica. A few lim-
itations of the IRH dataset presented here remain since few radar
data have been collected along flowlines which is relevant for ice-
shelf models (e.g. Višnjević and others, 2022) and the 3D geom-
etry of ice shelves is still not adequately sampled by radar transects
presented here. We recommend (re)investigating ground-based
radar data – when available – from previous field surveys together
with airborne radar data in order to gain a comprehensive picture
of the whole ice column or expand data coverage.

AWI’s UWB airborne radar system (MCoRDS5) will be used
for future efforts as part of the SCAR RINGS survey efforts albeit
with a different flight altitude to avoid masking of the internal
stratigraphy by a surface multiple. The system is capable of resolv-
ing IRHs in the firn with a resolution of about 1 m, as well as the
entire deeper stratigraphy in similarly high resolution (Figs 2b, c,
7). Depending on the data acquisition set-up (e.g. platform, height
above ground, transmit power, bandwidth, number of waveforms,
waveform transmit time and gain) and the environmental condi-
tions reflectivity at the ice surface and in the firn column, clipping
can mask the upper IRHs. Our analysis found that AWI’s UWB
airborne radar system (MCoRDS5) is capable to detect the bed
reflection as well as near-surface englacial reflections. This cap-
acity gives a great opportunity to map both bed topography and
SMB with a single survey flight. These two are major uncertainties
when ice-sheet mass balance is determined using the input–out-
put method (e.g. Bamber and others, 2018) and the primary tar-
gets of future RINGS surveys.

The derivation and archiving of IRHs from radar data is cur-
rently not a standardised procedure. While commercial and open-

source seismic software are routinely applied to trace IRHs in
radar data (e.g. Cavitte and others, 2021, 2022), these software
mostly require a time-intensive manual tracing of IRHs. Hence,
many IRHs have been traced by a wide variety of custom-
programmed radar pickers with different semi-manual tracking
schemes (e.g. Fahnestock and others, 2001; Mitchell and others,
2013; Panton, 2014; MacGregor and others, 2015; Xiong and
others, 2017; Delf and others, 2020). Automating the detection
of local maxima/minima of IRHs in backscattered power that
occur at similar travel times in neighbouring traces often is a chal-
lenge and varies with the radar data type. Even when including
layer slope (Panton, 2014; MacGregor and others, 2015; Delf
and others, 2020), most IRH tracing techniques operate only
semi-automatically, i.e. require operator interference (e.g.
MacGregor and others, 2015; Xiong and others, 2017). Our
study used elements from previous studies (MacGregor and
others, 2015; Xiong and others, 2017) to program ‘yet another
picker’ to allow for IRH tracing in both airborne and ground-
based radar data equally well (for more details on the picker
see Appendix A.1.). This study provides no exception to the
most common motivation for programming another tool: specific
inputs/outputs were needed because of the radar platforms.
Recent developments provide open-source radar processing soft-
ware (e.g. Lilien and others, 2020), which could serve as a suitable
platform for integrating the many available picking approaches.
The classification of IRHs could also be included in future pickers
since it would ease the interpretation of IRHs in relation to ice
dynamics.

A larger-scale assembly of IRHs will be needed both for
ice-sheet-wide model calibration and for developing more
advanced IRH tracking methods to minimise operator interfer-
ence in the future, such as deep learning to automatically track
IRHs (e.g. Rahnemoonfar and others, 2020; Varshney and others,
2021). Previous deep learning approaches rely on labelled datasets
of IRHs for both training the network and evaluating its accuracy.
Thus, the amount of available, labelled data currently limits the
success of neural networks in identifying IRHs. While IRHs are
increasingly becoming publicly available (Winter and others,
2019; Ashmore and others, 2020; Bodart and others, 2021;
Cavitte and others, 2021), a standardised community-wide pro-
cess of data collection, processing and storing is required. We sug-
gest saving IRHs together with metadata as outlined in Table 3.
Here we include the date of the originally acquired radar profiles
as well as their survey ID and profile ID, and the radar profile
coordinates. For the IRHs, we include the dates of picking, the
associated trace number, the two-way travel time of the picked
IRHs (and optionally converted depth) and optionally the two-
way travel time of the picked ice base (and optionally converted
depth). Non-standardised data publishing currently makes it dif-
ficult to assemble IRHs generated by different institutions without
relying on active submissions of individuals to community papers
as was the case for radar-derived ice depth assembled for
BedMachine (Morlighem and others, 2017, 2020; Frémand and
others, 2023).

6. Conclusion

We mapped about 5900 km of IRHs semi-automatically in radar
data of an ice-marginal Antarctic catchment. The analysed radar
data were acquired in ground-based and airborne surveys between
2010 and 2019 over three ice rises and ice shelves in the Princess
Ragnhild region. This study’s focus was on characterizing the
internal ice stratigraphy through mapping different types of
IRHs that could (a) be used to derive spatially varying surface
accumulation when dated (continuous IRHs) or (b) give informa-
tion about elements of the ice-shelf deformation history
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(discontinuous IRHs or IRH-free zones) and ultimately provide
an archive for calibrating and validating future modelling efforts.

Continuous IRHs in the Princess Ragnhild Coast region show
increased accumulation on the eastern (windward) sides of topo-
graphic slopes as well as a strong small-scale variability across
small-scale undulations within the ice shelf (like ice-shelf chan-
nels). While the large-scale trends for these orographic effects
are known, our new data now correctly position surface accumu-
lation maxima and minima in the respective flanks which is
important for modelling ice-rise evolution. Linking three ice
rises in this study via the interspersed ice shelves provides unique
isochronal constraints that allow studying coupled ice rise evolu-
tion of neighbouring ice rises. Discontinuous IRHs mainly occur
in deeper shelf ice that was advected from the dynamically active
Ragnhild outlet glacier upstream. While discontinuous IRHs were
associated with higher ice deformation previously, a discontinu-
ous IRH dataset that extends all the way to the ice-shelf bottom
allows the assessment of ice-shelf heterogeneity, which has impli-
cations for ice-flow modelling, hitherto rarely considered. The
lack of IRHs in a spatially constrained elongated IRH-free zone
within RBIS was interpreted as a proxy for the paleo activity of
the shear margin with the Ragnhild outlet glacier. Checking
other ice shelves for similar signatures could provide a valuable
archive for ice-stream dynamics over the past hundreds of years.

The mapped internal ice stratigraphy of this study contributes
to the ongoing mapping efforts of AntArchitecture and expands
its focus toward the lesser-studied ice marginal zones. As the
focus of airborne radar investigations shifts to the ice margins
of Antarctica (Matsuoka and others, 2022), more data will become
available. More and better observations of the ice-shelf stratig-
raphy allow – in combination with models – to distinguish
steady-state ice-shelf dynamics from more recent transient
responses. Accumulation patterns derived from IRHs could help
validate surface accumulation products with which models are
fed. Interpreted in combination with remotely sensed ice-flow
dynamics or dated ice cores, IRHs also allow investigations into
spatial variations or temporal stability (over several decades) of
ice-shelf dynamics (processes).
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Appendix

A.1. IRH picker
The IRH picker MATLAB code and supporting documents can be accessed on
GitHub: https://github.com/Ice-Tub/picking_isochrones_v1/tree/paper. The
picker requires that initial preprocessing of the radargrams has been completed
so that the IRHs are clearly distinguishable. Some preprocessing is included as
an option in the picker for the ground-based radar data to increase IRH visibility
(e.g. bandpass filtering or Hilbert transformation). The picker is based on track-
ing a local maximum (or also local minimum for ground-based radar) of the
received reflected power in an adjustable window across traces, corroborated by
optionally employing a wavelet algorithm. Initially, the surface and basal reflec-
tors are semi-automatically traced, applying standard maximum search techni-
ques. The surface reflector is selected as the first largest peak, whereas the
basal reflector is semi-automatically traced within a likely time interval defined
by the user. Subsequently, the procedure of picking IRHs is different for airborne
and ground-based radar data. For airborne radar data, significant wavelet peaks
are identified in the whole radar dataset using Mexican Hat or Morlet Wavelets
(Xiong and others, 2017) and are marked as seed points. In order to calculate the
seed points, the data below the basal reflector are considered background noise.
Subsequently, the seed points are connected pixel by pixel laterally within a user-
defined pixel time interval (‘a vertical window’) around each previously selected
IRH pixel using a semi-automated search algorithm. Should no suitable seed
points be available within the time window, the code selects the closest maxima
instead. Depending on the nature of the specific IRH, this procedure can require
a significant amount of user interaction wherever the automated tracing loses
track of the corresponding IRH. Picking of IRHs in ground-based radar data
relies solely on the semi-automated search for maxima/minima (and no seeds)
due to the shape of the traces. Individual digitised IRHs in airborne or ground-
based radar data can be connected between different profiles since cross-points
are visibly marked in the picker to ensure internal consistency. In certain
cases, this allows for checking of closed loops, a procedure often adopted for
quality checking of picks (e.g. Winter and others, 2019; Cavitte and others,
2022). Surface and basal picks were corrected to the first break in the postproces-
sing. In addition to IRHs, the picker also allows basic picking of ice surface and
base.

A.2. Explanatory note on the published internal reflection
horizon data

The IRHs presented in this study are published in eight tab-delimited text files
(see Table 2). For each of the four surveys (Belare 2010, Bewise 2012, CHIRP
20190602 and CHIRP 20190701; Figs 9–12) there is one file of IRHs in the twt
domain and one in the depth domain, respectively. The locations of IRHs and
the ice base are thus presented in seconds (twt) and metres (depth) with
respect to the location of the ice surface. Note that the presentation of IRHs
in Figures 9–12 is shown in elevation with respect to the REMA ice surface
(Howat and others, 2019). The column names, a description and the precision
of the values are shown in Table 3. Non-data values are represented as ‘nan’.
All IRHs have unique IDs within each survey (e.g. IRH_01 to IRH_29). Most
IRHs are depth-sorted; however, in some cases, the IRH sequences are not
unambiguous. Therefore, we highlighted in Figures 9–12 and in the file head-
ers, which IRHs are depth-sorted and which are individual. The IRHs of the
BELARE 2010 survey are depth-sorted, but divided into three individual sets
(IRH_01-11, IRH_12-20 and IRH_21-29; see the three different colour
codes in Fig. 11). The conversion from the twt domain to the depth domain
includes a first-break correction and is based on the empirical density–permit-
tivity relationship of Kovacs and others (1995) with averaged ice-core densities
from Philippe and others (2016) and Hubbard and others (2013).

The IRH data are published as tab-delimited text files and are stored in a
PANGAEA publication series with a collective DOI (Koch and others,
2023a)and four individual DOIs (Koch and others, 2023b, 2023c, 2023d,
2023e) for the respective datasets. The twt-based IRHs can be obtained
from the ‘Source datasets’ section and the twt-derived depth-based IRHs
from the ‘Other version’ section. An explanation for the column field
names is presented in Table 3. In addition, figures of the IRHs in the eleva-
tion domain (Figs 9–12) for each dataset are archived under ‘Further
details’. Note that the primary data (the twt-based IRHs) imported into
the internal PANGAEA system have a more complex field notation accord-
ing to the PANGAEA standards. This also affects the downloadable tab files,
which have a different field structure than the one in Table 3. However, this
field structure is explained on the respective dataset page in the ‘Parameter’
section.

Table 3. Explanatory notes for the columns in the internal reflection horizon (IRH) data files. Note that the information is valid for both, ‘twt’ and ‘depth’ files except
for the ‘base’ and ‘IRH_N*’ columns

Column name Explanation Precision (decimal places)

year_acq Year of radar data acquisition
month_acq Month of radar data acquisition
day_acq Day of radar data acquisition
surveyID Survey ID (one survey may contain several profiles)
profileID Profile ID (all profiles together form a continuous survey)
lon Longitude in decimal degrees 8
lat Latitude in decimal degrees 8
psX x-coordinate in polar stereographic project 71 south (EPSG:3031) 3
psY y-coordinate in polar stereographic project 71 south (EPSG:3031) 3
year_pick Year of last IRH processing
month_pick Month of last IRH processing
day_pick Day of last IRH processing
trace Trace number of a profile
base (twt) Two-way travel time of basal reflection (TWT in seconds from ice surface) 13
base (depth) Depth of basal reflection (meters below ice surface) 2
IRH_n* (twt) Respective two-way travel time of internal reflection horizon (seconds from ice surface) 13
IRH_n* (depth) Respective depth of internal reflection horizon (meters below ice surface) 2

The units for these columns are in seconds for the ‘twt’ files and in meters for the ‘depth’ files
n* represents the respective IRH ID.
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Figure 7. Representation of englacial layering in the airborne CHIRP radar profile 20190107_01_006 over Darwael Ice Rise with the AWI UWB MCoRDS5 system. (a)
Radargram with the two-way traveltime (TWT) as recorded at acquisition (TWT between target and receiver) and (b) with the TWT from the ice surface reflection
(i.e. flattened). The approximate depth scale of the entire ice column in (b) is 85 m.
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Figure 8. Illustration of the effect of multiple reflections on englacial IRHs from AWI UWB profile 20190107_01_006 (panel a). Panels (b)–(f) show different magnified
sections in which it becomes clear that: (i) the reflections on 50% of the ice thickness are indeed multiple reflections from internal layers below the surface reflec-
tions (panels c and d), (ii) partly only the surface multiples are visible and partly the surface multiples overprint the englacial IRHs (panel d), and (iii) both reflec-
tions are visible at the same time (panels e and f).
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Figure 9. Representation of all IRHs and bed picks of the airborne CHIRP 2019 (0602) radar profiles in the elevation domain. Elevations were calculated using the
REMA surface elevation model (Howat and others, 2019). The positions of the profiles are marked by the respective colour in the upper right corner of the map. The
circle always represents the starting point of the profile. The original name of the radar profile is shown on the top of each profile.

Figure 10. Representation of all IRHs and bed picks of the airborne CHIRP 2019 (0701) radar profiles in the elevation domain. Elevations were calculated using the
REMA surface elevation model (Howat and others, 2019). The positions of the profiles are marked by the respective colour in the upper right corner of the map. The
circles represent the starting point of the profile. The original name of the radar profile is shown on the top of each profile.
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Figure 11. Representation of all IRHs and bed picks of the ground-based BELARE 2010 radar profiles in the elevation domain. Elevations were calculated using the
REMA surface elevation model (Howat and others, 2019). The positions of the profiles are marked by the respective colour in the upper right corner of the map. The
circle always represents the starting point of the profile. The original name of the radar profile is shown on the top of each profile.

Figure 12. Representation of all IRHs and bed picks of the ground-based Bewise 2012 radar profiles in the elevation domain. Elevations were calculated using the
REMA surface elevation model (Howat and others, 2019). The positions of the profiles are marked by the respective colour in the upper right corner of the map. The
circle always represents the starting point of the profile. The original name of the radar profile is shown on the top of each profile.
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