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Neutrino Direction Reconstruction using a CNN

Figure 1: IceCube Neutrino Observatory at the South Pole

1. IceCube Neutrino Observatory

IceCube Neutrino Observatory is a Cherenkov detector located at the South Pole. As shown in
Figure 1, there are 5,160 digital optical modules (DOMs) deployed in the ice which make up of
78 IceCube strings and 8 DeepCore strings each containing 60 DOMs. The IceCube strings are
arranged approximately 125m apart with the DOMs spacing as 17m. The DeepCore strings are
located at the lower center of the IceCube string array with a denser configuration using DOMs with
a (35%) higher quantum efficiency. The ten layers of DeepCore DOMs closest to the surface provide
a veto on cosmic-ray muons which is an abundant background in the IceCube oscillation analyses.
The DeepCore subdetector lowers the energy threshold from several TeV down to approximately
5GeV, allowing the study of neutrino oscillation in IceCube.

2. Neutrino Oscillation

The DeepCore subdetector provides sensitivity to atmospheric mixing parameters,the mixing angle
(\23) and mass splitting (Δ<2

32). These can be measured by studying a` disappearance using
atmospheric neutrinos that are created by cosmic rays interacting with the atmosphere.

Neutrinos are produced and detected as electron (a4), muon (a`), or tau (ag) neutrinos, while
they propagate in three mass eigenstates: a1, a2, and a3. They can be produced in one flavor state
but detected having a different flavor, which is called neutrino oscillations. a` disappearance is
measured in the deficits of the a` → a` flux, the survival probability of which is described by

%(a` → a`) ≈ 1 − sin2(2\23) sin2

(
1.27Δ<2

32!

�

)
, (1)

where ! represents neutrino distance of travel; � represents neutrino energy; and \23 is the mixing
angle and Δ<2

32 ≡ <
2
3 − <

2
2 is the squared-mass difference between neutrino mass states a3 and a2.

! can not be directly known, but it can be inferred using incident neutrino zenith angle (\zenith).
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Figure 2: Structure of CNN with input shape of (number of strings, 60 DOMs, 5 variables), where DC
represents 8 DeepCore strings and IC represents 19 nearby IceCube strings

Figure 3: Top view of 8 DeepCore strings (red filled) and 19 IceCube strings (orange circled) used by CNN

When neutrinos interact within the detector, relativistic charged particles are produced, emitting
Cherenkov photons which are detected by the DOMs and converted into series of electrical pulses.
Precisely measuring neutrino \zenith is critical in measuring oscillation parameters. A convolutional
network (CNN) is employed to reconstruct \zenith by using the series of electrical pulses of neutrino
events.

3. Method of Reconstruction

CNNs are broadly used in modern physics experiments for particle identification [1] and recon-
struction [2] [3]. The CNN employed for \zenith reconstruction has the structure as shown in
Figure 2.

There are two sub-networks each of which consists of 8 convolutional layers. Each convolu-
tional layer extracts some features from the input images and creates the output images which are
used as the input to the following layer. The training samples are fed into the CNN via two input
layers: one is for the 8 DeepCore strings; another is for the 19 surrounding IceCube strings, as
shown in Figure 3. For each DOM on all the strings, 5 variables are calculated using the pulse
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Figure 4: Unweighted true energy (left) and \zenith (right) distributions of training dataset

Figure 5: Training (blue) and validation (teal) loss curves

series of the DOM: sum of charges, time of the first hit, time of the last hit, charge weighted mean
of pulse time, and charge weighted standard deviation of pulse time. The output layer delivers the
value of \zenith in the range of (0,c).

The training sample is simulated a` charged-current (CC) Monte-Carlo (MC) dataset with a
flat \zenith distribution and energy between 5-300GeV, as shown in Figure 4. A total of 5,024,876
simulated events were used to train the CNN, of which 80% were used as a training set and 20%
for validation. The CNN was trained on the high performance computing at ICER, requiring
approximately 6 days and over 800 epochs to converge. At the end of each epoch, the CNN updates
all the parameters to minimize a loss function, defined as

loss =
∑
8

\̂zenith(8) − \zenith(8), (2)

where 8 represents event in validation dataset, \̂zenith(8) represents the CNN predicted \zenith value
of event 8, and \zenith(8) represents the true \zenith value of event 8. The training and validation loss
curves are shown in Figure 5.
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Figure 6: 1D distributions of cos(\zenith) (left) and cos(\zenith) reconstruction error (right) with blue (orange)
representing CNN (likelihood-based) reconstructed cos(\zenith) and green representing true cos(\zenith) of
true a` CC events.

Figure 7: 2D distributions of true vs. CNN (left) or likelihood-based (right) reconstructed cos(\zenith) with
median (solid) and contours (dashed) of 68% of events in vertical slices

4. Results

To show the performance of the CNN predicted \zenith, a standard likelihood-based reconstruction
method is used as comparison. The official a` and a4 CC MC files are used to evaluate the results
of these two reconstruction methods. Selections based on the interacting point position (vertex) and
energy of neutrino events that are reconstructed by the likelihood-based method are applied. These
selections are inherited from the current oscNext analysis where they are optimized for neutrino
oscillation signal efficiency. These likelihood-based selections are reconstructed: neutrino energy
in range of [5, 300]GeV, I-coordinate of neutrino event vertex in range of [-500, -200]m, and
d36 < 300m, where d36 represents radius of neutrino vertex relative to IC string 36.

4.1 a` CC sample

The plots in Figure 6 show the 1D distributions of cos(\zenith). The CNN and likelihood-based
methods have similar spectral shapes and both reconstructed cos(\zenith) values are smeared to the
higher (lower) values at the lower (higher) boundary.
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Figure 8: 1D slices of reconstructed - true vs. true (left) or reconstructed (right) cos(\zenith)with blue (orange)
representing CNN (likehood-based) result, solid curve representing median, and shaded area containing 68%
of events

Figure 9: 1D distributions of cos(\zenith) (left) reconstructed - true cos(\zenith) (right) with blue (orange)
representing CNN (likelihood-based) reconstructed cos(\zenith) and green representing true cos(\zenith) of
true a4 CC events

The 2D distributions of true versus reconstructed cos(\zenith) are shown in Figure 7. Ideally,
the median curve of the distribution should approach the diagonal white dot line, which represents
the 1:1 ratio of true:reconstructed cos(\zenith) and the contours of 68% of events should be narrowly
parallel to the median curve. In the 2D distributions of the CNN and likelihood-based methods,
both the medians and 68%-contours are comparable.

As shown in Figure 6, the overall RMS of CNN method is smaller than that of the likelihood-
based method by 2.6%. As shown in Figure 8, plotting bias against true or reconstructed cos(\zenith)
shows that the performances of CNN and likelihood-based methods are similarly well.

4.2 a4 CC sample

In Figure 9, the 1D distributions of cos(\zenith) of the CNN and likelihood-based methods have
similar spectral shapes. The 2D distributions of true vs. reconstructed cos(\zenith) (see Figure 10)
look similar to each other while both having wider 68%-contours than those of the a` CC events.
This is as expected: most of the a` CC events are track-like in the IceCube detector and easier to
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Figure 10: 2D distributions of true vs. CNN (left) or likelihood-based (right) reconstructed cos(\zenith) with
median (solid) and contours (dashed) of 68% of events plotted on the top

Figure 11: 1D slices of reconstructed - true vs. true (left) or reconstructed (right) cos(\zenith) with blue
(orange) representing CNN (likelihood-based) result, solid curve representing median, and shaded area
containing 68% of events

reconstruct than the cascade-like a4 CC events. This is also the reason that the bias distributions
are wider and RMS values are larger in Figure 9 compared to those of the true a` CC events in
Figure 6.

Similarly, as shown in the bias vs. true or reconstructed cos(\zenith) slices (see Figure 11), the
performance of the CNN method is comparable to that of the likelihood-based method, while both
methods have worse performances than those of the a` CC events.

4.3 Processing speed

As listed in Table 1, the likelihood-based method can only use CPU clusters while the CNNmethod
can run on both CPU and GPU. The CNN benefits from parallel processing and is 10,000 times
faster than the current method when run on a K80 GPU. Even if both methods are evaluated on the
same CPU, running the CNNmethod is still over 400 times faster than running the likelihood-based
method. Rapid processing is crucial for analyses using large data sets as is generally true of high
energy physics experiments.

7
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Neutrino Direction Reconstruction using a CNN

Second/Event GPU CPU
CNN 0.0044 0.108

Likelihood-based – 44.97

Table 1: Processing speed of CNN and likelihood-based methods

5. Conclusion

The CNN method trained on the simulated low-energy a` CC sample with a flat neutrino direction
distribution provides a comparable performance to the current likelihood-based method, improving
the overall RMS in the direction reconstruction by 2.6% on the a` sample and 2.2% on the a4
events. The bias against either true or reconstructed cos(\zenith) slices are robust and comparable
between the two methods. Using GPU resources, the CNN method is 10,000 times faster than the
current method in processing events, easing the computational burden required for future oscillation
analyses with DeepCore.
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