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SUMMARY 
The study presents a comparative analysis of eight Vegetation Indices (VIs) used to examine vegetation greenness 
over the northern coasts of Iceland. The geographical extent of the study area is set by the coordinates of the two 
fjords, Eyjafjörður and Skagafjörður, notable for their agricultural significance. Vegetation in Iceland is fragile due 
to the harsh climate, climate change, overgrazing and volcanic activity, which increase soil erosion. The study was 
conducted on a Landsat TM image using SAGA GIS as a technical tool for raster bands calculations. The NDVI 
dataset shows a range from -0.56 to 0.24, with 0 indicating ‘no vegetation’, and negative values – ‘other surfaces’ 
(e.g. rocks, open terrain). The DVI, compared to the NDVI, shows statistically non-normalized values ranging from -
112 to 0, with extreme negative values while the coastal vegetation areas are badly distinguished from the water 
areas. The NRVI shows an extent from -0.24 to 0.48 with higher values for vegetation. The NRVI reduces 
topographic, solar and atmospheric effects and creates a normal data distribution. RVI shows a range in a dataset 
from 0.2 to 3.2 with vegetation in the river valleys clearly visible and depicted, while the water areas have values 0.8 
to 1.0. The CTVI shows corrected TVI, in a data range -0.10 to 1.10, as the dataset of NDVI were negative. The TVI 
dataset ranges from 0.44 to 0.80 with the ice-covered areas and glaciers distinguishable and water values within a 
range from 0.60 to 0.64 and the vegetation from 0.60 to 0.44. The TTVI dataset ranges from 0.40 to 0.80 performing 
similarly to the TVI, but more refined with vegetation values 0.64 to 0.68. SAVI dataset ranges from -0.80 to 0.30 
with minimized effects of soil on the vegetation through a constant soil adjustment factor added into the NDVI 
formula. The paper presents a comparison of eight VIs for Arctic vegetation monitoring. The overall behavior of 
SAGA GIS in calculation and mapping of the VIs is effective in terms of their use for vegetation mapping of the 
region. 
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Abbreviations: VI – Vegetation Index; NDVI – Normalized Difference Vegetation Index; SAVI – Soil Adjusted 
Vegetation Index; RVI – Ratio Vegetation Index; NRVI – Normalized Ratio Vegetation Index; TVI – Transformed 
Vegetation Index; TTVI – Thiam's Transformed Vegetation Index 
 

INTRODUCTION 
 

Vegetation canopy defines the key landscape characteristics and its health is an indicator of the environmental 
processes occurring in soil-vegetation systems. Therefore, numerical assessment of green vegetation is one of the key 
applications of cartographic-based data assessment in remote sensing for land cover change and landscape 
monitoring. In this sense, understanding the distribution, greenness and quality of vegetation is a crucial step in 
sustainable land monitoring and mapping. This especially refers to vegetation analysis, detection of land cover
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changes, defining geometric patterns of vegetation contours and natural resources monitoring (Hüttich et al., 2009; 
Lemenkova, 2011, 2013, 2015a; Abburu & Golla, 2015; Khan et al., 2010; Lassalle et al., 2019).  
Vegetation Indices (VIs) have been introduced to analyze the distribution of vegetation and its healthiness. VIs can 
be used to assess green leaf area index (LAI) and canopy chlorophyll density (CCD) due to their sensitivity to 
canopy architecture, illumination geometry, soil background reflectance and atmospheric conditions (Broge & 
Leblanc, 2001). VIs differ in algorithm approach, spectral bands composition (NIR (near infra-red) and R (red) and 
modified combinations of NDVI), cartographic output and dimension of the results (extent of the data range). In 
general, VIs can be classified into two major groups according to their approach: slope-based and distance-based 
(Silleos et al., 2006; Jackson & Huete, 1991). The distance-based group of vegetation indices aims to cancel the 
effect of soil brightness where vegetation is sparse and pixels may mix green vegetation and soil background. 
However, such cases are mostly applied in arid and semi-arid ecosystems, which is not the case in this paper. This 
paper focuses on calculation and visualization of the slope-based VIs. The slope-based VIs present a combination of 
R and NIR bands aimed to indicate the state and abundance of green vegetation coverage and biomass. The slope-
based VIs include the following indices: Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation 
Index (SAVI) developed by Qi et al. (1994), Ratio Vegetation Index (RVI), Normalized Ratio Vegetation Index 
(NRVI), Transformed Vegetation Index (TVI), Thiam's Transformed Vegetation Index (TTVI), and others. Among 
the slope-based VIs, probably the most well-known is the NDVI which is widely used in the existing literature for 
ecosystems monitoring (e.g. Ahmet & Akter, 2017; Lemenkova, 2014, 2015b; Raynolds et al., 2006, 2008; Pradeep 
Kumar et al., 2020; Nguyen et al., 2011; Zhang et al., 2020). The NDVI is a remote sensing indicator used for crop 
growth monitoring, farmland management and crop production prediction as well as an indicator of greenness of the 
biomes (Li et al., 2019). 
The study area is located in northern Iceland, where the landscapes are notable for complex geological and 
environmental settings affected by climate change (Caseldine & Hatton, 1994; Ólafsdóttir & Guðmundsson, 2002; 
Tinganelli et al., 2018), overgrazing (Gísladóttir, 2001) and volcanic eruptions, creating specific types of erosion-
prone soils (Arnalds et al., 2001; Arnalds, 2001, 2015). Due to limited soil development in Iceland, the vegetation is 
mostly sparse, dominated by heathland, wetland and other types of plants, e.g. Nootka lupin (Lupinus nootkatensis) 
(Lehnhart-Barnett & Waldron, 2020). Eddudóttir et al. (2020) recently pointed to changes in vegetation 
communities, soil erosion, desertification and loss of carbon stocks caused by intensive agriculture in Iceland 
practiced since AD 877. Geological and glaciological changes in the landscapes include modification of proglacial 
landsystems by repeated jökulhlaups, ice melt causing glacier margin fluctuations and retreat (Blauvelt et al., 2020). 
Brombacher et al. (2020) recently studied glacial ablation and river dynamics in the Þjórsá (Thjórsá) river during 
spring and summer by remote sensing applications using Sentinel-1 and Sentinel-2 imagery. As a result of the 
complex interaction of various factors, such as climate change, natural disturbances and human driven land-use 
changes, the landscapes in Iceland experienced catastrophic soil erosion of the heathland ecosystem, as studied by 
Greipsson (2012) with an example of Haukadalsheiði area. 
 

MATERIAL AND METHODS 
 

Software 
Software used for the data processing is SAGA GIS (Böhner et al., 2008), System for Automated Geoscientific 
Analyses. SAGA GIS is a powerful open source GIS program for spatial data processing, mapping and raster 
calculations, developed originally by the University of Göttingen (Böhner et al., 2006), now maintained by a 
developer community. A fragment of the menu of SAGA GIS is shown in Figure 1. 
 
Data 
The data include the Landsat TM scene covering the study area. The Landsat TM imagery is often used in 
agricultural mapping due to their advantages in remote sensing research:  the Landsat TM imagery is an open access, 
reliable repository with a long history, global coverage and high archiving frequency. For this study, the ortho-
corrected Landsat image in WGS84 datum UTM Zone 27 was selected with the following metadata: acquisition date 
2001/09/08, within the Landsat path 219, row 14. WRS type L1Gt, resampling technique cubic convolution (CC), 
center latitude 65°35'12.58"N, center longitude 18°30'46.09"W. The map coordinates are as follows: west 
21°05'00.18"W, east 15°50'38.62"W, south 64°31'53.82"N, north 66°38'00.38"N. Image Entity ID is 
P219R014_7X20010908. The metadata are presented in Table 1. 
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Figure 1. User interface of SAGA GIS. Source: author 

 
Methods 
Methods include technical path ‘Geoprocessing> Imagery> Vegetation Indices> Vegetation Index (Slope Based)’ in 
SAGA GIS and performed image processing. The following VIs were computed using SAGA GIS: 

1. NDVI (Rouse et al., 1974) NDVI = (NIR - R) / (NIR + R), where NIR and R are the spectral reflectance in 
the near infrared and red wavebands.  

2. DVI = NIR – R 
3. RVI (Richardson & Wiegand, 1977) RVI = R / NIR 
4. NRVI (Baret  & Guyot, 1991) NRVI = (RVI - 1) / (RVI + 1) 
5. Transformed Vegetation Index (Deering et al., 1975). TVI = [(NIR - R) / (NIR + R) + 0.5]^0.5 
6. Thiam's Transformed Vegetation Index (Thiam, 1997) RVI = [abs(NDVI) + 0.5]^0.5 
7. SAVI (Huete, 1988) SAVI = [(NIR - R) / (NIR + R)] * (1 + S) 
8. CTVI= [SQRT(ABS (NDVI + 0.5))] (Perry & Lautenschlager, 1984) 

These VIs were computed and the resulting raster maps visualized using developed algorithms of the VIs embedded 
in SAGA GIS for automated calculation of the satellite image spectral bands. The raster bands of the Landsat TM 
scene were processed and the information was extracted as calculated VIs. The R and NIR bands of the Landsat TM 
were inserted and VIs calculated. The VIs were displayed using adjusted color palettes to highlight the distribution of 
actively growing vegetation with photosynthesis processes. 
 

Table 1. Landsat TM metadata specifications 
Field Value Field  Value 
Entity ID P219R014_7X20010908 NW Corner Long 19°43'06.88"W 
Acquisition Date 2001/09/08 NE Corner Lat 66°02'44.56"N 
WRS Path 219 NE Corner Long 15°50'38.62"W 
WRS Row 14 SE Corner Lat 64°31'53.82"N 
WRS Type L1Gt SE Corner Long 17°24'06.69"W 
Time Series GLS2000 SW Corner Lat 65°04'56.62"N 
Datum WGS84 SW Corner Long 21°05'00.18"W 
Zone Number 27 Center Latitude dec 65.586827 
File Size 241748799 Center Longitude dec -18.512802 
Orientation NUP NW Corner Lat dec 66.6334386 
Product Type L1Gt NW Corner Long dec -19.7185772 
Resampling Technique CC NE Corner Lat dec 66.0457106 
Satellite Number Landsat7 NE Corner Long dec -15.8440599 
Sun Azimuth 167.5457085 SE Corner Lat dec 64.5316155 
Sun Elevation 29.4740846 SE Corner Long dec -17.4018594 
Center Latitude 65°35'12.58"N SW Corner Lat dec 65.0823952 
Center Longitude 18°30'46.09"W SW Corner Long dec -21.0833841 
NW Corner Lat 66°38'00.38"N   

 
RESULTS AND DISCUSSION 

 
The results of this study present a comparative analysis of eight VIs, discussed below. The NDVI (Fig. 2) produces a 
spectral VI that separates green vegetation from its background soil brightness. Showing the difference between NIR 
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and R bands, it is normalized by the sum of these bands. The advantage of the NDVI is that it minimizes the 
topographic effects. In the output image, the dataset ranges from -0.56 to 0.24. The dataset of the NDVI in general 
ranges from -1 to 1, with 0 indicating ‘no vegetation’, and negative values – ‘other surfaces’ (e.g. rocks, open 
terrain).  
 

 
Figure 2. NDVI and DVI. Mapping: SAGA GIS. Source: author 

 
The DVI (Fig. 2), compared to the NDVI, shows statistically non-normalized values ranging from -112 to 0, i.e. 
extreme negative values. The coastal vegetation areas are badly distinguished from the water areas, which proves 
that the NDVI has the advantages over the DVI (Fig. 2).  
The NRVI (Fig. 3) shows the dataset extent from -0.24 to 0.48, with higher values for vegetation (colored as beige). 
The NRVI behavior is normalization and it is similar in effect to that of the NDVI, i.e. it reduces topographic, solar 
and atmospheric effects and creates a normal distribution.  
The RVI (Fig. 3) shows a range in the dataset from 0.2 to 3.2 (roughly changing within 3). The vegetation in the 
river valleys is clearly visible and depicted (orange to bright red colors). In contrast, the water areas are colored 
purple grey with values from 0.8 to 1.0. Bright yellow colors are typical for the sandy and rocky areas and other 
types of the land cover surfaces.  
 

 
Figure 3. NRVI and RVI. Mapping: SAGA GIS. Source: author 

 
The CTVI (Fig. 4) shows corrected TVI, which is done by adding a constant of 0.5 to all NDVI values. However, 
there are still some negative values in a data range (-0.10 to 1.10) because the original data values of the NDVI in a 
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square root were negative. The CTVI divides the expression [NDVI + 0.5] by the expression [abs(NDVI + 0.5)] 
multiplying it by the square root of the absolute value. Due to the sophisticated formula of the CTVI, it adjusts the 
values of the NDVI approaching them to the positive values suppressing the negative NDVI values. As a result, the 
ice-covered and lake areas are clearly visible as bright blue spots (Fig. 4). The cartographic output image of the 
CTVI differs from both the initial NDVI image and the TVI. However, the CTVI has a disadvantage of an 
overestimated vegetation class and it is not the best index compared to others.  
The SAVI (Fig. 4) dataset ranges from -0.80 to 0.30. The vegetation areas are highlighted as light green colors and 
the glacier and ice-colored areas as dark blue colors (Fig. 4). The water areas and fjords are colored light yellow to 
beige. The river network is distinguishable using river patters. The rocky areas and sandy deserts are colored beige 
and they clearly correlate with the terrain relief (Fig. 4). Compared to the initial NDVI, the SAVI minimizes the 
effects of soil on the vegetation through a constant soil adjustment factor added into the NDVI algebraic formula. 
The TVI (Fig. 5) demonstrates positive values due to the algebraic expression in the formula: it changes the original 
NDVI by an additional constant of 0.5 to the values and a square root of the results, to avoid operating with negative 
values of the NDVI. As a result of such adjustments, the dataset ranges from 0.44 to 0.80 (Fig. 5). Here the ice-
covered areas and glaciers are clearly depicted in the image as light grey to white areas. The water areas have values 
within a range 0.60-0.64. The vegetation zones are colored as rose colors with values from 0.60 to 0.44.  
The TTVI (Fig. 5) is done by taking the square root of the NDVI values in the TVI. The dataset ranges from 0.40 to 
0.80. In this way, its performance is similar to the TVI, but more refined. Thus, the vegetation is colored as bright 
orange with values 0.64 to 0.68. Values of water areas range between 0.56 and 0.60 for the lakes and rivers and 0.60 
to 0.64 for the ocean. In contrast to the previous VIs, the TTVI enables distinguishing the ice and glacier areas in a 
more precise way with gradation of water to shallow and deeper areas, as well as ice-covered zones.  
 

 
Figure 4. CTVI and SAVI. Mapping: SAGA GIS. Source: author 

 
These results demonstrated a comparative analysis of eight VIs calculated for the coastal zone of northern Iceland 
with two fjords, Eyjafjörður and Skagafjörður, notable for their agricultural significance. The datasets obtained as 
results of the VI calculations and visualization propose other than the well-known NDVI approaches of VIs and 
discuss the differences in the cartographic output. Recent climate change has influenced the dynamics of the 
vegetation coverage in high Arctic landscapes of Iceland. This necessarily requires selective effective technical 
method of graphical visualization of the VIs.  
Although the NDVI has become popular and widely used in previous studies, other VIs demonstrated effective 
visualization of vegetation and well-distinguished classification against other land cover types, such as rocks, 
mountains, bare soils, sandy deserts, populated areas, open water areas, river valleys, etc. SAGA GIS visualized 
models of various VIs showed the output representing values of vegetation coverage in various ranges, which are 
effective for cartographic visualization (low, moderate and high values) and selected color palettes. The use of 
SAGA GIS for calculating eight VIs is an excellent working solution for agricultural mapping through graphic 
visualization of raster VIs overlaid with the Open Street Map vector background. 
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Figure 5. TTVI and TVI. Mapping: SAGA GIS. Source: author 

 
CONCLUSION 

 
As demonstrated in this paper, the main principle of the VIs applications refers to the properties of green vegetation 
which have a correlation with certain spectral bands of the satellite image. As chlorophyll strongly absorbs energy 
for photosynthesis in the visible regions, this property can be used to detect healthy vegetation using analysis of the 
satellite imagery. The absorption of chlorophyll reaches its peak in red and blue areas of electromagnetic spectrum 
and it is reflected in the near-infrared region. Naturally, this can be used to detect green areas of the canopy leaves. 
By using these variations in absorption and reflection of chlorophyll in visible, red and infrared parts of the 
spectrum, the quantitative indices of vegetation were developed using remotely sensed imagery such as the Landsat 
TM.  
Besides the presented VIs used in agriculture and vegetation monitoring, it was also proposed to apply the derived 
indices in the financial risk with examples of the Vegetation Condition Index, Temperature Condition Index, 
Vegetation Health Index as independent variables (Möllmann et al., 2020). Another example of remote sensing data 
processing in agricultural studies was given by Ihuoma & Madramootoo (2019), who used narrow-band 
hyperspectral derived indices for monitoring of the water stress in tomato plants (Solanum lycopersicum L.). 
Automated data processing using the method of convolutional neural network (CNN) and color information was used 
by Kerkech et al. (2018) for identifying infected areas of vegetation species. Gonçalves et al. (2019) presented 
further steps in VIs applications by integrating NDVI with geomorphological classification and environmental GIS-
analysis. There are more reports on remote sensing image analysis using automated data processing presented in 
literature, for example Lemenkova (2016). Besides remote sensing image analysis, other GIS approaches in 
environmental monitoring include landscape metrics as an indicator of ecological significance and spatial data 
analysis, interpretation and evaluation using methodology of ecologic carrying capacity (Klaučo et al., 2014, 2017). 
Using artificial neural network, statistical analysis, programming languages or automatization as more advanced 
methods for spatial data processing can be recommended for future studies (Foody et al., 1997; Lemenkova, 2019a, 
2019b, 2019c; Klaučo et al., 2013a, 2013b; Schenke & Lemenkova, 2008). Automatization of cartographic 
visualization is intended for simplifying geospatial data processing (Suetova, 2005a, 2005b; Lemenkova, 2019d, 
2020a, 2020b; Gauger et al., 2007). Together with the rapid development of cartographic methods (Lemenkova, 
2020c, 2020d), remote sensing has experienced remarkable progress since 1980s, updating and improving the 
methods of data processing aimed at higher precision and speed of mapping technologies.  
A feasible approach to mapping and monitoring vegetation can be achieved by calculation of combined selected 
raster bands in satellite imagery. However, vegetation mapping using the Landsat TM scenes may include 
misinterpretations, since certain pixels can be misclassified as other land cover types, especially the ones with similar 
spectral reflectance properties. In order to solve this problem, various algorithms of VIs have been developed to 
adjust and refine VI as much as possible. These VIs are presented in this paper as a comparative analysis with 
technical support of SAGA GIS. In general, computing vegetation indices using the Landsat TM scenes is an 
effective method in agricultural mapping in modern cartography used to obtain precise and accurate visualization of 
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the vegetation coverage (Jensen, 2005; He et al., 2016). However, due to the variety of indices, selecting the best 
suitable index still remains a challenge. The results of the slope-based index calculation depend on a number of 
factors, such as terrain complexity of the landscape and local geomorphological settings. Other important factors 
include the resolution and cloudiness of the raw data, the approach of the remote sensing image processing and VI 
calculation method. The aim of this paper was to demonstrate the variety of VIs that can be used to derive 
information from the Landsat TM images for the northern coasts of Iceland. The paper demonstrated eight different 
VIs computed and cartographically visualized using SAGA GIS for the area covering northern Iceland. 
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