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Abstract 

Tissue macrophages are essential components of the immune system that also play key roles in vertebrate 
development and homeostasis, including in zebrafish, which has gained popularity over the years as a 
translational model for human disease. Commonly, zebrafish macrophages are identified based on expres-
sion of fluorescent transgenic reporters, allowing for real-time imaging in living animals. Several of these 
lines have also proven instrumental to isolate pure populations of macrophages in the developing embryo 
and larvae using fluorescence-activated cell sorting (FACS). However, the identification of tissue macro-
phages in adult fish is not as clear, and robust protocols are needed that would take into account changes in 
reporter specificity as well as the heterogeneity of mononuclear phagocytes as fish reach adulthood. In this 
chapter, we describe the methodology for analyzing macrophages in various tissues in the adult zebrafish by 
flow cytometry. Coupled with FACS, these protocols further allow for the prospective isolation of enriched 
populations of tissue-specific mononuclear phagocytes that can be used in downstream transcriptomic 
and/or epigenomic analyses. Overall, we aim at providing a guide for the zebrafish community based on 
our expertise investigating the adult mononuclear phagocyte system. 
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1 Introduction 

For years, the teleost fish zebrafish (Danio rerio) has been exten-
sively used as a vertebrate model by developmental biologists due 
to the transparency and external development of the embryo, and 
its genetic similarity and amenability, among other features 
[1]. More recently, zebrafish has also emerged as a powerful tool 
for the study of hematopoiesis and immunity [2, 3], contributing 
notably to new insights into the developmental and immune func-
tions of leukocytes [4–8]. Initially conducted on embryos and 
larvae, immunological investigations in zebrafish have progressively 
extended to the adult, which is now increasingly used to study the 
contribution of leukocytes, with a particular interest on macro-
phages, in a range of physiological processes and diseases, such as 
cancer, infection, as well as organ regeneration [9–14]. Due to the
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paucity of fish-specific antibodies and the poor antibody cross-
reactivity between fish and mammals, these studies mostly rely on 
the use of transgenic animals engineered to express a fluorophore 
under the control of lineage-specific regulatory elements [15], and 
allowing to identify zebrafish leukocytes in vivo, on tissue sections 
or by flow cytometry [3]. While an increasing number of stable lines 
with fluorescently labeled macrophages have been generated and 
validated for use in transparent embryos and larvae, one caveat is 
that their reliability in the adult is not systematic. One striking 
example is seen with the widely used collection of reporter lines 
generated using the mpeg1.1 promoter [16]. Indeed, although Tg 
(mpeg1.1:EGFP) or Tg(mpeg1.1:mCherry) transgenics can reliably 
serve as pan-macrophage reporters in the embryo and larvae, the 
situation changes in the adult due to the mpeg1.1 promoter being 
active in other cell types, including B lymphocytes and 
non-leukocytic metaphocytes [17–19]. As B cells and metapho-
cytes both appear at around the juvenile stage [19, 20], this pre-
cludes the sole use of mpeg1.1-driven reporters for the isolation of 
tissue macrophages in the adult.

82 Mireia Rovira et al.

To overcome these limitations and facilitate future studies, we 
have established optimized protocols to analyze and isolate 
enriched populations of mononuclear phagocytes from the main 
zebrafish hematolymphoid organs. One protocol takes advantage 
of the unique combined expression patterns of the mpeg1.1:GFP 
[16] and the cd45:DsRed [21] fluorescent reporters, which are 
both readily available to the zebrafish community. Indeed, in dou-
ble transgenic animals, GFP is expressed in mononuclear phago-
cytes, B lymphocytes and nonleukocytic metaphocytes [17], while 
DsRed labels all leukocytes with the exception of B cells [21]. This 
combination thus makes it possible to discriminate mononuclear 
phagocytes from B cells and/or metaphocytes in the brain, liver, 
skin, and the whole kidney marrow (WKM), the site of adult 
hematopoiesis in teleosts [22]. Finally, another approach makes 
use of the Tg(p2ry12:p2ry12-GFP) transgenic line [23] which, in 
combination with the cd45:DsRed reporter, offers additional 
means for the specific isolation of microglia, the macrophage pop-
ulation of the central nervous system. We detail the whole proce-
dure step-by-step for each organ, from the dissociation and 
generation of a single-cell suspension to the creation of the flow 
cytometry gates allowing for the successful isolation of the popula-
tions of interest (Fig. 1). 

2 Materials 

2.1 Zebrafish Lines 

(See Notes 1 and 2) 

1. Wild-type strain (AB*). 

2. Tg(mpeg1.1:EGFP)gl22 , here referred to as mpeg1.1:GFP. 

3. Tg(ptprc:DsRed)sd3 , here referred to as cd45:DsRed.
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Fig. 1 Workflow of analysis of macrophages from the Whole Kidney Marrow (WKM), brain, liver and skin. 
Schematic representation of an adult zebrafish with the anatomical structures of interest labelled. Protocols to 
obtain single cell suspensions are optimized for every organ. The WKM is the only tissue that does not require 
enzymatic digestion and is mechanically homogenized in solution 

4. TgBAC(p2ry12:p2ry12-GFP)hdb3 , here referred to as p2ry12: 
p2ry12-GFP. 

5. Tg(mpeg1.1:GFP; cd45:DsRed). 

6. Tg(p2ry12:p2ry12-GFP; cd45:DsRed). 

For clarity, throughout the text, transgenic animals are referred 
to without allele designations.
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2.2 Plasticware and 

Equipment 

1. Scalpels. 

2. Microdissection forceps. 

3. Microdissection scissors. 

4. Dissection scissors. 

5. Petri dishes. 

6. FACS tubes: 12 × 75 mm polystyrene round bottom tubes 
(5 mL). 

7. Syringes, microfine insulin model (1 mL). 

8. 20 G and 26 G needles. 

9. 40-μM cell strainers. 

10. Pipettes (5, 10, 25 mL). 

11. Micropipettes and autoclaved pipette tips (P10, P200, P1000 
μL). 

12. Sterile unfiltered tips (P10, P200, P1000 μL). 
13. Incubator, to be set at 33 °C. 

14. Refrigerated swing-bucket centrifuge suitable for FACS tubes 
(10 min, 290 g at 4 °C). 

15. Vortex mixer. 

16. Aluminum foil. 

17. Cell sorter, e.g. BD FACS ARIA III. 

2.3 Media and 

Reagents 

1. Sterile Dulbecco′s Phosphate Buffered Saline (DPBS) 1×. 

2. DPBS 0.9×: 500 mL 1×(DPBS) + 55 mL deionized water. 
Keep on ice. 

3. Liberase stock solution (Thermolysin Medium): prepare a 
stock solution of 5 mg/mL in DEPC water: reconstitute by 
injecting 1 mL of DEPC water in the 5 mg vial. Place the vial 
on ice to rehydrate and gently agitate the vial at 2–8 °C until 
the enzyme is completely dissolved (30 min maximum). Store 
in single use aliquots at -20 °C. Avoid repeated freezing and 
thawing. 

4. Liberase solution: Prepare a 1/100 dilution of the liberase 
stock in 0.9× DPBS (calculate a final volume of 1 mL per 
sample). Keep on ice. 

5. FACS Buffer: 2% inactivated fetal calf serum in 0.9× DPBS. 
Keep on ice. 

6. Live dead dye (e.g., SYTOX™ Red).



Zebrafish Tissue Macrophages 85

3 Methods 

3.1 Tubes to Prepare 

Before to Start 

1. Label 1.5 mL sterile microcentrifuge tubes and 2 sets of 
corresponding FACS tubes in serial numbers (see Note 3). 

2. Dispense 1 mL of Liberase solution into microcentrifuge tubes, 
except for WKM samples. Keep the tubes on ice. 

3. For WKM samples, dispense 200 μL of ice-cold FACS Buffer 
into microcentrifuge tubes (see Note 4). 

4. In one set of FACS tubes, add 3 mL of FACS Buffer, but leave 
the tubes for the WKM samples empty. Keep all tubes on ice. 

3.2 Dissection of 

Adult Zebrafish Organs 

or Tissues 

1. Euthanize the fish according to the permissions and ethical 
rules of local authorities. 

2. Dissect the brain: Under a dissection microscope, place the fish 
on the side, cut the head with a scalpel, remove the eyes using 
forceps, and transfer the head in a Petri dish with ice-cold 0.9× 
DPBS. Hold the head with the forceps in one hand, and with 
the other, perform a small cut with the microdissection scissors 
in the posterior part of the skull. Be careful not to damage the 
brain. Break open the skull with the forceps and remove the 
right and left flank of the skull carefully keeping the head still 
with a forceps. Collect the brain with one forceps while keeping 
the head still with the other forceps. Take great care not to 
dissociate the olfactory bulbs, as they can easily detach from the 
telencephalon. Place the brain into the corresponding micro-
centrifuge tube containing 1 mL of ice-cold Liberase solution. 

3. Dissect the liver: Make a ventral, midline incision from the anal 
fin towards the head using microdissection scissors under the 
microscope. Be careful not to damage the internal organs. 
Open the lateral muscles and look for the swim bladder, located 
in the upper cavity. Remove and discard it. If the fish is a female, 
remove the eggs present in the cavity to visualize the intestine, 
pancreas, liver, and spleen. Take the posterior intestine located 
near the anal fin with the forceps and pull towards the middle 
intestine, removing along all viscera of the body cavity as a full 
pluck. Carefully transfer into a Petri dish with ice cold 0.9× 
DPBS. Clean from fat and the gonads using the forceps. 
Stretch the intestine and locate the liver, which can be identi-
fied by its large size with lobed morphology, yellowish/pink 
color, and extensive vascularization. Place it directly into the 
corresponding microcentrifuge tube containing 1 mL of 
ice-cold Liberase solution. 

4. Dissect the skin: With the fish placed on the side, make a 
vertical incision posterior to the operculum. With one forceps, 
pull the skin along the side of the fish from anterior to posterior 
while holding the rest of the body with the other forceps. If
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necessary, carefully pull free any underlying fat that remain 
attached. Transfer the skin including the scales into the 
corresponding microcentrifuge tube containing 1 mL of 
ice-cold Liberase solution. 

5. Dissect the WKM: Once all internal organs are removed, the 
kidney is exposed. Lay the fish on its back and locate the thin, 
translucent, and pigmented structure that runs along the axis of 
the vertebral column. If possible, discard the dorsal vein with 
forceps. Keep the forceps as parallel as possible to the spine to 
avoid contaminating the sample with bone or muscle debris. 
Carefully pull out the entire WKM away from the dorsal body 
wall, from the head (anterior) to the tail (posterior) kidney with 
the forceps. Place it directly into the corresponding microcen-
trifuge tube prefilled with 200 μL of ice-cold FACS Buffer (see 
Note 5). 

3.3 Processing the 

Organs 

1. Predissociate the WKM by gently pipetting up and down with a 
P200 unfiltered tip. Be careful as the sample can be sticky. 

3.3.1 WKM 2. Add 300 μL of FACS Buffer and complete dissociation by 
passing the sample up and down multiple times through a 
1 mL syringe with 26 G needle (see Note 6). 

3. Filter the suspension through a 40-μm cell strainer directly into 
an ice-cold and empty FACS tube. Store on ice and protect 
from light by covering with aluminum foil. 

3.3.2 Brain and Liver 1. Incubate in Liberase solution at 33 °C for 45–60 min (brain 
samples) or 25 min (liver samples) (see Note 7). 

2. After 5 min, gently triturate with a P1000 to help physical cell 
dissociation. Make sure to use unfiltered tips to avoid the 
samples to stick to the inside of the tip. 

3. Every 15 min, gently pipet the sample up and down several 
times with a P1000 for additional mechanical disruption. 

4. Repeat until the tissue is fully dissociated. Do not let the sample 
digest longer than needed as it can damage cells. 

5. At the end of the incubation, gently pass the sample through a 
1-mL syringe with a 26 G needle, up and down multiple times. 

6. Using the syringe, transfer the cell suspension to the 
corresponding FACS tube containing 3 mL of ice-cold FACS 
Buffer (see Note 8). 

3.3.3 Skin 1. Using fine scissors, carefully cut the skin sample into small 
pieces in the microcentrifuge tube containing 1 mL Liberase 
solution and transfer at 33 °C. 

2. After 10 min incubation, triturate the sample and pipet up and 
down with a P1000. Repeat every 10 min until the skin starts to 
disaggregate (see Note 9).
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3. Once the skin is dissociated, which usually takes around 
30 min, the suspension will appear greyish. 

4. Keep the tube still until the scales sediment to the bottom. 
Transfer the cell suspension into a new empty microcentrifuge 
tube using a P1000 pipette. Take care not to transfer the scales. 

5. Homogenize by gently pipetting up and down with a P1000 
and a syringe with a 26 G needle. 

6. Using the syringe, transfer the solution to the corresponding 
FACS tube containing 3 mL of ice-cold FACS Buffer (see Note 
8). 

3.4 Pelleting the 

Cells 

1. Centrifuge the FACS tubes (except the WKM) containing the 
dissociated tissues (Subheading 3.3) at 290 g at 4 °C for 10 min 
(see Note 10). 

2. Taking great care not to disturb the cell pellet, discard the 
supernatant using a P1000, leaving about 100 μL above the 
pellet. 

3. To resuspend the cells, add 300 μL of ice-cold FACS Buffer. 
Disperse the pellet by gently pipetting up and down twice using 
a P1000. 

3.5 Filtering and 

Staining for Dead Cell 

Discrimination 

1. Using a P1000, pass the suspension through a 40-μm cell 
strainer into a new and empty FACS tube (second set). 

2. Add live/dead dye (in our case 1/1000 Sytox Red dye with a 
final concentration 5 nM) to each tube. 

3. Mix by flicking, and then keep the tubes on ice and in the dark 
until the scheduled time for analysis (see Note 11). 

3.6 Data Collection 1. Collect data on a BD FACSAria III cytometer using the fol-
lowing gating strategy: 

2. Start by drawing the first gate (P1) on cells displayed based on 
side (SSC-A, y axis bi-exponential scale) and forward (FSC-A, x 
axis linear scale) scattering characteristics. Exclude events with 
low FSC or high SSC (dead cells, debris and aggregates). This 
gate needs to be adjusted depending on the tissue (Fig. 2a). 

3. To filter cell doublets out, display the P1 events based on the 
width of the side scatter (SSC-W, y axis linear scale) and the 
height of the side scatter (SSC-H, x axis bi-exponential scale). 
Draw the gate for the singlet population (P2) (Fig. 2b). 

4. As a second step to ensure doublet exclusion, plot the P2 gate 
based on forward scatter-width (FSC-W, y axis linear scale) and 
forward scatter-height (FSC-H, x axis linear scale). Draw the 
gate for the singlet population (P3) (Fig. 2c). 

5. Next, exclude Sytox Red positive dying cells by visualizing P3 
on a plot of far red (x axis bi-exponential scale) versus side
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Fig. 2 General gating strategy to identify single and live cells in adult zebrafish organs using flow cytometry. 
The WKM is shown as an example. (a) The P1 gate depicts events based on cell size and granularity. (b, c) 
Exclusion of cell doublets using the combination of pulse width and height side scatter or forward scatter 
parameters. (d) Selection of live cells (P4, or Sytox red negative fraction). Note that cells are displayed based 
on SSC-A (y-axis) and Sytox Red fluorescence (x-axis). As an alternative, cells can be plotted based on Sytox 
red fluorescence and GFP or DsRed (instead of SSC-A), allowing to visualize cell viability directly within the 
population of interest (not shown). Figures 3, 4, 5, and 6 will show the gating strategy for every organ to follow 

scatter-area (SSC-A, y axis bi-exponential scale). Draw P4, 
which consists of single, live cells (Fig. 2d). 

6. Plot the live P4 population based on side (SSC-A, y axis 
bi-exponential scale) and forward (FSC-A, x axis linear scale) 
scatter properties. In a tissue-specific manner, draw a new gate 
(P5) that excludes the lymphoid fraction and is enriched in 
myeloid cells (see Note 12) (Fig. 3 for WKM, Fig. 4 for 
brain, Fig. 5 for liver and Fig. 6 for skin).
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Fig. 3 Representative dot plots and gating strategy for macrophage isolation in the WKM using Tg(mpeg1.1: 
GFP;cd45:DsRed). (a) Gating strategy to isolate lymphoid, progenitor and myeloid lineages using light-
scattering characteristics. (b) Mature macrophages (red dots), reanalyzed by forward and side scatter, overlap 
the myeloid and progenitor fractions in the WKM. (c) The P5 gate visualizes the P4 population in a more 
restrictive manner, with most of the lymphoid population excluded. (d) Macrophages are identified as GFPint ; 
DsRedhigh cells (red circle). Macs, macrophages 

7. Once you have discriminated events by size, granularity, and 
viability, and delineated P5, gate on fluorescently labeled trans-
genic cells. Plot P5 based on GFP (y axis bi-exponential scale) 
and DsRed (x axis bi-exponential scale) fluorescence (Fig. 3 for 
WKM, Fig. 4 for brain, Fig. 5 for liver and Fig. 6 for skin).



Fig. 4 Representative dot plots and gating strategy for isolation of brain microglia using Tg(mpeg1.1:GFP; 
cd45:DsRed) or TgBAC(p2ry12:p2ry12-GFP;cd45:DsRed). (a) Gating strategy to analyze lymphoid and myeloid 
cells using light-scattering characteristics. (b) Microglial cells (red dots) reanalyzed by forward and side 
scatter, localize within the SSCint ; FSCint myeloid gate. (c, e) The P5 gate displays the P4 population in Tg 
(mpeg1.1:GFP;cd45:DsRed) (c) and TgBAC(p2ry12:p2ry12-GFP;cd45:DsRed) (e) in a more restrictive manner. 
(d, f) The GFPlow ; DsRedlow population (red circle) represents microglia in Tg(mpeg1.1:GFP;cd45:DsRed) fish 
(d), while in the brain of TgBAC(p2ry12:p2ry12-GFP;cd45:DsRed) animals, microglia are the GFP+ ; DsRed+ 

double positive population (red circle) (f). MG microglia
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Fig. 5 Representative dot plots and gating strategy for isolation of liver macrophages using Tg(mpeg1.1:GFP; 
cd45:DsRed). (a) Gating strategy to isolate lymphoid and myeloid lineages using light-scattering character-
istics. (b) Macrophages (red dots) reanalyzed by forward and side scatter, are contained within the myeloid 
fraction. (c) After setting up the P4 gate, P5 is a more restrictive gate into the myeloid fraction. (d) Liver 
macrophages represent a well-defined population of GFP+ ; DsRed+ double positive cells (red circle). Macs 
macrophages 

8. Make sure to use unlabeled samples (from nontransgenic fish) 
and single-fluorescent samples (from single GFP and DsRed 
reporter carriers) to set appropriate detector gains (PMT vol-
tages) and thresholds for fluorescence channels.
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Fig. 6 Representative dot plots and gating strategy for isolation of skin macrophages using Tg(mpeg1.1:GFP; 
cd45:DsRed). (a) Gating strategy to isolate lymphoid and myeloid lineages using light-scattering character-
istics. Note that this tissue is very different from the other examples given. (b) Mononuclear phagocytes (red 
dots) reanalyzed by forward and side scatter, localize within the myeloid fraction. (c) The P5 gate visualizes 
the P4 population in a more restrictive manner, with the lymphoid population excluded. (d) In this setting, skin 
macrophages are identified as GFP+ ; DsRed+ double positive (red circle). Macs macrophages 

3.7 Expected 

Outcomes for Each 

Tissue 

1. WKM, using the Tg(mpeg1.1:GFP, cd45:DsRed) line: In this 
tissue, differentiated mononuclear phagocytes represent a dis-
crete mpeg1.1+ cell population with a specific scatter profile 
overlapping the myeloid and progenitor fractions (Fig. 3a, b). 
The majority of the cells shows the characteristics of macro-
phages, with kidney-shaped nuclei and vacuoles [21]. As the



site of adult hematopoiesis, the WKM also contains large
amounts of B lymphocytes that share expression of the
mpeg1.1:GFP reporter with macrophages [17], which can
thus affect their analysis. Therefore, exclusion of unwanted
GFP+ B lymphocytes is firstly achieved by gating on the com-
bined myeloid and scatter fractions (Fig. 3c) and, secondly,
using Tg(mpeg1.1:GFP; cd45:DsRed) double transgenic ani-
mals, where GFP+; DsRed+ mononuclear phagocytes are dis-
cerned from GFP+; DsRed- B cells based on differential DsRed
expression. Importantly, WKM mononuclear phagocytes can
be further divided into two subpopulations, identified as
macrophages (GFPint; DsRedhigh) and putative DC-like cells
(GFPhigh; DsRedhigh), respectively (Fig. 3d) (see Note 14).
GFP- DsRed+ cells comprise a mix of hematopoietic progeni-
tors, T cells, eosinophils, and neutrophils. The latter is abun-
dant in the WKM [24].
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2. Brain, using the Tg(mpeg1.1:GFP, cd45:DsRed) line: Brain 
samples contain two main populations of GFP+ ; DsRed+ cells 
that can be discriminated based on differential levels of fluor-
ophore expression: microglia, the brain macrophages, which 
are GFPlow ; DsRedlow , and a less abundant GFPhigh ; DsRedhigh 

population (Fig. 4d), which mostly comprises DC-like cells and 
monocytes (Rovira, Ferrero and Wittamer, unpublished) (see 
Note 14). In this setting, GFP+ ; DsRed- cells are B lympho-
cytes while GFP-DsRed+ cells consist of a mixed population of 
T lymphocytes, NK cells, and neutrophils, among others. 

3. Brain, using the Tg(p2ry12:p2ry12-GFP; cd45:DsRed) line: 
Microglia can also be easily identified based on expression of 
the p2ry12:p2ry12-GFP transgene, the purinergic receptor 
p2ry12 being widely accepted as a canonical microglia marker 
[25], including in zebrafish [26, 27]. Importantly, expression 
of the p2ry12 transgene is coupled to CFP expression in the 
lens (serving as a transgenesis marker), which can make analysis 
of microglia challenging. Using animals carrying both the 
p2ry12:p2ry12-GFP and the cd45:DsRed reporters allows to 
overcome this limitation (Fig. 4f), as in this setting microglia 
are GFP+ ; DsRed+ and can be discriminated from unwanted 
CFP+ ; DsRed- lens cells (see Note 13). Importantly, due to 
low p2ry12:p2ry12-GFP transgene expression in microglia 
(especially in comparison to the mpeg1.1:GFP reporter), fine 
adjustment of the GFP voltage is required to achieve efficient 
separation between microglia (GFPlow ; DsRed+ ) and the 
remaining immune cells (identified as GFP- DsRed+ ). 

4. Liver, using the Tg(mpeg1.1:GFP, cd45:DsRed) line: The liver 
contains a well-defined population of mpeg1.1 positive cells, 
which mostly comprises macrophages [28]. These cells are 
GFP+ ; DsRed+ and are easily separated from GFP+ ; DsRed- B
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lymphocytes (Fig. 5d). The GFP- DsRed+ population contains 
the remaining leukocytes. 

5. Skin, using the Tg(mpeg1.1:GFP, cd45:DsRed) line: The skin 
contains a heterogenous population of mpeg1.1+ cells, of which 
B lymphocytes and metaphocytes account for a high propor-
tion [19]. These cells are discerned from skin macrophages 
based on differential DsRed expression. Accordingly, skin 
macrophages are GFP+ DsRed+ , and B cells and metaphocytes 
are GFP+ DsRed- (see Note 14). Drawing a gate on the mye-
loid fraction (P5) will ensure enrichment for GFP+ DsRed+ 

macrophages (Fig. 6c). 

4 Notes 

1. Analyses are conducted on fish between 4 and 9 months of age. 
Animal experiments must conform to national and institutional 
regulations. 

2. Sample preparation for flow cytometry analyses does not 
require antibody staining since the protocol relies on detection 
of the endogenous fluorescence in the cells of interest. How-
ever, not fluorescent (obtained from nontransgenic fish) and 
single-fluorescent (obtained from single EGFP and DsRed 
reporters) control samples are needed to set appropriate laser 
voltages that identify clear negative and positive populations. 

3. The sample preparation time before analysis at the flow cyt-
ometer is around 3 h. In practice, this timing will depend on 
the sample size. If large numbers of samples have to be ana-
lyzed, we recommend that two people participate: one in 
charge of collecting the organs while the second processes the 
samples. The protocol has no stopping step until the end and 
the experimenter must proceed quickly. Transgenic fish should 
be screened in advance and selected the day prior the experi-
ment. If necessary, validation of the reporter lines can be con-
ducted on anesthetized adult fish placed under a fluorescence 
binocular. Transgenic GFP+ and DsRed+ cells are easily visua-
lized in the skin and gills of Tg(mpeg1.1:GFP) and Tg(cd45: 
DsRed) animals, respectively. The Tg(p2ry12:p2ry12-GFP) 
line is identified by a lens-specific expression of cerulean fluo-
rescent protein (CFP) that serves as a transgenesis marker and is 
easily visible in adult animals. The fish to sample the next 
morning can be isolated in breeding tanks overnight. 

4. Mechanical disruption of soft tissues like the kidney is sufficient 
to release cells into a single-cell suspension. 

5. The order of the dissection of the tissues or organs will depend 
on your interests. However, some tissues are more sensitive to 
degradation such as the WKM and the brain. If several organs
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are collected from the same animal, we recommend proceeding 
as followed: cut the head first, place it into a Petri dish with 
0.9× DPBS, and keep on ice until processing. Remove the 
viscera as a full pluck and keep it in cold 0.9× DPBS until 
processing. Collect the WKM, and then dissect the brain in 
cold 0.9× DPBS. Quickly peel off the skin. Finally, dissect the 
liver in cold 0.9× DPBS. 

6. To fully dissociate the WKM, always use a P200 and a syringe 
sequentially. First pipet up and down with the P200 until no 
clumps are visible. This will avoid clogging the syringe in the 
subsequent step. The use of 26 GA needles is necessary for 
complete tissue homogenization. The mixing up and down 
must be gentle to not harm the cells. The inside diameter of 
the needle must not be smaller than the diameter of a cell, as 
this will result in cell lysis. 

7. The time required for optimal dissociation using enzymatic 
digestion will differ between tissues and will depend on the 
tissue size. Typically, for an adult brain it takes 40–50 min, and 
20–30 min for the liver. During incubation, check your samples 
regularly to prevent overdigestion. 

8. Dilution of the homogenized tissue into 3 mL of ice-cold 
FACS Buffer will ensure enzymatic inactivation of the liberase. 

9. To speed up the dissociation process, pass the sample through a 
syringe with a 20 GA needle. 

10. When processing large numbers of samples, we recommend 
centrifuging maximum 10 tubes at a time as proceeding 
quickly will prevent detachment of the cell pellets. 

11. Always keep the samples on ice to stop cell death and protected 
from light to prevent loss of fluorescence. As the cells are not 
fixed, the samples cannot be stored more than a few hours so 
proceed with the flow cytometry analysis without delay. 

12. Using flow cytometry, each of the major hematopoietic 
lineages can be resolved by light-scatter characteristics. In the 
zebrafish WKM, the main distinct scatter populations are 
termed “lymphoid,” “progenitor,” and “myeloid”. Mature 
mononuclear phagocytes are identified as a distinct forward 
scatter (FSC)high side scatter (SSC)int population, overlapping 
the conventional myeloid and precursor fractions. The precur-
sor population is not present in other zebrafish organs, and 
mononuclear phagocytes largely localize in the myeloid gate. 

13. Because eyes are separated from the brain during dissection, 
contamination of p2ry12:p2ry12-GFP microglia by CFP lens 
cells in the single cell suspension should be minimal (unlike in 
the case of cell suspensions produced from embryos and/or 
larvae).
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14. Limitations: While tissue macrophages will undoubtedly rep-
resent the major population analyzed with this protocol, it is 
important to keep in mind that other mononuclear phagocyte 
subsets, such as monocytes and dendritic cells, will likely also 
be comprised in the isolated population of mpeg1.1+ ; cd45+ 

myeloid cells. Although our approach also permits to identify 
putative dendritic cell-like populations, notably in the brain 
and in the WKM, whether these cells represent the zebrafish 
counterparts of mammalian DCs remains to be determined. 
Likewise, zebrafish monocytes have not been characterized yet. 
Therefore, more markers and new transgenic lines are needed 
to discriminate the different subsets of the mononuclear 
phagocyte compartment in the zebrafish model. Finally, it is 
also possible that the mpeg1.1 promoter fails to label all macro-
phages in transgenic fish, although this appears unlikely based 
on available transcriptomic data. 
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