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Abstract
Background and Objectives
The validity of brain monitoring using electroencephalography (EEG), particularly to guide
care in patients with acute or critical illness, requires that experts can reliably identify seizures
and other potentially harmful rhythmic and periodic brain activity, collectively referred to as
“ictal-interictal-injury continuum” (IIIC). Previous interrater reliability (IRR) studies are
limited by small samples and selection bias. This study was conducted to assess the reliability of
experts in identifying IIIC.

Methods
This prospective analysis included 30 experts with subspecialty clinical neurophysiology
training from 18 institutions. Experts independently scored varying numbers of ten-second
EEG segments as “seizure (SZ),” “lateralized periodic discharges (LPDs),” “generalized peri-
odic discharges (GPDs),” “lateralized rhythmic delta activity (LRDA),” “generalized rhythmic
delta activity (GRDA),” or “other.” EEGs were performed for clinical indications at Mas-
sachusetts General Hospital between 2006 and 2020. Primary outcomemeasures were pairwise
IRR (average percent agreement [PA] between pairs of experts) and majority IRR (average PA
with group consensus) for each class and beyond chance agreement (κ). Secondary outcomes
were calibration of expert scoring to group consensus, and latent trait analysis to investigate
contributions of bias and noise to scoring variability.

Results
Among 2,711 EEGs, 49% were from women, and the median (IQR) age was 55 (41) years. In
total, experts scored 50,697 EEG segments; the median [range] number scored by each expert
was 6,287.5 [1,002, 45,267]. Overall pairwise IRR wasmoderate (PA 52%, κ 42%), andmajority
IRR was substantial (PA 65%, κ 61%). Noise-bias analysis demonstrated that a single
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underlying receiver operating curve can account for most variation in experts’ false-positive vs true-positive characteristics
(median [range] of variance explained (R2): 95 [93, 98]%) and for most variation in experts’ precision vs sensitivity charac-
teristics (R2: 75 [59, 89]%). Thus, variation between experts is mostly attributable not to differences in expertise but rather to
variation in decision thresholds.

Discussion
Our results provide precise estimates of expert reliability from a large and diverse sample and a parsimonious theory to explain
the origin of disagreements between experts. The results also establish a standard for how well an automated IIIC classifier must
perform to match experts.

Classification of Evidence
This study provides Class II evidence that an independent expert review reliably identifies ictal-interictal injury continuum
patterns on EEG compared with expert consensus.

Identifying seizures and other types of seizure-like activities in
electroencephalography (EEG) has long been an essential part
of medical care for patients with epilepsy and has recently be-
come integral to the care of patients with acute or critical illness.1-3

Seizures occur in up to half of critically ill patients who undergo
EEG4-7 monitoring, are associated with worse outcomes,5,7-14

and if recognized promptly can be managed with antiseizure
medications and other interventions. Growing evidence suggests
that other seizure-like events that exist along a continuum be-
tween clear-cut seizures and normal brain activity—the so-called
ictal-interictal-injury continuum (IIIC)—can also damage the
brain, particularly when prolonged. However, despite standard-
ized definitions,15-17 identification of seizures and other IIIC
events can be challenging.18-24 Errors can harm patients, with
overcalling leading to overtreatment and undercalling leading to
treatment delays and neuronal injury.25-29

How reliably specialists recognize IIIC events is unknown.
Previous studies on expert interrater reliability (IRR) have
been based on small samples and have largely focused on
examples specially selected for certification examinations,
leaving the reliability of EEG to guide neurologic care
uncertain.18-24

Measurement of expert IRR is a prerequisite for developing
automated IIIC event detection systems because expert
identification is the accepted gold standard. Automated de-
tection could extend the reach of brainmonitoring beyond the
small pool of experts with EEG subspecialty training and help
expand brain monitoring to underserved areas. Although au-
tomated IIIC event detection software is commercially
available,30-32 without definitive studies of expert IRR and
high-quality annotated benchmark data sets, how well these
systems compare with experts remains uncertain.

Therefore, we conducted a large-scale study of expert IRR for
identifying IIIC events. To establish a diverse and represen-
tative set of well-annotated IIIC events, we recruited 30 ex-
perts to classify 50,697 events from 2,711 patients. We
measured expert IRR by agreement between pairs of experts
(pairwise IRR) and agreement with the consensus score

(majority IRR). Finally, we assessed the relative contributions
of noise and bias33 to expert IRR.

Our results establish precise estimates of expert reliability based
on a large and diverse sample and a parsimonious theory to
explain the origin of disagreements between experts. The re-
sults also present a standard for how well an automated IIIC
classification system must perform to match or exceed experts.

Methods
Standard Protocol Approvals, Registrations,
and Patient Consents
We conducted the study following the “An Updated List of
Essential Items for Reporting Diagnostic Accuracy Studies”
(STARD) guidelines.33 The index test is independent EEG
interpretation by neurologists with clinical neurophysiology
fellowship training (“experts”). The reference standard is the
consensus EEG interpretation among these same experts. The
study was conducted prospectively, with data collection and
analyses specified before the index test and reference standard
were assessed. The study was approved by the Massachusetts
General Hospital (MGH) IRB, which waived the requirement
for informed consent.

Participants
We selected 2,711 recordings from patients hospitalized be-
tween July 2006 andMarch 2020 who underwent EEG as part
of clinical care at MGH in medical, neurologic, and surgical
intensive care and general care units. EEG electrodes were
placed according to the International 10–20 system (eTable 1,
links.lww.com/WNL/C519). Patients were selected in 2 stages
based on clinical notes mentioning IIIC events (eTable 2, links.
lww.com/WNL/C519). We placed no restrictions on age
(eTable 1, links.lww.com/WNL/C519). The large group was
intended to ensure broad coverage of all variations of IIIC events
encountered in practice.

EEG Labeling
Labeling of 10-second EEG segments was performed using
custom local-based and web-based interfaces in 2 stages

e1738 Neurology | Volume 100, Number 17 | April 25, 2023 Neurology.org/N

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://links.lww.com/WNL/C519
http://links.lww.com/WNL/C519
http://links.lww.com/WNL/C519
http://links.lww.com/WNL/C519
http://neurology.org/n


(eAppendix 2 in the Supplement, links.lww.com/WNL/
C519). The first stage involved targeted annotations by small
groups of independent experts. The second stage involved
multiple labeling rounds by larger groups of independent ex-
perts guided by automated selection of new segments to be
labeled. Experts could pan left and right 20 seconds before or
after the target segment, changemontages, and adjust the signal
gain. A 10-minute spectrogram was provided for additional
context. Raters were given a forced choice of 6 options: seizure
(SZ), lateralized periodic discharges (LPDs), generalized pe-
riodic discharges (GPDs), lateralized rhythmic delta activity
(LRDA), generalized rhythmic delta activity (GRDA), and
“other” if none of those patterns was present. The final ground
truth label assigned to each EEG segment was the category
chosen most often for the segment by expert reviewers.

EEG Raters
In total, 124 EEG raters from 18 centers labeled varying
numbers of EEG segments, including 30 fellowship-trained
physicians (“experts”) and 94 technicians and trainees. Ex-
perts who participated in stage 2 of labeling and scored ≥1,000
segments were included in IRR analysis (eFigure 1, eTable 3
in the Supplement, links.lww.com/WNL/C519).

Qualitative Analysis
We visually reviewed cases for each IIIC type that had high,
intermediate, and low levels of agreement to identify factors
that might explain expert disagreements.

Statistical Calibration Analysis—Identification
of Undercallers and Overcallers
We characterized scorers’ statistical calibration for each IIIC
event type34,35 to identify overcalling and undercalling behavior
(eAppendix 5 in the Supplement, links.lww.com/WNL/C519).
For each IIIC, type segments were assigned to one of the 5
probability bins 0%–20%, 20%–40%, 40%–60%, 60%–80%, and
80%–100% based on the proportion of experts who classified
them into that IIIC category. For each expert, we estimated their
probability of classifying segments within each of these proba-
bility bins as that category (instead of the other 5 categories) by
fitting a parametric model. For statistical stability, we limited
calibration analysis to experts who scored ≥10 segments within
each bin for each IIIC category. Based onmodel fit, we defined a
calibration index ranging from −100% (maximal undercalling) to
100% (maximal overcalling), with 0% representing perfect cali-
bration. We define significant overcalling and undercalling as
having a calibration index above 20% or below −20%.

Interrater Reliability (IRR)
We analyzed pairwise IRR in 2 ways: first, percent agreement
(PA) is the average probability across pairs of raters that if one
rater labeled an EEG segment pattern C, the other labeled the
same segment C. Second, chance-adjusted agreement, that is,
kappa, κ, is given by κ = (PA− PC)=(1− PC), where PC is
percent agreement achievable by chance, defined as randomly
guessing among the 6 IIIC categories with equal probability.
We adopted standard naming conventions36 for levels of

reliability indicated by κ values: slight 0%–20%, fair 21%–40%,
moderate 41%–60%, substantial 61%–80%, and almost perfect
81%–100%. We defined majority IRR as PA and κ with the
IIIC category that received the highest number of votes. For
statistical stability, we restricted majority IRR analysis to ex-
perts who scored ≥10 segments per IIIC category and seg-
ments that received scores from ≥10 experts, and restricted
pairwise IRR analysis to experts who each scored ≥100 seg-
ments in common within each IIIC category. We report
median, 25th, and 75th percentiles across experts (majority
IRR) and expert pairs (pairwise IRR).

Interpattern Conditional Probabilities
(Confusion Matrices)
We also calculated pairwise conditional probability matrices, or
“confusion matrices,” P(B|C), defined as the average probability
that one expert labels a patternB, given that another expert labels
C (eAppendix 6, eFigure 2 in the Supplement, links.lww.com/
WNL/C519). Confusion matrices go beyond the IRR metrics
by showing not only howwell raters agree but also the pattern of
disagreement. The majority conditional confusion matrix is
calculated similarly as the average probability that an expert labels
a pattern B, given that the majority labeled it C.

Analysis of Expert Noise and Bias
We developed a latent trait model to investigate contributions of
noise and bias to interexpert disagreements37-39 (eAppendix 8 in
the Supplement, links.lww.com/WNL/C519). This model has 2
parameters (“latent traits”) for each IIIC type: noise level σ,
reflecting a rater’s skill in classifying IIIC, and threshold θ, rep-
resenting a rater’s bias as an overcaller or undercaller. We hy-
pothesized that most participating experts had similar skill (σ)
and disagree mostly due to bias (different θ values)—we call this
the “Similar Skill, Individualized Thresholds” (SSIT) model. We
tested SSIT by how well it fits 3 performance statistics measured
for all experts: false-positive rate (FPR), true-positive rate (TPR,
aka sensitivity), and positive predictive value (PPV, aka pre-
cision), relative to the group consensus. We quantified goodness
of fit as the percent variance explained by the model.

Data Availability
The data in this study will be available after approval of a data
access agreement, pledging to not reidentify individuals or
share the data with a third party. All data inquiries should be
addressed to the corresponding author.

Results
Overall, 124 raters scored 50,697 EEG segments from 2,711
patients, including 49% women, with a median (IQR) age of 55
(41) years, and EEG duration of 18 (22) hours (eTable 1 in the
Supplement, links.lww.com/WNL/C519). Limiting analysis to
experts with training in clinical neurophysiology yielded 30 ex-
perts; all scored ≥1,000 EEG segments. Among these 30, there
were 20 experts with enough data for calibration analysis and 30
for pairwise IRR, majority IRR, and noise-bias analyses. The
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median [range] of EEG segments scored per expert was 6,287.5
[1,002, 45,267], and the median number of labels per EEG
segment was 15 [10, 29]. The consensus (majority) labels were
Other for 37% (N = 18,582). Among the remaining 32,115 IIIC
patterns, 28% (9,141) were SZ, 11% (3,547) were LPD, 7%
(2,141) wereGPD, 10% (3,348) were LRDA, and 43% (13,938)
were GRDA. A flow diagram of the sample selection is shown in
Figure 1.

Qualitative Observations
We visually reviewed EEG segments for the 5 IIIC events with
varying degrees of expert agreement (Figure 2, eFigure 3 in
the Supplement, links.lww.com/WNL/C519). We identified
3 main types of events: (1) “Ideal” patterns: cases with high
agreement tend to be clear examples that match standardized
definitions.15,17,40 (2) “Protopatterns”: cases where votes split
evenly/nearly evenly between “other” and one IIIC pattern
tend to be partially/semiformed, having some but not all
classic features. (3) “Edge” cases: cases where raters split
between 2 IIIC patterns tend to have features of both classes.
These observations suggest that classifying real-world IIIC
patterns is challenging in part because they do not form dis-
tinct clusters. Instead, “ideal” IIIC patterns are connected by
one or more continuous paths in “feature space” leading
through a series of intermediate edge cases and protopatterns.
This supports the concept that IIIC patterns lie along an
“ictal-interictal continuum” as proposed by Chiappa et al.41

and popularized by Hirsch et al.42

We further defined these categories quantitively using the
following rules:

c Idealized: the top class received >80% of votes.
c Proto: the top 2 classes are an IIIC pattern and “other”

(non-IIIC), and the difference in fractions of votes
received by the top 2 classes is <10%.

c Edge: the top 2 classes are both IIIC patterns, and the
difference in votes is <10%.

c In-between: any other samples beyond the 3 categories
above that are ill defined.

Using these definitions on the samples with ≥10 votes (N =
11,474 samples), the percentages of patterns of each type
were 35.2% idealized, 4.2% edge, 8.9% proto, and 51.7% in-
between. This distribution pertains to our data but may not
represent the natural frequencies in EEG in general.

Calibration Curves
Calibration curves are shown in Figure 3A for the 20 experts
included in the analysis. Overcalling and undercalling are
common: the proportions of experts with calibration indices
>20% for overcalling or undercalling (overcalling/undercalling,
%), respectively, were SZ (11/11), LPD (37/21), GPD (32/
16), LRDA (32/21), GRDA (32/26), and “other” (21/32).
The IIIC class with the largest proportion of well-calibrated
experts (undercalling and overcalling <20%) was SZ (79%),
followed by GPD (53%), “other” (47%), LRDA (47%), LPD
(42%), and GRDA (42%).

Pairwise IRR
All 30 experts’ data met inclusion criteria for pairwise IRR
analysis, among whom 748 ordered pairs of experts scored
≥100 EEG segments in common (eTable 4 in the Supple-
ment, links.lww.com/WNL/C519). Overall pairwise IRR
(PA/κ, %) was moderate (52/42); pairwise IRR was slight for
LRDA (34/20), fair for SZ (45/34) and GRDA (44/33),
moderate for LPD (63/56) and GPD (55/45), and substantial
for “other” (68/62) (eTable 4, links.lww.com/WNL/C519).

Majority IRR
All 30 experts who scoredmet inclusion formajority IRR analysis
(eTable 4 in the Supplement, links.lww.com/WNL/C519).
Majority IRR was generally higher than pairwise IRR. Overall

Figure 1 Scoring Flowchart

In total, 124 raters (30 experts and 94 technicians or trainees) scored 50,697 segments from 2,711 patients’ EEG recordings. The number of segments among
these with consensus labels of seizure (SZ), lateralized or generalized periodic discharges (LPDs, GPDs), lateralized or generalized rhythmic delta activity
(LRDA, GRDA), or none of those patterns (“other”) are indicated. Constraints applied to ensure statistical stability for calibration analysis, pairwise interrater
reliability (IRR) analysis, andmajority IRR analysis are shown, together with the resulting number of experts’ data, and the number of segments is shown. For
calibration analysis, the number of segments available is expressed as the median [minimum, maximum] number of segments per probability bin. For
pairwise and majority IRR, the number of segments is given as the median [minimum, maximum] number of segments per pattern class. For pairwise IRR
analysis, the number of expert pairs among the 30 experts with sufficient jointly scored data for analysis is also shown.
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majority IRR (PA/κ) was substantial (65/61); majority IRR was
moderate for SZ (64/60), LRDA (55/50), and GRDA (60/56),
and substantial for LPD (71/68), GPD (65/61), and “other”
(73/70) (eTable 4, links.lww.com/WNL/C519).

Confusion Matrices
We investigated patterns of disagreements between raters
(pairwise IRR) using confusion matrices (Figure 3B). Most
disagreements were over whether segments were IIIC vs
“other.” Beyond these, for EEG segments scored as SZ, di-
verging opinions were from most to least common: LPD
(14%), then GPD (13%), and less likely to be LRDA (6%) or
GRDA (4%). Diverging opinions for LPD were, from most
to least common: GPD, SZ, LRDA > GRDA (5%, 5%, 5%,
and 2%); forGPD: LPD>SZ>GRDA>>LRDA (9%, 8%, 5%,
1%); for LRDA: LPD > GRDA > SZ >> GPD (15%, 9%, 6%,
2%); and forGRDA:GPD>LRDA>LPD, SZ (7%, 6%, 3%, 3%).
In summary, patterns that shared the property of being

rhythmic, periodic, or had similar distribution (lateralized vs
generalized) were more likely to be confused. Similar results
are seen in the majority IRR confusion matrix (Figure 3C).

Noise and Bias Underlying Expert IRR
Results of fitting the “Similar Skill, Individualized Thresholds”
(SSIT) model are shown in Figure 4. Consistent with the
SSIT model, experts’ operating points lie near common re-
ceiver operating characteristic (ROC) curves for each IIIC
pattern. The mean [range] percent of variance explained by
the SSIT across IIIC types is 95 [93, 98] %. The area under
these ROC curves ranges from 97% for SZ and GPD to 90%
for “other.” Across all IIIC patterns, experts tend to operate in
a low false-positive rate (median 3.0 [0.8, 14.0] %) and a high-
sensitivity (62 [28, 89] %) regime.

The SSIT model can also account for variance in experts’
precision and recall characteristics (PRC), with mean [range]

Figure 2 Selected EEG Examples for Class Seizure

(A) Exampleof idealized formof seizure (SZ)with uniformexpert agreement. (B) Protopatternor partially formedpattern. About half of raters labeled theseSZand
the other half labeled “other.” (C, D) are edge cases (about half of raters labeled these SZ andhalf labeled themanother IIIC pattern). For (B), there is rhythmicdelta
activitywith someadmixed sharpdischargeswithin the 10-second rawEEG, and the spectrogram shows that this segmentmaybelong to the tail endof a SZ; thus,
disagreement between SZ and “other” makes sense. (C) 2 Hz lateralized periodic discharges (LPDs) showing an evolution with increasing amplitude evolving
underlying rhythmic activity, a patternbetween LPDs and thebeginningof a SZ, anedge case. PanelD showsabundant generalizedperiodic discharges (GPDs) on
top of a suppressed background with a frequency of 1–2 Hz. The average over the 10 seconds is close to 1.5 Hz, suggesting a SZ, another edge case.
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variance explained for each IIIC pattern of 75 [59, 89] %.
Areas under the PR curves ranged from 90% for “other” to
48% for LRDA. Experts tend to operate near the upper right
elbow of these curves, in the high sensitivity, and in a high
precision range, although sensitivity (62 [28, 89] %) and
precision (median 65 [28, 87] %) vary widely.

Classification of Evidence
This study provides Class II evidence that an independent
expert review reliably identifies ictal-interictal injury contin-
uum patterns on EEG compared with expert consensus.

Discussion
Our findings suggest that reliability for classifying seizures and
rhythmic and periodic EEG patterns between experts is only
moderate (overall pairwise IRR: PA 52%; κ 42%). Nevertheless,

disagreement between experts can be largely explained without
invoking ambiguities in the definitions of IIIC patterns or errors
in judgement. Rather, disagreement can be largely explained by
experts applying different decision thresholds, effectively draw-
ing different classification boundaries on what is inherently an
underlying continuum.

Previous studies of experts’ IIIC interrater reliability have
reached variable conclusions (Table 1, eAppendix 9 in the
Supplement, links.lww.com/WNL/C519). We found 8 rele-
vant previous studies. Gerber et al.18 studied IRR among 5
experts who scored 58 ten-second EEG segments from 11
patients with subarachnoid hemorrhage and found moderate
agreement for rhythmic or periodic patterns (κ = 68%).
Ronner et al.19 studied IRR among 5 experts who scored 90
ten-second segments from 30 ICU patients and concluded
that expert identification of seizures is “not very reliable,”

Figure 3 Interrater Reliability Analysis

(A) Calibration curves: segments were binned for each of the 6 classes according to the percentage of experts who classified them as that class. Bins were
chosen to be 0%–20%, 20%–40%, 40%–60%, 60%–80%, and 80%–100%. Calibration curves were calculated for each expert, and each pattern class based on
the percentage of segments within each bin that the expert classified as belonging to that class, producing a set of 5 percentages (one for each bin). A single
parameter curve (see eAppendix 5 in the Supplement, links.lww.com/WNL/C519)was fit to these percentages to characterize the experts’ tendency to overcall
and undercall. Experts with calibration curves >20% above the diagonal (above the shaded region) are considered overcallers. Experts with calibration curves
>20% below the diagonal (below the shaded region) are considered undercallers. (B) and (C) Confusion matrices: these heatmaps show a pattern of
disagreement between experts for IIIC (and “other”) classes. These are presented as conditional probabilities (between 0% and 100%). For the pairwise IRR
confusionmatrix (panel B), the number in each square is the average (across pairs of experts) probability that a rater labels a pattern A1 (the x-axis) if another
rater had labeled it pattern A2 (the y-axis). The sum of values within each row is 100%. Thematrices are not symmetric, because P(A1| A2) does not equal the
P(A2| A1), because there are differences in the underlying prevalence of the patterns. The diagonal is the “pattern” pairwise agreement shown in eTable 4 in
the Supplement, links.lww.com/WNL/C519. For the majority IRR confusion matrix (panel C), the numbers are the average (across experts) probability that a
rater labels a segment pattern A1 (x-axis) if themajority label for that segment is A2. GPD= generalized periodic discharges; GRDA= generalized rhythmic delta
activity; IRR = interrater reliability; LPD = lateralized periodic discharges; LRDA = lateralized rhythmic delta activity.
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Figure 4 Bias vs Noise Analysis

We calculated 3 performance metrics for each expert based
on the agreement of their scores with the consensus score
for each EEG segment: The false-positive rate (FPR): the
percentage of segments that do not belong to a given class
that an expert incorrectly scores as belonging to the class;
true-positive rate (TPR; aka sensitivity), the percentage of
segments within a class that the expert correctly scores as
belonging to the class; and the positive predictive value (PPV;
aka precision), the percentage of segments scored by an
expert as belonging to a given class that do in fact belong to
that class. In (A), we plot TPR vs FPR. A receiver operating
characteristic (ROC) curve from the SSIT (similar expertise,
individualized thresholds) model is fit to experts’ data for
each IIIC category, shown as a dashed black line. The area
under the ROC is shown in each plot. In (B), we plot the PPV
vs TPR. A precision recall curve (PRC) is fit to experts’ data for
each IIIC category. The area under the PRC is shown in each
plot. The goodness of fit for ROC and PRC curves is calcu-
lated using R2 values (see text).
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despite raters using the same strict criteria (κ = 50%). This
study was partly responsible for efforts to further standardize
nomenclature for rhythmic and periodic IIIC patterns.15,17,40

Mani et al.20 studied IRR among 16 experts who scored;14
ten-second segments from ;14 ICU participants (exact
number not specified) and concluded that agreement for
rhythmic and periodic patterns was high (κ = 87–92%).
Gaspard et al.43 studied IRR among 25 experts (including 20
fellows) who scored 37 ten-second segments from 37 ICU
patients and found excellent agreement for seizures (κ = 91%)
and rhythmic and periodic IIIC (κ = 89–85%). Westhall
et al.22 studied IRR among 4 experts who scored 103 routine
EEGs from 103 patients with comatose cardiac arrest, lump-
ing periodic discharges (LPDs, GPDs) with seizures, and
found κ = 72%. Halford et al.23 studied IRR among 8 experts
who scored 20–30 one-hour EEGs from 20 ICU patients and
found κ = 58% for seizures and κ = 38% for periodic dis-
charges. Bin Tu et al.24 studied IRR among 5 experts who

scored prolonged EEGs from 50 ICU patients and identified
an average sensitivity for seizures of 70%. The relatively small
numbers of patients and samples in these studies, and the
differences in which patterns and how many pattern types
raters evaluated, account for the variable IRR statistics across
studies. Thus, previous studies leave the measurement of ex-
pert reliability for seizures and other epileptiform patterns
open to questions of systematic and random error. Because of
this gap, it is likewise unclear to what extent the existing
commercial detectors are comparable with the performance of
human experts. We hope that our results will serve as
benchmarks for more rigorous testing of existing commercial
software so that clinical users can make informed decisions
about how to use available IIIC detectors and when to adopt
new detectors because they become available for clinical use.

Our finding that disagreements among experts can be largely
explained by differences in decision thresholds (the SSIT

Table 1 Previous Studies of Expert Interrater Reliability for Detecting Seizures and IIIC Events

Types of IIIC Patientse Segmentse Centerse Raterse
Segments/
ratere Types of raters

Pairwise
agreement

Types of
patients

Gerber
et al. 200818

PD or RDA vs
Other

11 58 (1 sec)
30 (20–30 min)

1 5 58
30

CNP κ 0.68 ICU (SAH)

Ronner
et al. 200919

SZ vs
Other

30 90 (10 sec) 1 9 90 5 Exp
4 in-Exp

κ 50 Exp
κ 29 in-Exp

ICU

Mani
et al. 201220

LPD
GPD
LRD
GRDA

<14 14a 11 16 14 CNP κ 87 MT1
κ 92 MT2b

ICU

Gaspard
et al. 201421

SZ
LPD
GPD
LRDA
GRDA

37 37 N.A.f 49 37 CNP (25)
fellows (20)

κ 91.1 SZ
κ 89.3 MT1
κ 85.2 MT2

ICU

Westhall
et al. 201522

SZ
LPD
GPD vs
Other

103 103
(;30 mind)

4 4 103 CNP κ 72c ICU (CA +
coma)

Halford
et al., 201523

SZ vs
PDs

20 30 (1 hr) 3 8 20–30 CNP κ 58 SZ
κ 38 PD

ICU

Tu B
et al., 201724

SZ vs
Other

50 50 EEGs
(avg 35.5 hr)

1 5 2,093–2,085 CNP Sens: 70.2
Spec: 99.2

ICU

Present
study

SZ
LPD
GPD
LRDA
GRDA
Other

2,711 6,095 EEGs
50,697 10sec

18 30 1,002–45,267 CNP (30)
others (94)

κ 34/60 SZ#

κ 56/68 LPD
κ 45/61 GPD
κ 20/50 LRDA
κ 33/56 GRDA
κ 62/70 Other

ICU
EMU
rEEG

CA = cardiac arrest; CNP = clinical neurophysiologist; EMU = epilepsy monitoring unit; Exp = “experienced,” neurologists with 5–10 years of experience in
reading EEGs; GPD = generalized periodic discharges; GRDA = generalized rhythmic delta activity; ICU = intensive care unit; IIIC = ictal-interictal-injury
continuum; in-Exp = “inexperienced” neurology residents; LPD = lateralized periodic discharges; LRDA = lateralized rhythmic delta activity; PD = periodic
discharges (LPDs or GPDs); RDA = rhythmic delta activity (LRDA or GRDA); rEEG = routine EEG; Sens = sensitivity; Spec = specificity; SZ = seizure.
a Inferred; not stated explicitly in the article.
b MT1 = main term 1, that is, whether an IIIC pattern is generalized, lateralized, multifocal, bilateral independent or multifocal; MT2 = main term 2, that is,
whether an IIIC pattern is RDA, PD, or sharp/spike-wave (SW).
c Result is for “malignant periodic or rhythmic patterns” (LPD, GPD, SZ).
d Samples were described as “full-length routine EEGs” (exact duration not reported).
e Result is reported in pair as “pairwise-κ/majority-κ.”
f Multicenter study without mentioning the number of centers.
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model) has implications for clinical practice. First, the ob-
served levels of disagreement are substantial and likely
contribute to unwarranted variability in diagnosis and
treatment. Second, it is nevertheless reassuring to find ev-
idence of strong underlying levels of agreement about IIIC
probabilities, as shown by the good fit of the underlying
common receiver operating and precision recall curves
(Figure 4). Third, efforts to improve IRR often focus on
improving expertise (improving ROC and PRC curves)
and on refining the definitions of “ideal” patterns. By
contrast, our results suggest that educational efforts to
improve IRR should also focus on harmonizing thresholds
across experts, placing greater emphasis on the boundaries
between patterns—“edge cases” and “protopatterns.”
Nevertheless, our findings do not prove that the SSIT
model is correct or that it is the only possible explanation
for our findings; thus, further studies are warranted to
better define the relative contributions of variability in
expertise and decision thresholds to IRR.

Our study has limitations. First, experts did not score all types
of IIIC patterns; we omitted certain patterns such as bilateral
independent periodic discharges (BiPDs) and spike-wave
(SW) patterns (lateralized and generalized SW).17,40 These
patterns are similar to GPDs and LPDs but are encountered
more rarely. Future efforts could pool these patterns from
multiple centers for IRR analysis. Second, all EEGs were from
a single institution. We believe this is unlikely to be a major
limitation because our patient mix is similar to others in the
literature. Third, although this is a large study with 2,711
patients, the number needed to truly represent all clinically
important variations is not known. Fourth, experts did not
review full EEG recordings. Nevertheless, experts were pro-
vided 20 seconds of EEG context before and after each seg-
ment, in addition to a 10-minute spectrogram, which we
believe is sufficient for scoring. Although a full EEG review is
preferable, it would have been infeasible for 20 experts to
score 2,711 EEGs.We believe this likely does not substantially
affect our results because, in practice, experts screen EEG
background quickly and spend most review time deliberating
about patterns suspicious for IIIC, similar to our study. Fi-
nally, we asked experts to assign IIICs to discrete categories.
An ordinal scale (e.g., reporting confidence, as in the work of
Wilson et al.43), or free text responses (e.g., about what ex-
perts believe when classifying patterns as “other”), would
provide more information. However, this would have neces-
sitated scoring a smaller number of IIIC and would depart
from clinical practice. We felt it advantageous to score a larger
set of candidate IIIC patterns.

Although scoring reliability for IIIC events is imperfect, scoring
behavior is explained by a model that assumes experts assign
very similar probabilities that a given EEG pattern belongs to a
given IIIC category. Disagreements are largely over where to
draw boundaries between patterns that exist along an un-
derlying continuum. Our results establish precise estimates of
expert reliability based on a large and diverse sample. Future

efforts to increase expert reliability should focus on helping
experts agree on the borders between patterns. The results also
present a standard for howwell an automated IIIC classification
system must perform to match or exceed experts.
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