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Abstract—Feature-based registration has become increasingly
popular in digital pathology for achieving initial global alignment
between image pairs. However, the selection of algorithms used in
this approach is often not well-justified. Specifically, the choice of
local feature descriptor is rarely, if ever, discussed in the context
of digital pathology. The majority of feature-based whole-slide
image registration methods rely on the SIFT descriptor. In this
study, we demonstrate that the choice of descriptor significantly
influences the quality of registration results and that the BRIEF
descriptor captures more optimal information for histological
image registration.

Index Terms—Digital pathology, Whole-slide image, Feature-
based registration

I. INTRODUCTION

Whole-Slide Images (WSI) registration is a widely rec-
ognized and challenging computer vision task that lacks a
straightforward out-of-the-box solution, especially when it
comes to multi-stained WSI registration. In recent years,
this particular task has been the focus of several challenges,
namely ANHIR [1] and ACROBAT [2]. These challenges
aimed to showcase the current state-of-the-art algorithms and
their robustness when applied to real-world datasets.

Upon analyzing the submitted registration pipelines from
each challenge, a consistent pattern emerged: achieving rel-
evant results typically requires an initial global registration
at low resolution before attempting non-rigid alignment of
the image pair. Various approaches have been proposed to
estimate the initial alignment parameters. These include: a
comprehensive search of the rotation space after centroid
alignment, template matching, and feature-based algorithm.
The latter approach is the most commonly used, with six out
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eight teams competing in the ACROBAT challenge employing
it [2].

Feature matching approaches generally involve two main
steps: (i) local feature extraction, and (ii) robust matching.
More specifically, local feature extraction comprises detection
and description of points of interest (PoI). This description
part plays a crucial role as it significantly influences the robust
matching process. Several local descriptors such as SIFT [3]
and BRISK [4] exist. Studies comparing the impact of descrip-
tor choices on the matching results have been conducted on
LIDAR and building image datasets [5], [6]. However, to the
best of our knowledge, no comparative analysis has yet been
conducted on histological WSI.

This paper aims to assess the performance and influence
of various local feature descriptors on the initial alignment of
histological WSI. Our findings demonstrate that the selection
of a descriptor significantly affects the feature-based registra-
tion process, highlighting its crucial role within the feature
matching pipeline. To facilitate result replication, our code is
readily available online 1.

II. RELATED WORKS

Feature matching is a well-explored topic in the field of
computer vision, finding applications in various research areas
such as pose estimation and 3D reconstruction. However, when
it comes to digital pathology, the literature on feature matching
is relatively sparse. The research conducted in this field has
been limited, and this section aims to provide an overview of
the algorithms that have been employed thus far.

A. Pre-processing

Current feature matching algorithms have been developed
primarily for single-channel images. To adapt these algorithms
for multi-channel images, a common approach is to convert the
images to grayscale as a pre-processing step. This technique

1https://gitlab.com/prother-wal ulb lis mnu/feature-based registration/-
/tree/sipaim23
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has been widely employed and described in both the ANHIR
and ACROBAT challenges [1], [2].

Furthermore, as a part of the pre-processing for the initial
alignment step, it is common to downscale the WSI to a
lower resolution image. This approach is dictated by the fact
the object of interest is biological tissue with mechanical
properties hence a certain local regularity/continuity but also
serves two purposes: firstly, it helps speed up the registration
process by reducing computational complexity, and secondly,
it mitigates the risk of false matching. While the overall shape
of the images may appear similar, employing higher-resolution
images could potentially introduce erroneous correspondences
at a finer level due to subtle differences in appearance.

B. Feature extraction

Since the introduction of SIFT in [3], local features have
become widely adopted tools in computer vision. Over the
years, various traditional methods have been developed in
addition to SIFT, including SURF [7], ORB [8], FREAK [9],
BRIEF [10] and BRISK [4]. In the field of digital pathology,
SIFT remains the most commonly used local feature detector
and descriptor [11]–[13]. However, in some cases, alternative
methods such as SURF and ORB are employed alongside SIFT
to ensure robustness in the event of failure [12]. In addition,
BRISK was chosen as the PoI detector in the approach ranked
second in the ACROBAT challenge [14].

With the emergence of deep learning, there is a surge in
the development of learning-based methods for local feature
extraction. For example, in [14], BRISK-detected PoIs are
described using a VGG network [15]. In another study reported
in [16], SuperPoint [17], a Convolutional Neural Network
(CNN), was employed for WSI registration and reached third
place in the ANHIR challenge leaderboard (at the time of
writing).

C. Robust matching

The second main step in the feature matching pipeline is a
robust estimation process.

This step can be further divided into: (i) matching, which
establishes correspondences between the detected PoIs in the
moving image and their counterparts in the fixed image, and
(ii) robust estimation of the transformation between these
sets of correspondences. RANSAC [18] is an extensively uti-
lized robust algorithm in various disciplines, including digital
pathology [13], [19], for identifying reliable correspondences
among matched pairs.

III. DATASET

The performance evaluation of the descriptors is conducted
on a dataset merging three multi-stained WSI datasets: the
ANHIR dataset and two others, the MSSC dataset and the
ISC dataset, both introduced in [11]. These datasets were
selected for their accessibility and the inclusion of landmarks
that serve as reliable ground truth for evaluation purposes.
Moreover, these data contain a wide spectrum of tissue types,
with varied morphological characteristics, as well as regions

varying from homogeneous and smooth to highly textured.
By incorporating such diversity, the evaluation accounts for
the descriptors’ robustness to tissue and textural variations.

IV. METHODS

Fig. 1. Illustration of the feature-based matching pipeline, explicitly high-
lighting the algorithmic choices.

In this study, the algorithms employed in each step of
the feature matching pipeline (cf. Figure 1) were fixed, with
the exception of the description part. As recommended in
the literature, the pre-processing step involves downscaling
the original full-scale input images to x1 equivalent size
(∼ 10µm/px) and converting them to grayscale. The OpenCV
implementation of SIFT is used as a detection step, as it
is widely recognized and commonly used in digital pathol-
ogy. The matching process employed a brute force matching
method, also implemented in OpenCV, with the particularity
that only pairs of PoIs that are mutually the closest to each
other are retained. This approach is similar to the ”both” strat-
egy proposed in [20]. The choice of distance metric depends
on the specific descriptor utilized, which is listed in Table I.
For robust estimation, RANSAC (OpenCV’s implementation)
was selected as the inlier filter, as it is widely adopted in
various fields, including digital pathology.

TABLE I
EVALUATED DESCRIPTORS AND THEIR MATCHING DISTANCE.

Descriptor Distancea
Random Euclidean distance
Neighborhood Euclidean distance
SIFT Euclidean distance
BRISK Hamming distance
FREAK Hamming distance
BRIEF Hamming distance
VGG Euclidean distance
aAs proposed in [6].

For the description step, a total of seven descriptors were
evaluated, as outlined in Table I. The first two descriptors,
namely Random and Neighborhood, were specifically included
to assess the relevance of the proposed evaluation and are
expected to perform poorly in comparison to the others.
The Random descriptor generates a description vector filled
with random numbers sampled from a uniform distribution
ranging from 0 to 1. On the other hand, the Neighborhood
descriptor employs a simple neighborhood-based approach by
constructing the description vector from flattened intensity
neighborhood values. The remaining descriptors are imple-
mentations from OpenCV of commonly used traditional meth-
ods. Additionally, the pre-trained OpenCV’s VGG, inspired by



the approach proposed in [14], was included in the evaluation.
All descriptors, including the learning-based method, were
assessed using their respective default parameters.

An affine transformation is estimated in this feature-based
registration. This choice of transformation is commonly em-
ployed as a preliminary alignment step before proceeding to
align the image pair in a non-linear, non-rigid manner.

V. EVALUATION

The evaluation of the descriptor’s impact on the feature
matching pipeline (cf. Figure 1) is conducted in two distinct
parts. Firstly, the descriptive capabilities of each descriptor are
assessed. This involves analyzing and comparing the ability
of each descriptor to accurately represent and describe local
image features. Secondly, the performance of the feature-
based registration is evaluated for each descriptor. This stage
focuses on evaluating how well the descriptors contribute
to the overall registration process and their effectiveness in
achieving accurate alignments between images.

A. Descriptive capabilities

The evaluation of the descriptor’s descriptive capabilities re-
lies on the available landmarks within each image. Specifically,
for each descriptor, the landmark matching ranks between
fixed and moving images are computed and normalized. To
achieve this, pairwise distances are calculated in the latent
space between each landmark in the moving image and those
in the fixed image. The rank (starting at 0 for minimum
distance) of the corresponding correct fixed-image landmark is
retrieved and normalized by the number of available landmarks
for that specific image pair. This normalization accounts for
variations in the number of available landmarks among differ-
ent images pairs, ensuring a fair comparison across the dataset.
Normalized rank distributions are then compared between
descriptors.

B. Registration performances

The performance evaluation of the feature-based registration
follows a conventional approach [21], utilizing the Root Mean
Square Error (RMSE) as a metric. The RMSE is calculated by
comparing the positions of the fixed image landmarks with
their corresponding warped moving image landmarks. This
error measurement quantitatively assesses the overall distortion
between the landmarks in the fixed and moving images.

VI. RESULTS

First, the descriptive capabilities of each descriptor are eval-
uated by comparing their distributions of normalized matching
ranks, as described in Section V. Medians and interquartile
values for these distributions are provided in Table II, where
a rank of 0 represents the best possible performance, while a
rank of 1 indicates the worst.

The results reveal that the Random descriptor performs the
poorest, exhibiting a median normalized rank of 0.5 and a
distribution that resembles a normal curve across the entire
range. In comparison, the naive Neighborhood descriptor

TABLE II
MEDIAN AND INTERQUARTILE VALUES FOR BOTH THE NORMALIZED

RANKS AND THE RMSE DISTRIBUTIONS PER DESCRIPTOR. THE INITIAL
RMSE DISTRIBUTION (BEFORE ANY ALIGNMENT) IS ALSO PROVIDED.

FOR THE NORMALIZED RANKS DISTRIBUTION, THE CLOSER A
NORMALIZE RANK TO ZERO THE BETTER. THE ROW IN BOLD IS

CONSIDERED, STATISTICALLY, AS THE BEST RESULT ACCORDING TO A
NEMENYI POST-HOC TEST.

Norma- Norma- RMSE RMSE
Descriptor lized ranks lized ranks median IQ

median IQ [µm] [µm]
Initial n/a n/a 725 [301-1615]
Random 0.5 [0.24-0.75] 5913 [3574-8296]
Neighborhood 0.31 [0.11-0.58] 6110 [3400-8754]
SIFT 0.09 [0.01-0.30] 216 [94-899]
BRISK 0.24 [0.04-0.59] 473 [162-2504]
FREAK 0.16 [0.02-0.49] 254 [115-1510]
BRIEF 0.01 [0.0-0.11] 145 [68-295]
VGG 0.15 [0.04-0.38] 254 [107-1870]

shows some improvement but falls short of being optimal.
In contrast, the BRIEF descriptor appears to provide the most
effective description of the WSI landmarks, followed by SIFT.

These observations are supported by statistical analysis,
as follows. The Friedman test provides a p-value below
10−15, indicating highly significant differences among the
descriptor distributions. Additionally, the post-hoc Nemenyi
test reveals that all distributions are significantly different from
each other with p-values below the 0.001 threshold, except
the distributions of FREAK and VGG where no statistically
significant difference is found, with a p-value of 0.9. Results
on a representative image are shown in Figure 2.

In the second part of the evaluation, the performance of
feature-based registration is assessed by examining the dis-
tribution of RMSE values after alignment. The medians and
interquartile values of these distributions are provided in Table
II, along with the initial RMSE values (before any alignment).

As expected and in contrast to the other descriptors, Random
and Neighborhood yield completely unsatisfactory results,
with final alignments being worse than the initial ones.

A Friedman test with the Nemenyi post-hoc confirms that
the results are significantly different between the descriptors
(global p-value below 10−15) and that the results of BRIEF are
significantly different from all the others (all p-values below
0.0035).

Therefore, in this particular configuration for registering
WSI, both evaluation point to BRIEF as the best descriptor
and most effective choice.

VII. DISCUSSION

Our research demonstrates that the choice of descriptor
has a significant impact on the feature matching process and,
consequently, the overall feature-based registration in digital
pathology. Although the widely used SIFT descriptor generally
produces satisfactory results, our findings indicate that it is not
the optimal choice in the tested pipeline configuration, despite
its prevalent use in the field of digital pathology.

A major limitation of our study is that we only vary the
descriptor selection while keeping the methods in the other



Fig. 2. Results of landmark matching on a representative image. (a) The fixed image showing its landmarks in black. (b) The moving image displaying
landmarks correctly matched in the SIFT descriptor space in green, and landmarks with normalized ranks less than or equal to 0.05 in blue. Same is shown
for the (c) BRISK, (d) FREAK, (e) BRIEF and (f) VGG descriptors.

steps of the feature matching pipeline fixed. The potential
interactions between these different steps, which could have
a significant impact on the performance of WSI registration,
were not taken into account. The choice of the robust estima-
tion process will affect the registration outcomes. Fine-tuning
the parameters of the descriptors, which were assessed using
their default values from the literature, could also improve
their performance. Future work will also study whether pre-
processing techniques such as color deconvolution may im-
prove the robust matching stage by enhancing image similarity
(particularly in the case of multi-stained images pairs).

Although it will be necessary to conduct a more exhaustive
comparative analysis that combines various algorithms for
each step of the pipeline, our results show that BRIEF may be a
much more reliable choice of descriptor for WSI registration,
leading to more accurate matching and, ultimately, a better
estimation of the transform.
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