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Abstract
Aims/hypothesis TNF-α plays a role in pancreatic beta cell loss in type 1 diabetes mellitus. In clinical interventions, TNF-α
inhibition preserves C-peptide levels in early type 1 diabetes. In this study we evaluated the crosstalk of TNF-α, as compared
with type I IFNs, with the type 1 diabetes candidate gene PTPN2 (encoding protein tyrosine phosphatase non-receptor type 2
[PTPN2]) in human beta cells.
Methods EndoC-βH1 cells, dispersed human pancreatic islets or induced pluripotent stem cell (iPSC)-derived islet-like cells
were transfected with siRNAs targeting various genes (siCTRL, siPTPN2, siJNK1, siJNK3 or siBIM). Cells were treated for 48 h
with IFN-α (2000 U/ml) or TNF-α (1000 U/ml). Cell death was evaluated using Hoechst 33342 and propidium iodide staining.
mRNA levels were assessed by quantitative reverse transcription PCR (qRT-PCR) and protein expression by immunoblot.
Results PTPN2 silencing sensitised beta cells to cytotoxicity induced by IFN-α and/or TNF-α by 20–50%, depending on the
human cell model utilised; there was no potentiation between the cytokines. We silenced c-Jun N-terminal kinase (JNK)1 or Bcl-
2-like protein 2 (BIM), and this abolished the proapoptotic effects of IFN-α, TNF-α or the combination of both after PTPN2
inhibition. We further observed that PTPN2 silencing increased TNF-α-induced JNK1 and BIM phosphorylation and that JNK3
is necessary for beta cell resistance to IFN-α cytotoxicity.
Conclusions/interpretation We show that the type 1 diabetes candidate gene PTPN2 is a key regulator of the deleterious effects
of TNF-α in human beta cells. It is conceivable that people with type 1 diabetes carrying risk-associated PTPN2 polymorphisms
may particularly benefit from therapies inhibiting TNF-α.
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Abbreviations
BIM Bcl-2-like protein 2
iPSC Induced pluripotent stem cell
JNK c-Jun N-terminal kinase
qRT-PCR Quantitative reverse transcription PCR

MKK7 Mitogen-activated protein kinase kinase 7
PTPN2 Protein tyrosine phosphatase non-receptor

type 2
STAT Signal transducer and activator of transcription

Introduction

Type 1 diabetes is a complex chronic autoimmune disease
during which pancreatic beta cells are progressively attacked
by the immune system. The pathophysiological mechanisms
that trigger type 1 diabetes are multifactorial and poorly
understood. The risk of developing type 1 diabetes involves
around 50% heritable genetic factors [1, 2], suggesting that
environmental and (epi)genetic factors impact disease suscep-
tibility. In recent years, genome-wide association studies
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(GWAS) helped to identify nearly 80 loci associated with a
risk of developing type 1 diabetes [3]. Candidate genes such
as IFIH1 and BACH2, which play a role in triggering apopto-
sis in beta cells, or GLIS3, related to beta cell phenotype and
susceptibility to cytokine attack [4, 5], illustrate the complex-
ity of the disease, where a SNP can contribute to the develop-
ment and/or acceleration of type 1 diabetes. Another suscep-
tibility gene identified in these studies is PTPN2, which
encodes protein tyrosine phosphatase non-receptor type 2
(PTPN2), a tyrosine phosphatase with multiple targets impli-
cated in the control of beta cell physiology, survival and
expansion [6–8]. PTPN2 targets include Janus kinases
(JAKs), signal transducer and activator of transcription
(STAT) and EGF receptor [6]. PTPN2 modulates early
immune responses in beta cells [9], including viral and type
I and II IFN responses, protecting the beta cells from excessive
cytotoxic signalling in a proinflammatory context. PTPN2
was also identified as a candidate gene for other autoimmune
diseases such as Crohn’s disease [10] and rheumatoid arthritis
[11]. PTPN2 disease-related polymorphisms cause partial loss
of function or decreased protein expression [12–14].
Collectively, these observations point to the role of this phos-
phatase in controlling the immune response.

Type 1 diabetes is diagnosed at progressively younger ages
[15], suggesting that the autoimmune process may start early
in life, when beta cell development and maturation is not yet
complete, and indicating an important role for the innate

immune system and early-response cytokines such as IFNs
or TNF-α in beta cell failure.

We were further studying the impact of PTPN2 on IFN
signalling [9], using TNF-α as a negative control based on
our previous findings that TNF-α mediates its deleterious
effects on beta cells via NF-κB [16, 17] and should thus not
be affected by knockdown of PTPN2. To our surprise, we
observed an important augmentation of TNF-α deleterious
effects following PTPN2 knockdown. TNF-α plays an impor-
tant role in the immune system and its levels are associated
with the onset of autoimmune diseases such as rheumatoid
arthritis, inflammatory bowel disease or psoriatic arthritis;
TNF-α inhibitors are used to treat these diseases [18]. One
of these inhibitors used to treat rheumatoid arthritis is
golimumab, a human IgG1-κmonoclonal antibody that forms
high-affinity, stable complexes with both the soluble and
transmembrane bioactive forms of human TNF-α, thus
preventing the binding of TNF-α to its receptors [19].
Golimumab was evaluated in a placebo-controlled clinical
trial in children and young adults with newly diagnosed type
1 diabetes [20]. Patients who received golimumab showed
preserved endogenous insulin production and less exogenous
insulin needs, suggesting an improvement in beta cell health
and confirming the relevance of TNF-α in the pathogenesis of
type 1 diabetes. Furthermore, a recent study by Achenbach
et al, using a classification and regression tree analysis, distrib-
uted two cohorts of patients with diabetes diagnosed before
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age 20 years into seven beta cell autoantibody-positive and
three autoantibody-negative subgroups [21]. A TNF-α
inflammatory signature was enriched in the youngest
autoantibody-positive groups and in patients with the lowest
C-peptide levels, suggesting that TNF-α levels correlate with
an aggressive phenotype of early-onset type 1 diabetes.

Based on this and on our serendipitous finding that PTPN2
knockdown increases TNF-α effects on beta cells, in this
study we evaluated the effects of TNF-α, as compared with
IFN-α, in different models of human pancreatic beta cells
silenced for the tyrosine phosphatase PTPN2.

Methods

Culture of human EndoC-βH1 cells and human pancreatic
islets The human pancreatic beta cell line EndoC-βH1 was
kindly provided by R Scharfmann (Cochin Institute, France)
[22]. Cells were cultured in Matrigel–fibronectin-coated
plates as previously described [23]. EndoC-βH1 cells were
free of mycoplasma infection, as determined by monthly test-
ing using the MycoAlert Mycoplasma Detection kit (Lonza,
Basel, Switzerland).

Human pancreatic islets from eight non-diabetic organ
donors were isolated in Pisa, Italy, before November 2021,
with written consent from donors’ next-of-kin and approval
of the local ethics committee, following a previously
described protocol [24, 25].

Differentiation of induced pluripotent stem cells into islet-like
cells To gain knowledge on the crosstalk between immune
mediators, a candidate gene and maturing beta cells, we took
advantage of beta-like cells derived from induced pluripotent
stem cells (iPSCs). These cells already express INS and
PDX1 mRNAs and receptors to proinflammatory cytokines,
but are not yet fully mature, providing an interesting model
to study the impact of cytokines and candidate genes on
developing beta cells [26–28]. The human iPSC line
1023A was kindly provided by DM Egli (Columbia
University, USA). The differentiation of iPSCs into islet-
like cells was approved by the Ethics Committee of the
Erasmus Hospital, Université Libre de Bruxelles, reference
P2019/498. iPSCs were cultured in Matrigel-coated plates
(Corning, NY, USA) in E8 medium (Invitrogen Life
Technologies, Paisley, UK) and passaged with 0.5 mmol/l
EDTA (Invitrogen Life Technologies) twice per week. Cell
quality and pluripotency were monitored using the
MycoAlert Mycoplasma Detection kit for mycoplasma
infection, cell karyotyping (Bio.be, Belgium) for chromo-
somal abnormalities and immunocytochemical staining for
pluripotency markers as previously described [29]. For beta
cell differentiation we used a seven-step protocol previously

published by our group [30, 31]. Differentiation efficiency
was monitored by immunocytochemistry as described in
electronic supplementary material (ESM) Fig. 1a,b.

Once the differentiation was completed, cell aggregates
were dispersed, seeded on Matrigel-coated culture plates and
cultured in HAM’s F-10 medium (Thermo Fisher Scientific,
Waltham, MA, USA) containing 2% fatty acid-free BSA
(Roche, Basel, Switzerland), 2 mmol/l GlutaMAX (Thermo
Fisher Scientific) and 100 U/ml penicillin–streptomycin
(Thermo Fisher Scientific) for exposure to cytokines and/or
siRNA as described [29].

RNA interferenceDispersed human pancreatic islets or dispersed
iPSC-derived islet-like cells were transfected overnight with
30 nmol/l siRNA; the medium was changed and cells were
left to recover for 24 h. Transfection was performed using previ-
ously validated siRNAs targeting PNPT2 (siPTPN2; 5′-CACA
AAGGAGTTACATCTTAA-3′; 1027415; Qiagen, Venlo, the
Netherlands) [32], JNK1 (also known as MAPK8; siJNK1;
5 ′ -GGGCCUACAGAGAGCUAGUUCUUAU-3 ′ ;
MAPK8HSS108547, Thermo Fisher Scientific) [33], BIM
(siBIM; 5′-CACGAAUGGUUAUCUUACGACUGUU-3′;
10620318, Thermo Fisher Scientific) [5] and JNK3 (also known
asMAPK10; siJNK3; 5′-TCCATATGTGGTGACACGTTA-3′;
1027415; Qiagen) (validated in this study), using Lipofectamine
RNAiMax (Invitrogen) as described [6]. For experiments with
double or triple transfection, wemixed 30 nmol/l of each siRNA.
Allstars Negative Control siRNA (siCTRL; Qiagen) was used as
a negative control.

Exposure to cytokinesAfter 24 h recovery from silencing, cells
were left untreated (NT) or treated for 24 h or 48 h with IFN-α
(2000 U/ml; Peprotech, London, UK), TNF-α (1000 U/ml;
Peprotech), IFN-α+TNF-α (2000 and 1000 U/ml, respective-
ly), thapsigargin (1 μmol/l; Sigma Aldrich, MO, USA) or
brefeldin A (0.025 μg/ml; Sigma Aldrich). For protein phos-
phorylation studies, we first performed a time course analysis
and then selected 1 h as the optimal time point for cytokine
exposure in subsequent experiments. c-Jun N-terminal kinase
(JNK) was chemically inhibited using SP600125 (Selleck
Chemicals, Germany). SP600125 optimal concentration to
inhibit JNK1 in EndoC-βH1 cells, i.e. 20 μmol/l, was deter-
mined by a dose–response study shown in ESM Fig. 2. For the
subsequent experiments, cells were pre-treated with 20 μmol/l
SP600125 for 1 h and then treated with IFN-α or TNF-α in the
continued presence of 20 μmol/l SP600125 for 48 h.

ImmunocytochemistryDispersed iPSC-derived islet-like cells
were fixed in 4% paraformaldehyde for 15–20 min,
permeabilised with 0.5% triton-X100 in PBS, blocked with
UltraV block (Thermo Fisher Scientific) for 10 min and then
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incubated with primary antibodies diluted in 0.1% Tween in
PBS overnight at 4°C. Cells were then washed with PBS and
incubated with secondary antibodies diluted in 0.1% Tween in
PBS. Samples were mounted with Vectashield with DAPI
(Vector Laboratories, Newark, CA, USA) and covered with
glass coverslips. The antibodies used in the study are listed in
ESM Table 1.

Cell death assays Cell death was detected by fluorescence
microscopy after staining with the DNA binding dyes
Hoechst 33342 (5 μg/ml, Sigma Aldrich) and propidium
iodide (5 μg/ml, Sigma Aldrich) [6, 34]. Cell death was deter-
mined in at least 500 cells by two observers, one of them
unaware of the experimental conditions. Caspase 3/7 activity
was determined by Caspase-Glo 3/7 Assay System (Promega,
WI, USA). Whole cleaved caspase 3 was detected by immu-
noblot and normalised to total procaspase 3 expression.

Static glucose-stimulated insulin secretion EndoC-βH1 cells
were washed and incubated for 2 h in a 2.8 mmol/l glucose
cell medium; washed in PBS and pre-incubated for 1h in
glucose-free Krebs buffer (Univercell Biosolutions,
Toulouse, France). Then, the cell medium was changed for
Krebs buffer containing 0 mmol/l glucose, 20 mmol/l glucose
or 20 mmol/l glucose plus 10 μmol/l forskolin and incubated
for 40 min. The supernatant was collected for human insulin
measurement by ELISA (Mercodia, Uppsala, Sweden).
Cellular insulin was extracted using acid ethanol (0.18 mol/l
hydrochloric acid in 95% ethanol) and quantified by ELISA
(Mercodia). Insulin secretion and total insulin content were
normalised to total protein content, measured by protein assay
dye (Bio-Rad Laboratories, CA, USA).

Immunoblot Total protein was extracted using Laemmli or
RIPA buffer supplemented with phosphatase and protease
inhibitors (Roche) and separated on 10% SDS–PAGE. The
nitrocellulose membranes were probed using specific primary
antibodies diluted 1:1000 in TBST (TBS, 0.1% Tween 20)
with 5% BSA. After overnight incubation at 4°C, membranes
were probed for 1 h at room temperature with peroxidase-
conjugated secondary antibodies diluted 1:5000 in TBSTwith
5% BSA. Detection of immunoreactive bands was performed
using chemiluminescent substrate (SuperSignal West Femto,
Thermo Fisher Scientific) using a Bio-Rad ChemiDoc XRS+
system (Bio-Rad Laboratories). The densitometric values
were quantified by ImageLab software version 6.1 (Bio-Rad
Laboratories, RRID:SCR_014210) and normalised to
GAPDH or the respective total protein forms, after back-
ground subtraction. Antibodies are listed in ESM Table 1.

Co-immunoprecipitation EndoC-βH1 cells were mechanical-
ly lysed with a syringe in PBS containing 5 mmol/l EDTA

with protease inhibitors and incubated on a shaker at 4°C for
3 h. Lysates were cleared by centrifugation at 12,000 g for
30 min at 4°C and immediately subjected to PTPN2 or IgG
immunoprecipitation overnight on a shaker at 4°C by the addi-
tion of 2 μg of primary antibody or immunoglobulin. Pierce
Protein Magnetic Beads (Thermo Fisher Scientific), previous-
ly saturated with 2%BSA, were then added for 2 h on a shaker
at 4°C, followed by four washes with lysis buffer. Proteins
were eluted in DTT-free Laemmli buffer by heating for
10 min at 50 °C. 100 mmol/l DTT was then added and protein
complexes were analysed by immunoblot. Antibodies are
listed in ESM Table 1.

Real-time PCR Poly(A)+ mRNA was isolated using the
Dynabeads mRNA DIRECT kit (Invitrogen) according to
the manufacturer’s instructions. mRNA molecules were

�Fig. 1 PTPN2 regulates TNF-α-induced JNK1 phosphorylation. (a)
EndoC-βH1 cells were left untreated (0) or treated for 10 min, 30 min,
1 h, 4 h, 8 h or 24 h with IFN-α (2000 U/ml) or TNF-α (1000 U/ml). P-
JNK1, JNK1 and GAPDH protein levels were analysed by immunoblot.
P-JNK1 bands were quantified by densitometry and normalised to JNK1.
Results are means ± SEM of three independent experiments and
presented as fold-variation compared with untreated cells, considered as
1. **p<0.01 vs IFN-α non-treated control; ††p<0.01 vs TNF-α non-
treated control; ANOVA. (b) EndoC-βH1 cells were transfected with
siCTRL or siPTPN2. After 48 h of recovery the cells were left
untreated (0) or treated for 1 h, 4 h, 8 h or 24 h with TNF-α (1000
U/ml); and for 1 h with IFN-α (2000 U/ml). PTPN2, P-STAT1, P-
STAT2, STAT1, STAT2 and GAPDH protein expression were
analysed by immunoblot. P-STAT1 and P-STAT2 bands were
quantified by densitometry and normalised to their respective total
protein forms. Results are means ± SEM of three independent
experiments and presented as fold-variation compared with siCTRL-
untreated cells, considered as 1. **p<0.01 vs siCTRL; t test. (c) EndoC-
βH1 cells were transfected with siCTRL or siPTPN2. After 48 h of
recovery cells were left untreated (0) or treated for 1 h, 4 h, 8 h or 24 h
with TNF-α (1000 U/ml). PTPN2, P-JNK1, JNK1 and GAPDH protein
expression were analysed by immunoblot. P-JNK1 bands were quantified
by densitometry and normalised to JNK1. Results are means ± SEM of
three independent experiments and presented as fold-variation compared
with siCTRL-untreated cells, considered as 1. *p<0.05 vs siCTRL;
ANOVA. (d) EndoC-βH1 cells were left untreated (NT) or treated for
1 h with IFN-α (2000 U/ml) or TNF-α (1000 U/ml); PTPN2 was then
immunoprecipitated. PTPN2, STAT1, JNK1 and GAPDH protein levels
were analysed by immunoblot . GAPDH and mouse IgG
immunoprecipitation were used as negative controls. Images are
representative of three independent experiments. (e) EndoC-βH1 cells
were transfected with siCTRL or siPTPN2. After 48 h of recovery cells
were left untreated (NT) or treated for 1h with TNF-α (1000 U/ml).
PTPN2, P-JNK1, JNK1, P-BIM, BIM, P-MKK7, MKK7 and GAPDH
protein expressionwere analysed by immunoblot. P-JNK1, P-BIM and P-
MKK7 bands were quantified by densitometry and normalised to their
respective total protein forms or to GAPDH for PTPN2. Results are
means ± SEM of five or six independent experiments and presented as
fold-variation compared with siCTRL-untreated cells, considered as 1.
**p<0.01, ***p<0.001 vs siCTRL; ANOVA. EL, extra-large; IP,
immunoprecipitate; L, large; S, short
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recovered in Tris–HCl elution solution and reverse transcrip-
tion was performed using the Reverse Transcriptase Core kit
(Eurogentec, Liège, Belgium) according to the manufacturer’s
instructions. The quantitative reverse transcription PCR (qRT-
PCR) amplification was conducted using IQ SYBR Green

Supermix (Bio-Rad Laboratories). The PCR product concen-
tration was calculated as copies per μl using the standard
curve method [35] and gene expression was normalised to
the geometric mean of the reference genes ACTB and
GAPDH. Primers are listed in ESM Table 2.

0 1h 4h 8h 0 1h 4h 8h24h 24h

siCTRL siPTPN2

P-JNK1

GAPDH

PTPN2

+TNF-α

JNK1

c IP IgG IP PTPN2

NT IFN-α TNF-α NT IFN-α TNF-αNT IFN-α TNF-α

Input

JNK1

GAPDH

PTPN2

STAT1

d

P-STAT1

P-STAT2

GAPDH

+IFN-α

0 1h 4h 8h 0 1h 4h 8h24h 24h 1h 1h

siCTRL siPTPN2 siCTRL

+TNF-α

siPTPN2

PTPN2

STAT1

STAT2

b
0 10' 30' 1h 4h

+IFN-α (2000 U/ml) +TNF-α (1000 U/ml)

P-JNK1

GAPDH

8h 24h 10' 30' 1h 4h 8h 24h

JNK1

a

BIM (EL)

BIM (L)

BIM (S)

P-BIM P-MKK7

MKK7

P-JNK1

JNK1

e

PTPN2

GAPDH

0

2

4

6

8
IFN-α

10' 30' 1h 4h 8h 24h0

††

TNF-α
**

0

1

2

3

4

5

IFN-α

siCTRL

siPTPN2

**

0.0

0.5

1.0

1.5

IFN-α

siCTRL

siPTPN2

ns

0

2

4

6

8 siCTRL

1h 4h 8h0

TNF-α
24h

*

siPTPN2

*
*

0

1

2

3

NT TNF-α

siCTRL

siPTPN2

***

**

0

2

4

6

NT TNF-α

siCTRL

siPTPN2

**

0

1

2

3

4

5

NT TNF-α

siCTRL

siPTPN2

**

0

2

4

6

8

NT TNF-α

siCTRL

siPTPN2

ns

E
n

d
o

C
-
βH

1
 c

e
ll
s

P
-
S

T
A

T
2

/S
T

A
T

2
 (

fo
ld

)

E
n
d
o
C

-
βH

1
 c

e
ll
s

P
-
J
N

K
1

/J
N

K
1

 (
fo

ld
)

E
n

d
o

C
-
βH

1
 c

e
ll
s

P
-
B

IM
/B

IM
 (

fo
ld

)

E
n
d
o
C

-
βH

1
 c

e
ll
s

P
-
M

K
K

7
/M

K
K

7
 (

fo
ld

)

E
n

d
o

C
-
βH

1
 c

e
ll
s

P
-
J
N

K
1

/J
N

K
1

 (
fo

ld
)

E
n
d
o
C

-
βH

1
 c

e
ll
s

P
T

P
N

2
/G

A
P

D
H

 (
fo

ld
)

E
n
d
o
C

-
βH

1
 c

e
ll
s

P
-
J
N

K
1
/J

N
K

1
 (

fo
ld

)

E
n

d
o

C
-
βH

1
 c

e
ll
s

P
-
S

T
A

T
1

/S
T

A
T

1
 (

fo
ld

)

1548



Diabetologia (2023) 66:1544–1556

Statistics Data were analysed by unpaired t test, one-way or
two-way ANOVA (corrected for repeated measures if
required) followed by Bonferroni multiple comparisons tests
as required, using GraphPad Prism 8 software (CA, USA).
Results are presented as mean ± SEM. p<0.05 was considered
statistically significant. In each experiment, n=1 is considered
to correspond to one independent biological observation, i.e.
EndoC-βH1 cells from different passages, human pancreatic
islets from different donors, or iPSC-derived islet-like cells
from different differentiations. To reduce variability between
independent experiments, for some techniques, e.g. real-time
PCR or immunoblot, each independent experiment was
normalised against its respective siCTRL.

Results

PTPN2 regulates JNK1 phosphorylationActivation of the JNK
pathway can lead to deleterious effects in cells [36]. We previ-
ously reported that interferons modulate the JNK pathway in
PTPN2-silenced beta cells, leading to cell death [9]. A time
course analysis of TNF-α or IFN-α-induced JNK1 phosphor-
ylation in EndoC-βH1 cells (Fig. 1a) showed maximal induc-
tion at 1 h, the time point used in subsequent experiments to
evaluate JNK activation. Next, EndoC-βH1 cells were
silenced for PTPN2 using siPTPN2 and treated with TNF-α
for different times. There was >90% inhibition of PTPN2
protein by the siRNA, and this led to fourfold higher P-
JNK1 expression in TNF-treated cells (Fig. 1c). PTPN2
knockdown increased STAT-1 but not STAT2 phosphoryla-
tion in cells exposed to IFN-α; TNF-α treatment did not
induce STAT1 or STAT2 phosphorylation (Fig. 1b). One-
hour treatment with TNF-α significantly increased JNK1
and BIM phosphorylation in PTPN2-silenced cells while no
changes were detected in the upstream protein mitogen-
activated protein kinase kinase 7 (MKK7, Fig. 1e). The total
expression of the different BIM isoforms (extra-large, EL;
large, L; or short, S) was not affected. PTPN2 co-
immunoprecipitated with JNK1 in EndoC-βH1 cells treated
with TNF-α or IFN-α and with STAT1 in cells treated with
IFN-α (Fig. 1d).

TNF-α has deleterious effects in beta cells silenced for PTPN2
Efficient PTPN2 silencing in EndoC-βH1 cells (Fig. 2a) poten-
tiated cell death by 18% (p<0.01), 24% (p<0.01) and 25%
(p<0.001) upon 48 h treatment with, respectively, IFN-α,
TNF-α and the combination of IFN-α +TNF-α (Fig. 2b,
ESM Fig. 3a). These results were confirmed by using three
different and independent beta cell death measurements:
Hoechst and propidium iodide staining (Fig. 2b, ESM Fig.

3a), Caspase-Glo 3/7 Assay System (ESM Fig. 3b) and cleaved
caspase 3 protein expression (ESM Fig. 3c). Similarly, in
dispersed human pancreatic islets, PTPN2 silencing (Fig. 2c)
increased cell death by 50% for IFN-α, 50% for TNF-α and
42% for IFN-α +TNF-α (Fig. 2d). Finally, in iPSC-derived
islet-like cells silenced for PTPN2 (Fig. 2e), there was an
increase in cell death of 45% for IFN-α treatment, 44% for
TNF-α and 43% for the cytokine combination (Fig. 2f). In
non-silenced cells, dispersed adult human pancreatic islets were
more resistant to cell death both under basal conditions and
following cytokine exposure in comparison with the other beta
cell models (ESM Fig. 4). There was no potentiating effect
when we combined the two cytokines, suggesting that IFN-α
and TNF-α act at least in part through similar downstream
mechanisms of cell death, although there were divergences in
the effects of the two cytokines on the induction of P-STAT1/2
(Fig. 1b) and the chemokineCXCL10 (ESMFig. 5). To rule out
a nonspecific effect of PTPN2 silencing on beta cell death, we
treated PTPN2-silenced EndoC-βH1 and iPSC-derived islet-
like cells (ESM Fig. 6a,c) for 24 h with the endoplasmic retic-
ulum stress inducers brefeldin A and thapsigargin [37]. Under
these conditions, there were no changes in cell viability with
PTPN2 inhibition (ESMFig. 6b,d). In parallel, 24 h exposure of
the PTPN2-silenced cells to IFN-α and/or TNF-α again led to
increased cell death as described above.

PTPN2 silencing impairs PDX1 expression and insulin release
after exposure to TNF-α EndoC-βH1 cells, dispersed human
pancreatic islets and iPSC-derived islet-like cells showed a
decrease in PDX1 (Fig. 3a) and INS (Fig. 3b) expression in
cells silenced for PTPN2 and exposed to TNF-α. This effect
was also detected in EndoC-βH1 cells exposed to IFN-α, but
the presence of this cytokine did not affect PDX1 and INS
expression in the other beta cell models. Insulin release by
EndoC-βH1 cells silenced for PTPN2 and exposed to
TNF-α was inhibited following stimulation with high glucose
plus forskolin (Fig. 3c) and these cells also had decreased
insulin content (Fig. 3d).

BIM silencing preserves beta cell viability after IFN-α or TNF-α
treatmentWe have previously shown that inhibiting the BH3-
only protein BIM in beta cells silenced for PTPN2 prevents
IFN-α-induced cell death [9]. To test if this was also the case
for TNF-α, we performed double silencing for PTPN2 and
BIM in EndoC-βH1 cells (Fig. 4a,c) and iPSC-derived islet-
like cells (Fig. 4b,d), observing a complete inhibition of
IFN-α- and/or TNF-α-induced cytotoxicity (Fig. 4e,f).

JNK1 silencing preserves beta cell viability in PTPN2 silenced
cells exposed to IFN-α or TNF-α As shown in Fig. 1c, PTPN2
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regulates JNK1 phosphorylation. To further analyse the role
for JNK1 in beta cell death, we performed double silencing of
PTPN2 and JNK1 in EndoC-βH1 cells (ESM Fig. 7a,b) or
iPSC-derived islet-like cells (ESM Fig. 7c,d). JNK1 silencing
prevented the cytotoxic effects of IFN-α or TNF-α treatment
(Fig. 5a,b). We next blocked JNK1 activation in EndoC-βH1
cells or iPSC-derived islet-like cells silenced for PTPN2
(ESM Fig. 7e,f) using the JNK inhibitor SP600125.
Chemical JNK inhibition preserved beta cell viability after
TNF-α treatment in both cell models (Fig. 5c,d) but did not

inhibit IFN-α cytotoxicity in cells silenced or not for PTPN2,
showing a surprising dissociation between genetic and chem-
ical JNK inhibition.

JNK3 activation is essential for beta cell response to IFN-α
SP600125 inactivates not only JNK1, but also JNK2 and
JNK3. We hypothesised that JNK3 could be involved in the
discrepancy between the effects of the siRNA targeting JNK1
(Fig. 5a,b) and the chemical JNK inhibitor (Fig. 5c,d). In
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Fig. 2 PTPN2 silencing increases
beta cell death after exposure to
IFN-α, TNF-α or their
combination. EndoC-βH1 cells,
dispersed human pancreatic islets
and iPSC-derived islet-like cells
were transfected with siCTRL
(white bars) or siPTPN2 (red
bars). After 48 h of recovery cells
were left untreated (NT) or treated
for 48 h with IFN-α (2000 U/ml),
TNF-α (1000 U/ml) or IFN-α+
TNF-α (2000 and 1000 U/ml,
respectively). (a, c, e) PTPN2
silencing was confirmed by qRT-
PCR in EndoC-βH1 cells (a),
dispersed human pancreatic islets
(c) and iPSC-derived islet-like
cells (e). mRNA expression was
normalised to the geometric mean
of ACTB and GAPDH and
presented as fold-variation
compared with siCTRL-untreated
cells, considered as 1. Results are
means ± SEM of six to eight
independent experiments.
**p<0.01 and ***p<0.001 vs
siCTRL treated with IFN-α,
TNF-α or IFN-α+TNF-α. (b, d,
f) Cell death was evaluated using
Hoechst and propidium iodide
staining in EndoC-βH1 cells (b),
dispersed human pancreatic islets
(d) and iPSC-derived islet-like
cells (f). Results are means ±
SEM of six to eight independent
experiments. **p<0.01 and
***p<0.001 vs siCTRL treated
with IFN-α, TNF-α or IFN-α+
TNF-α; †p<0.05, ††p<0.01 and
†††p<0.001 siCTRL or siPTPN2
vs their respective untreated
control; ANOVA
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EndoC-βH1 cells, IFN-α decreased JNK1 and JNK2 expres-
sion by 12% and 18%, respectively, while JNK3 expression
was induced by 73% (ESM Fig. 8a). To assess the role of
JNK3 in beta cell protection, we silenced JNK3 in
EndoC-βH1 cells (ESM Fig. 8b) and observed that JNK3-
silenced cells were significantly more sensitive to IFN-α
(44% increase in cell death vs non-silenced cells, ESM

Fig. 8c). Triple silencing of PTPN2 (Fig. 6a), JNK1 (Fig.
6b) and JNK3 (Fig. 6c) in EndoC-βH1 cells induced more
cell death (Fig. 6d) in comparison with cells double silenced
for PTPN2 and JNK1 (103%; p<0.01). These observations
indicate a protective role for JNK3 against IFN-α toxicity
that is lost during treatment with the chemical JNK inhibitor
SP600125.
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Fig. 3 PTPN2 silencing impairs PDX1 expression and insulin release
after exposure to TNF-α. (a, b) EndoC-βH1 cells, dispersed human
pancreatic islets and iPSC-derived islet-like cells were transfected with
siCTRL (white bars) or siPTPN2 (red bars). After 48 h of recovery cells
were left untreated (NT) or treated for 48 h with IFN-α (2000 U/ml),
TNF-α (1000 U/ml) or IFN-α+TNF-α (2000 and 1000 U/ml, respective-
ly). PTPN2 silencing had been confirmed by qRT-PCR in EndoC-βH1
cells (Fig. 2a), dispersed human pancreatic islets (Fig. 2c) and iPSC-
derived islet-like cells (Fig. 2e). PDX1 (a) and INS (b) expression was
evaluated by qRT-PCR. mRNA expression was normalised to the
geometric mean of ACTB and GAPDH and presented as fold-variation

compared with siCTRL-untreated cells, considered as 1. Results are
means ± SEM of five or six independent experiments. *p<0.05 and
**p<0.01 vs siCTRL treated with IFN-α or TNF-α; ANOVA. (c, d)
EndoC-βH1 cells were transfected with siCTRL (white bars) or
siPTPN2 (red bars). After 48 h of recovery cells were left untreated
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ELISA. Insulin release (c) and total insulin content (d) were normalised to
total protein content. Results are means ± SEMof five independent exper-
iments. **p<0.01 vs siCTRL; ANOVA
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Discussion

In the present study we show that ‘early-response’ cytokines
IFN-α and TNF-α have deleterious effects on human beta
cells at different stages of development and differentiation,
from immature cells (iPSC-derived islet-like cells and the
EndoC-βH1 cell model) to fully mature adult cells (human
pancreatic islets), and that this is aggravated when expression

of the type 1 diabetes candidate gene PTPN2 is diminished.
We demonstrate that PTPN2 confers protection against both
IFN-α and TNF-α exposure, showing an unexpected
common downstream signalling pathway between the two
cytokines. Inhibition of PTPN2 also impairs PDX1 expression
and insulin production after exposure to TNF-α. By silencing
BIM or JNK1 together with PTPN2, we observed beta cell
protection against cytokine-induced damage, revealing that

a

c

f

b

d

e

0

1

2

3

4

E
n

d
o

C
-β

H
1

 c
e

ll
s

P
T
P
N
2

m
R

N
A

 (
fo

ld
)

siCTRL

siBIM

NT TNF-α

siPTPN2

siPTPN2+siBIM

IFN-α IFN-α
+TNF-α

†††
†††

†† ††
†††

††† ††

†

0

1

2

3

iP
S

C
-
d

e
r
iv

e
d

 i
s
le

t-
li
k
e

 c
e

ll
s

P
T
P
N
2
 m

R
N

A
 (

fo
ld

)

NT IFN-α
+TNF-α

IFN-α TNF-α

††† †† ††† †† †††
††

† †

siCTRL

siBIM

siPTPN2

siPTPN2+siBIM

0.0

0.5

1.0

1.5

2.0

E
n

d
o

C
-β

H
1

 c
e

ll
s

B
I
M

m
R

N
A

 (
fo

ld
)

NT TNF-αIFN-α IFN-α
+TNF-α

††
††

† †
† † †

††

siCTRL

siBIM

siPTPN2

siPTPN2+siBIM

0.0

0.5

1.0

1.5

2.0

iP
S

C
-
d

e
r
iv

e
d

 i
s
le

t-
li
k
e

 c
e

ll
s

B
I
M

m
R

N
A

 (
fo

ld
)

NT IFN-α
+TNF-α

IFN-α TNF-α

†
† †

†† ††
††

††

†

siCTRL

siBIM

siPTPN2

siPTPN2+siBIM

0

10

20

30

40

NT IFN-α IFN-α
+TNF-α

TNF-α

††

††††
††

†††

†

*

**

**

**

ns

**
*

***

***

siCTRL

siBIM

siPTPN2

siPTPN2+siBIM

0

10

20

30

40

iP
S

C
-
d

e
r
iv

e
d

 i
s
le

t-
li
k
e

c
e

ll
 d

e
a

th
 (

%
)

NT IFN-α
+TNF-α

IFN-α TNF-α

††

††

†††

†††

**

*

**

**

*

***

**

ns

***

siCTRL

siBIM

siPTPN2

siPTPN2+siBIM

E
n

d
o

C
-
βH

1
 c

e
ll
 d

e
a

th
 (

%
)

Fig. 4 BIM silencing preserves beta cell viability in cells silenced for
PTPN2 and then exposed to IFN-α or TNF-α. EndoC-βH1 cells and
iPSC-derived islet-like cells were transfected with siCTRL (white bars),
siPTPN2 (red bars), siBIM (green bars) or siPTPN2+siBIM (yellow
bars). After 48 h of recovery cells were left untreated (NT) or treated
for 48 h with IFN-α (2000 U/ml), TNF-α (1000 U/ml) or IFN-α+TNF-
α (2000 and 1000 U/ml, respectively). (a–d) PTPN2 and BIM silencing
was confirmed by qRT-PCR for EndoC-βH1 cells (a, c) and iPSC-
derived islet-like cells (b, d). mRNA expression was normalised to the

geometric mean of ACTB and GAPDH and presented as fold-variation
compared with siCTRL-untreated cells, considered as 1. (e, f) Cell death
was evaluated using Hoechst and propidium iodide staining for EndoC-
βH1 cells (e) and iPSC-derived islet-like cells (f). Results are means ±
SEM of five to seven independent experiments. *p<0.05, **p<0.01 and
***p<0.001 vs siCTRL treated with IFN-α, TNF-α or IFN-α+TNF-α;
†p<0.05, ††p<0.01 and †††p<0.001 siCTRL, siPTPN2, siBIM or
siPTPN2+siBIM vs their respective untreated control; ANOVA

1552



Diabetologia (2023) 66:1544–1556

the cytotoxic activity is in both cases mediated by the activa-
tion of the intrinsic mitochondrial pathway of cell death. We
also show that JNK1 phosphorylation is increased in PTPN2-
silenced cells treated with TNF-α, demonstrating that PTPN2
can directly regulate JNK1 activation in beta cells, as it was
previously described for myeloid cells [38].

Recent studies have shown that TNF-α is associated with
an aggressive phenotype of early-onset type 1 diabetes [21]
and may represent a marker of disease progression [39]. Of
particular relevance, clinical trials targeting TNF-α delayed
the progressive loss of C-peptide in recent onset type 1 diabe-
tes [20]. PTPN2 risk alleles, such as the intronic type 1
diabetes-associated SNP rs1893217, have been shown to
cause a decrease in PTPN2 protein expression in CD4+
memory cells, suggesting that PTPN2 loss or reduced function
may confer disease susceptibility by sensitising beta cells to
immune-mediated cell death [12]. The key role of PTPN2 in
maintaining a physiological immune response is highlighted

by the fact that PTPN2-deficient mice die a few weeks after
birth due to systemic inflammation and severe colitis [40], and
that several PTPN2 SNPs are associated with other autoim-
mune disorders such as rheumatoid arthritis [11] or Crohn's
disease [10]. Of note, patients affected by these diseases may
benefit from anti-TNF-α therapies [41, 42]. PTPN2 interacts
with another type 1 diabetes candidate gene, namely BACH2:
the lack of BACH2 leads to inhibition of cytokine-induced
PTPN2 expression, thus augmenting JNK1 and BIM deleteri-
ous effects and consequent beta cell death [5]. These findings
suggest that the combination of risk alleles, in crosstalk with
cytokines such as IFN-α or TNF-α, could confer a higher
susceptibility to type 1 diabetes and/or contribute to an accel-
erated evolution from autoimmunity (as identified by islet
autoantibodies) to overt diabetes. This hypothesis, however,
remains to be tested in future studies.

For this study, we used siRNAs that cause a decrease in
PTPN2 expression but not its total loss of function. The
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Fig. 5 JNK1 silencing preserves beta cell viability in cells silenced for
PTPN2 after IFN-α or TNF-α treatment, but a chemical JNK inhibitor
does not prevent IFN-α-induced cell death. (a, b) EndoC-βH1 cells and
iPSC-derived islet-like cells were transfected with siCTRL (white bars),
siPTPN2 (red bars), siJNK1 (blue bars) or siPTPN2+siJNK1 (purple
bars). After 24 h of recovery, cells were left untreated (NT) or treated
for 48 h with IFN-α (2000 U/ml) or TNF-α (1000 U/ml). Cell death was
evaluated using Hoechst and propidium iodide staining for EndoC-βH1
cells (a) and iPSC-derived islet-like cells (b). Results are means ± SEM of
six independent experiments. *p<0.05, **p<0.01 and ***p<0.001 vs
siCTRL treated with IFN-α or TNF-α; ††p<0.01 and †††p<0.001
siCTRL, siPTPN2, siJNK1 or siPTPN2+siJNK1 vs their respective

untreated control; ANOVA. (c, d) EndoC-βH1 cells and iPSC-derived
islet-like cells were transfected with siCTRL (white bars) or siPTPN2 (red
bars). After 24 h of recovery, cells were left untreated (NT) or treated for
48 h with SP600125 (20 μmol/l), IFN-α (2000 U/ml), IFN-α+SP600125,
TNF-α (1000 U/ml) or TNF-α+SP600125. Cell death was evaluated
using Hoechst and propidium iodide staining for EndoC-βH1 cells (c)
and iPSC-derived islet-like cells (d). Results are means ± SEM of six
independent experiments. *p<0.05, **p<0.01 and ***p<0.001 vs
siCTRL treated with IFN-α, IFN-α+SP600125, TNF-α or TNF-α+
SP600125; †p<0.05, ††p<0.01 and †††p<0.001 siCTRL or siPTPN2 vs
their respective untreated control; ANOVA
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complete lack of PTPN2 function, despite its attractiveness for
functional studies, does not clearly match the type 1 diabetes
context, characterised by a partial decrease in PTPN2 func-
tion. Indeed, complete loss of function of PTPN2 is rare in
humans and this deletion—both in human and in mouse
models—causes very early-onset inflammatory bowel disease
and a strong impairment in intestinal function [43].

Interestingly, JNK3 was identified in this study as an
important regulator of the deleterious effects of IFN-α in
human beta cells. While JNK1 and JNK2 are expressed in
most tissues, JNK3 expression is restricted to brain, heart,
testes and beta cells [44]. Previous observations showed
that JNK3 protects rat beta cells against apoptosis induced
by a combination of IL-1β, TNF-α and IFN-γ, mainly
through maintenance of the insulin receptor substrate 2
(IRS2)/AKT2 signalling pathway [45, 46]. Interestingly,
JNK3 is required for the protective effects of the GLP-1
analogue exendin 4 against cytokine-induced rat beta cell
death [47]. The present findings show that JNK3 also has a
protective role against IFN-α-induced human beta cell

death, particularly in the context of decreased expression
of the candidate gene PTPN2.

A potential limitation in this study, regarding the use of
iPSC-derived islet-like cells and human islet preparations, is
the presence of other cell types besides beta cells that could
contribute to the observed phenotype. Of note, the results
obtained with these cellular models were validated by using
the pure beta cell model EndoC-βH1. This, and the observed
inhibition of the beta cell-specific genes PDX1 and INS in the
different models studied following PTPN2 inhibition and
TNF-α exposure, supports a key contribution by beta cells
for the observed phenotypes.

In conclusion, several studies have shown that TNF-α
plays a role in the pathogenesis of human type 1 diabetes.
Here we demonstrate that the phosphatase PTPN2 is an
important regulator of the deleterious effects of TNF-α in
human beta cells. PTPN2 is a candidate gene for type 1 diabe-
tes, and it is conceivable that patients carrying risk-associated
PTPN2 polymorphisms may particularly benefit from thera-
pies targeting TNF-α.
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Fig. 6 JNK3 silencing hampers beta cell viability in cells silenced for
PTPN2 and exposed to IFN-α. (a–d) EndoC-βH1 cells were transfected
with siCTRL (white bars), siPTPN2 (red bars), siPTPN2+siJNK1 (purple
bars), siPTPN2+siJNK3 (dark green bars) or siPTPN2+siJNK1+siJNK3
(grey bars). After 48 h of recovery cells were left untreated (NT) or treated
for 48 h with IFN-α (2000 U/ml). (a–c) PTPN2 (a), JNK1 (b) and JNK3
(c) silencing was confirmed by qRT-PCR. mRNA expression was

normalised to the geometric mean of ACTB and GAPDH and presented
as fold-variation compared with siCTRL-untreated cells, considered as 1.
(d) Cell death was evaluated using Hoechst and propidium iodide stain-
ing. Results are means ± SEM of six independent experiments. *p<0.05
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