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Self-organized groups of robots have generally coordinated their behaviors using
quite simple social interactions. Although simple interactions are sufficient for some
group behaviors, future research needs to investigate more elaborate forms of
coordination, such as social cognition, to progress towards real deployments. In
this perspective, we define social cognition among robots as the combination
of social inference, social learning, social influence, and knowledge transfer, and
propose that these abilities can be established in robots by building underlying
mechanisms based on behaviors observed in humans. We review key social
processes observed in humans that could inspire valuable capabilities in robots
and propose that relevant insights from human social cognition can be obtained
by studying human-controlled avatars in virtual environments that have the
correct balance of embodiment and constraints. Such environments need to
allow participants to engage in embodied social behaviors, for instance through
situatedness and bodily involvement, but, at the same time, need to artificially
constrain humans to the operational conditions of robots, for instance in terms of
perception and communication. We illustrate our proposed experimental method
with example setups in a multi-user virtual environment.

KEYWORDS

artificial social cognition, embodied cognition, self-organization, robot swarms, multi-
robot systems, artificial intelligence, artificial general intelligence, social robots

Introduction

AI research has greatly advanced, but when interaction with other agents is required,
existing algorithms easily break down (Bard et al., 2020). Social interaction and social
embodiment are still underexplored in artificial general intelligence (Bolotta and Dumas, 2022)
and in groups of intelligent robots. While there is some robotics research on social cognition,
it focuses on human-robot interaction (Henschel et al., 2020), e.g., how a robot interprets the
intentions of a human, not on interactions among robots. It is important to note that what looks
like social cognition is not necessarily social cognition. For instance, agents or robot controllers
made by reinforcement learning might behave in ways that look socially cognizant in some
situations, but this might only be appearance—i.e., the underlying behavioral phenomena are
not there—so the illusion will break down when exposed to more situations.

Robots can coordinate with each other by using, e.g., centralized control or self-
organization. In multi-robot systems that are not self-organized, robots are directed to
follow a centrally coordinated plan using explicit commands or global references. In this
paper, we are interested exclusively in robot groups that include aspects of self-organization,
because social cognition depends on some degree of individual autonomy. If a robot is
essentially a remote-controlled sensor or actuator, it does not engage in social cognition.
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In existing research on self-organized robot groups, the
individuals are usually quite simple and often rely on indiscriminate,
naïve interactions. Indeed, swarm robotics research has shown that
no advanced cognition or elaborate social negotiation is needed
to self-organize certain group behaviors (e.g., Nouyan et al., 2009;
Rubenstein et al., 2014; Valentini et al., 2016). However, it has been
argued that there are still significant gaps for robot swarms to be
deployment-ready, and that the future of swarm robotics research
should concentrate on more elaborate forms of self-organized
coordination (Dorigo et al., 2020; 2021), such as self-organized
hierarchy (Mathews et al., 2017; Zhu et al., 2020) or behavioral
heterogeneity (Kengyel et al., 2015).

In this perspective, we argue that another important direction for
future study should be social cognition. Robot groups successfully
equippedwith social cognition could engage in elaborate coordination
without sending each other large amounts of data. Some aspects
of robot behavior could be mutually predictable, for instance by
robots maintaining good internal models of each other. Socially
cognitive robots could have improved group performance, e.g., by not
destructively interfering with each other (which requires time and
effort to resolve) and not accidentally disrupting each other’s sub-goals
while attempting to reach a common goal.

In cognitive robotics, research on individual robots such as
humanoids is very advanced (Cangelosi and Asada, 2022), even
on each of the six key attributes of artificial cognitive systems
(Vernon, 2014): action, perception, autonomy, adaptation, learning,
and anticipation. Comparatively, cognition in swarm robotics is
still in its beginning stages. While cognitive robot swarms can be
autonomously capable of collective action, perception, and in some
cases adaptation (Heinrich et al., 2022), we do not yet know how to
make robot swarms that can autonomously learn and anticipate as a
collective, in such a way that the group behavior is greater than the
sum of its parts. We propose that studying social cognition could help
us advance the autonomous collective capabilities of groups of robots.

Socially cognitive robots: Our
perspective

Our perspective is summarized as follows: social cognition among
robots can be built by developing artificial social reasoning capabilities
based on behaviors observed in humans.

Frith (2008) has defined social cognition in humans as “the various
psychological processes that enable individuals to take advantage
of being part of a social group” and Frith and Frith (2012) have
further specified that a substantial portion of these psychological
processes are for learning about and making predictions about
other members of the social group. The mechanisms of social
cognition in humans include social signalling, social referencing,
mentalizing (i.e., tracking of others’ mental states, intended actions,
objectives, and opinions), observational learning (e.g., social reward
learning, mirroring), deliberate knowledge transfer (e.g., teaching),
and sharing of experiences through reflective discussion (Frith, 2008;
Frith and Frith, 2012). Crucially, social cognition is also defined as
“not reducible to the workings of individual cognitive mechanisms”
(De Jaegher et al., 2010).

Although some social abilities such as simple social interaction
are well-developed among robots, most of the abilities contained in
Frith (2008)’s definition of social cognition are lacking, and could

provide significant performance benefits. For instance, the transfer of
information between robots is well understood, but much less so the
transfer of knowledge, especially implicitly:

We define social cognition among robots as the following set of
abilities:

1. Social inference—inferring the opinions, intended next actions,
and overall goals of other robots in the same social group, using
interpretation of social signals;

2. Social learning—learning information about which actions to
adopt or avoid based on observations of each other’s behaviors and
social signalling;

3. Social influence—deliberately influencing each other’s (socially
inferred) internal states using social signaling; and

4. Knowledge transfer—transferring high-level knowledge using
social interaction, e.g., using implicit demonstration or explicit
instruction.

Currently, robots are well-equipped with some of the requirements for
these abilities, such as simple social interactions, but lack other crucial
requirements such as explicit social reasoning. Although research has
shown that no social cognition is needed for simple group behaviors
in robots, it is an open challenge how to accomplish more advanced
behaviors in a fully self-organized way. Some of the significant
unresolved technical challenges for advanced self-organization among
robots, which we believe social cognitive abilities could contribute to,
are the following:

• autonomously anticipating which actions should be taken in an
environment filled with other autonomous robots,
• collectively defining an explicit goal that was not pre-

programmed and collectively directing the robot group towards
it,
• making online inferences about other robots’ current states

and future behaviors, and adapting their coordination strategies
accordingly, even while moving at high speed in dynamic
unknown environments, and
• designing self-organization among robots such that the resulting

group behaviors, although not completely predictable, are safe
and trustable.

We propose that socially cognitive robots can in part be developed
by learning from the social cognition processes of humans in certain
experimental conditions. In order to have the potential to transfer
observed behaviors and capabilities fromhumans to robots, we believe
experiments with human subjects must be conducted in a platform
that allows experimental setups to be: on one hand, realistic enough to
study embodied human behavior, but on the other hand, constrained
and simplified enough to approximate the operational conditions of
robots.

State of the art

Artificial social learning and artificial
mentalizing

Many examples of artificial learning exist that seem relevant to the
mechanisms of social cognition. However, key social aspects are not
present in these existing methods: for instance, reward learning has
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been demonstrated in robots (e.g., Daniel et al., 2015) but learning of
social rewards among robots has not been studied. Likewise, robots
learning by interacting with and observing other robots has been
demonstrated (e.g., Murata et al., 2015), but not for the learning of
socially relevant information nor to build behaviors among robots that
are irreducible to the knowledge held by robots individually.

Currently, the most advanced research towards artificial social
cognition can be seen in multi-agent reinforcement learning. In
basic approaches, each agent would use reinforcement learning
individually, treating other agents as part of the environment. In more
elaborate existing approaches, agents are trained to model each other
and several types of artificial mentalizing have been demonstrated
(Albrecht and Stone, 2018). For example, in the Deep Reinforcement
Opponent Network (DRON), one agent learns the representation of
the opponent’s policy (He et al., 2016). In another example, an agent
uses itself as the basis to predict another agent’s actions (Raileanu et al.,
2018). One approach using a “Theory of Mind” network has even
produced agents that can explicitly report inferred mental states of
other agents and pass the classic “false belief test” for understanding
the mental states of others (Rabinowitz et al., 2018). Current efforts
in multi-agent learning use cooperative games such as Hanabi as
benchmarks, which involves inferring the mental states of others
and using that information to collaborate (Bard et al., 2020). For the
development of artificial social cognition, the next step for this line
of research would be to situate the mentalizing behaviors within the
full set of social cognition mechanisms, including social influence and
social reward learning (cf. Olsson et al., 2020).

Social cognition transfer between humans
and robots

Robots have been used as experimental tools for the study of
embodied social cognition. For instance, a variety of devices have been
used to automatically provide synthetic social stimuli to animals in
a naturalistic way (Frohnwieser et al., 2016). Similarly, the effect of
humanoid robots on human social cognition has been broadly studied
(Wykowska et al., 2016). Social robots in the context of human-robot
interaction have also been investigated (e.g., Dautenhahn, 2007).
However, to the best of our knowledge, no studies have looked
at expanding these robot use cases into embodied artificial social
cognition among robots, and no work apart from our own has
proposed using experiments with humans to contribute to building
social cognition among robots.

Directions for future research

Advanced group capabilities seen in humans can inspire similar
capabilities in robots. For example, the human capabilities of
selecting and following leaders (Van Vugt, 2006) and re-organizing
communication networks around individuals with better information
(Almaatouq et al., 2020) have recently inspired the development of
self-organized hierarchies for robots, for instance using physical
(Mathews et al., 2017) orwireless connections (Zhu et al., 2020). In the
following sections, we identify cognitive processes used by humans in
social situations that would be valuable for robot groups, and propose
them as future research directions for building social cognition among
robots.

Social heuristics and action selection

Humans often use cognitive processes known as “heuristics” to
select actions in social situations. In humans, heuristics are defined
as action selection strategies that usually deviate from economic
rationality or Bayesian optimality but which facilitate a rapid action
selection when time and knowledge about a situation are limited
(Hertwig and Herzog, 2009). The hidden states of other agents cannot
be directly observed, so the outcome of a social situation always
has a high degree of uncertainty—selecting the optimal action is
computationally intractable (Seymour and Dolan, 2008).

In humans, heuristics can involve continuous integration of
multiple variables or sources of information, for example when
deciding on awalking direction based on the position of other walking
individuals (Moussaid et al., 2011). In psychology and neuroscience,
action selection is often characterized as the result of an accumulation
process, in which evidence that supports a certain decision or action is
accumulated over time (Ratcliff and McKoon, 2008). A certain action
is taken when the accumulated evidence crosses some threshold. The
sources and manner of evidence integration can be determined by
social heuristics. For example, evidence accumulation frameworks can
characterize how humans use a “follow the majority heuristic” during
social decisionmaking (Tump et al., 2020), aswell as howhumans base
their ownmovements on those of others during embodied competitive
interactions (Lokesh et al., 2022).

Coupling, alignment, and mirroring

Humans often mirror each other’s behaviors and can participate
in a “coupling” behavior through reciprocal interactions. Implicit
coupling can occur between physiological states (for example,
synchronization of heartbeats and breathing rhythms). Explicit
sensorimotor coupling involves mutual prediction of each other’s
actions and facilitates coordinated action sequences (Dumas and
Fairhurst, 2021). On a higher cognitive level, reciprocal interactions
can create alignment between internal cognitive states, which in turn
facilitates bettermutual prediction of actions (Friston and Frith, 2015).

Humans can also disengage from social interactions and instead
mirror (or “simulate”) others’ actions as a type of internalized action
(Buzsáki, 2019, p. 131). This capacity is supported by the mirror
neuron system, which is active when observing and when executing a
movement (Rizzolatti and Craighero, 2004). Internal simulation aids
in understanding others’ intentions and in selecting complementary
actions (Newman-Norlund et al., 2007).

Mentalizing and shared representations

Simply mirroring the mental states of others is often not sufficient
to infer their opinions, objectives, or intended actions (Saxe, 2005).
Therefore, coupling andmirroring are often complemented in humans
by higher-level cognition about others’ beliefs, desires, and intentions,
taking into account factors such as context andmemory (Sebanz et al.,
2006). This requires mentalizing, a process of inference about others’
changing mental states, beyond simple mirroring (Frith and Frith,
2012).

For example, mentalizing based on observations of others’ gazes
facilitates taking others’ perspectives into account and tracking their
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beliefs about a shared environment or world (Frith and Frith,
2012). By observing others’ movements, humans can also infer the
confidence that others have in their beliefs (Patel et al., 2012) and the
intentions that underlie their actions (Baker et al., 2009). Crucially,
humans also mentalize based on third-party observations of others’
interactions, and then estimate the social relationships between them
(Ullman et al., 2009).

Tracking others’ goals and beliefs helps humans to distinguish
which subset of their action representations are shared with others.
Shared representations aid in predicting and interpreting the actions
of others in the context of a joint goal, and in selecting complementary
actions. For instance, by tracking others’ beliefs, an individual can
recognize when communication or signalling is needed to facilitate
smooth coordination (Pezzulo and Dindo, 2011).

Outcome monitoring

Humans monitor behaviors and detect errors when taking actions
directed towards a certain goal (Botvinick et al., 2001). If an individual
recognizes another making what might be an error, in pursuit of a
shared goal, the individual needs to then distinguish whether it was
indeed an error, or whether their goals are misaligned.

Humans also monitor whether actions have their intended
outcomes, as well as whether a certain action and certain outcome
actually have a causal link. This results in a greater or lesser sense
of agency over a certain action or outcome (Haggard and Chambon,
2012), which in turn impacts how an individual acts in social
situations. Agency can be modulated in a variety of ways: joint agency
when acting together with others, vicarious agency when influencing
the actions of others, or violated agency when actions are interfered
with by others (Silver et al., 2020). The modulated sense of agency
in humans helps shape an individual’s monitoring of links between
actions, errors, and outcomes.

From humans to robots: An
experimental method

Robots are embodied agents with specific morphologies and
specific perception and action capabilities that differ from (and are
often far more limited than) those of humans. To gain insights
from human social cognition that are relevant to robots, human
subjects would need to be studied in an experimental platform
that: 1) allows them to engage in embodied social behaviors, but
also 2) allows enough constraints to artificially expose humans to
the operational conditions of robots. We propose that behavioral
experiments conducted with humans controlling avatars in virtual
environments can achieve this trade-off.

Balancing embodiment and constraints in
virtual environments

Existing experiments on human social cognition have mostly
been conducted in highly controlled single-person paradigms
which lack embodiment. We identify the following five aspects of
embodiment that we propose human-controlled avatars in new virtual
environments will need, for the study of embodied human social
cognition.

1. Situatedness: An agent takes actions while being part of a situation,
rather than by observing the situation from the outside (Wilson,
2002).

2. Sensory and action shaping: By taking actions (e.g., moving their
bodies) in the environment, agents can actively change the flow of
their sensory inputs as well as the potential effects of their actions
(Gordon et al., 2021).

3. Bodily involvement: The bodily state and/or morphology of the
agent—as well as the agent’s bodily relation to the bodies of other
agents—can be involved in cognition (Wilson, 2002).

4. Interaction cascades: Agents can engage with each other in such a
way that actions by one can influence reciprocal actions by another,
resulting in cascades of interactions and behaviors (Dale et al.,
2013).

5. High bandwidth: There can be high bandwidth of implicit or
explicit information exchange between agents (Schilbach et al.,
2013).

Complementarily, we identify the following constraints that will also
need to be possible in the virtual environment.

1. Body and action: Human-controlled avatars can be equipped with
morphology features and action capabilities that are similar to those
of relevant robots.

2. Perception: When controlling an avatar, a human subject can be
limited to sensory inputs similar to those of relevant robots (e.g.,
restricted visual information).

3. Communication: Human-controlled avatars can be limited to
communication and signalling capabilities that are similar to those
available to relevant robots.

4. Hidden states: Human subjects can be required to explicitly
report information about hidden states (e.g., their current opinion
or confidence level) that is not directly observable from their
behavior but would be available to an experimenter if using relevant
robots.

Unconstrained real-world social situations would fulfill all listed
requirements for embodiment, but would lack control and
interpretability. Virtual environments enable certain aspects of
embodiment while at the same time ensuring a degree of control
of the situation for the experimenter.

Example: Using the virtual environment
HuGoS

To the best of our knowledge, no off-the-shelf virtual environment
was available tomeet these requirements, so we built a tool in Unity3D
called “HuGoS: Humans Go Swarming” (Coucke et al., 2020; 2021)
that we could use to study human behavior in embodied scenarios
similar to those in which robots operate. To illustrate the features
that we propose for a virtual environment for studying transferable
social cognition, we describe two example experimental setups in
HuGoS.

Collective decision making
Collective decision making has been widely studied in swarm

robotics (Valentini et al., 2017), but many gaps still remain
(Khaluf et al., 2019). Collective decisions have also been extensively
studied in humans (Kameda et al., 2022), but not typically in
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FIGURE 1
Collective decision making. Participants control cubic avatars while having either a broad (A) or limited (C) view of the full environment (B). A wide variety of
variables can be measured during the experiment, such as the participants’ trajectories (D), the percentage of the environment they have explored (E), the
average distance between participants (F), the participant-participant viewing network (G), and the number of avatars choosing the correct color (H). Figure
reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer eBook, Coucke et al. (2020), © Springer Nature 2020.

FIGURE 2
Collective construction. (A) Two physical robots that perform collective construction using stigmergic blocks (Allwright et al., 2019). Figure (A) reprinted
from Allwright et al. (2019) under license CC BY-NC-ND 4.0. (B, C) “Lava spill task” in which participants use indirect communication to collectively
construct a barrier to contain expanding spills. (D) The spill size stagnates after around 200 s, when participants successfully enclosed it with construction
blocks. (E) Data such as the avatar trajectories can be used to analyze how participants coordinate the placement of blocks. Figures (B–D) adapted from
Coucke et al. (2021) under license CC BY 4.0.

embodied scenarios that would be relevant to robots, in which,
e.g., exploration and signalling can take place simultaneously.
In our example implementation in Coucke et al. (2020), each of
four participants controls the movements of a cubic avatar in an
environment scattered with red and blue cylindrical landmarks (see
Figure 1). The task is to explore the environment while making
observations through the avatar’s (broad or limited) field of view and
simultaneously decidingwhether there aremore red or blue landmarks
present in the environment.Theparticipantsmust come to a consensus
in order to complete the task and are only permitted to communicate
with each other indirectly: they vote by changing their avatar color
and they observe the avatar colors of the other participants while
making their decisions (see Figures 1A–C). During an experiment, all

perceptual information available to each participant, along with their
actions, are recorded at a sampling rate of 10 Hz (Figures 1D–H).

In this experiment setup, participants came to a consensus about
the predominant color in the environment through a combination of
environmental and social information. In the example trial shown in
Figure 1, at 45 s, all four participants had adopted the correct opinion
(Figure 1H) after individually and broadly exploring the environment
and then reducing their average relative distances to increase their
access to social information (Figure 1F) and finally come to a
consensus. When a consensus was reached, not all participants
had personally observed all parts of the environment (Figure 1E),
implying that social information was effectively used. Further, all
participants had a strong directional line-of-sight connection with
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at least one other participant (Figure 1G), but the most looked-at
participant (P4) had not personally observed the whole environment
(Figure 1E), implying that the consensus on the correct opinion
was indeed arrived at by a self-organized and collective process.
For more information on this and similar experiments, please refer
to Coucke et al. (2020). By setting up more advanced experiments
in this direction, data could be collected to, for example, identify
social heuristics that can inspire new protocols in future robot
swarms.

Collective construction
Existing swarm robotics approaches to construction often use

stigmergy (i.e., indirect communication through modification of the
environment) to coordinate (Petersen et al., 2019), but the structures
built strictly by stigmergy are relatively simple. Future robot swarms
should be able to build complex structures in dynamically changing
environments (Dorigo et al., 2020). In our example “lava spill task”
scenario in Coucke et al. (2021), human social behaviors in collective
construction scenarios can be observed. In this task (see Figure 2),
participants are instructed to collectively construct a barrier to
contain an expanding spill, but are not instructed how to coordinate.
Each participant controls the movement of an avatar that can push
construction blocks. The environment includes two different spills
(i.e., expanding circles) and a supply of construction blocks placed in
between them. During an experiment, a group of eight participants
needs to assess the environment and coordinate their actions using
indirect communication (i.e., observation of peers) to barricade both
of the expanding spills within 300 s.

The avatar trajectories in Figure 2E show that participants
coordinated to distribute their work between the two spills and place
blocks around the full circumferences of both spills. Figure 2D shows
that participants continued to place more blocks at a roughly constant
rate throughout the experiment, implying that no bottleneck arose
in their self-organized coordination. The figure also shows that the
expansion of both spills had successfully been stopped at around
200 s. For more information on this and similar experiments, please
refer to Coucke et al. (2021). Using more advanced setups in this
direction, the gathered behavioral data could provide insights into how
self-organized coordination and group actions unfold over time and
adapt to the environment. In order to get detailed information about
participant strategies, experiments in this virtual environment can
be temporarily interrupted at certain times to ask participants about,
e.g., their explicit judgements about the beliefs of other participants,
their sense of (joint) agency, or their feelings of alignment with
others.

Discussion

Some features of human social groups, such as collective
intentions, reflective discussion, or shared biases, might at first
seem not particularly relevant for robots. However, there are many
autonomous group behaviors that have not yet been demonstrated in
self-organized robots. For instance, it is not yet understood how to
have robots autonomously identify when they shouldmake a collective
decision (Khaluf et al., 2019). These fundamentals of group-level

autonomy, which social animals such as humans exhibit effortlessly
and consistently, might possibly be based on, or even depend on,
such unexpected features as shared biases. Our perspective is that
research that investigates the transfer of such social traits fromhumans
to robots can help us to identify and understand the basic elements
needed to build artificial social cognition.

Artificial restrictions in embodied experiments are unlikely to
reveal how humans would behave in natural conditions, but there
is existing evidence that such restrictions indeed have the potential
to reveal aspects of embodied human social behavior that would be
transferable to robots. For example, when realistic social cues such as
gaze and facial expressions are inhibited, humans have been shown to
focus on other communication channels, such as implicit movement-
based communication (Roth et al., 2016).

If eventually achieved, the creation of social cognition among
robots would open many further research questions. For instance,
there are human collective intentions that go beyond the humans
that are immediately present (Tomasello et al., 2005)—if robots have
advanced social cognition abilities, how should different social groups
of robots interact with each other, whether physically or remotely?
As another example, intrinsic motivation or curiosity-driven learning
could be investigated to motivate agents to explore the complex
internal states that make up another agent, perhaps constituting a
rudimentary theory of an artificial mind. Or, perhaps robots could
be intrinsically motivated to autonomously develop completely new
forms of artificial social cognition that do not resemble those already
seen in humans or social animals.
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