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Mass sensitive parameter for IceTop

1. Introduction

Investigations on the mass composition of cosmic rays in the primary energy range of PeV to
EeV are essential to understand their sources and propagation mechanism. This energy range is
particularly important, because it is believed to be the Galactic to extragalactic transition region.
Air showers induced by heavier primary particles develop earlier in the atmosphere due to their
larger cross section for interacting with air nuclei, and produce more muons of lower energies
observable at ground level than lighter cosmic rays with the same primary energy. The fraction of
muons to all-charged particles at the observation level characterizes the mass of primary particles,
i.e. electron-rich showers (electron stands for all particles of the electromagnetic component) are
generated by light primary nuclei and electron-poor showers by heavy nuclei, respectively. This
work investigates a muon-based mass sensitive parameter for each individual event and its possible
application for composition studies of primary cosmic rays.

IceTop [1] is the 1-km2 surface array of the IceCube Neutrino Observatory at the geographic
South Pole. It consists of 81 stations with an average spacing of 125 m between neighboring
stations above the IceCube strings. Each station has a pair of ice-Cherenkov tanks and each tank
is instrumented with two Digital Optical Modules (DOMs). The measurement of the primary
cosmic-ray energy spectrum and composition using three years of coincidence data from IceTop
and IceCube was recently published [2]. The results are consistent with measurements by other
experiments yet with significant systematic uncertainties mainly due to the snow overburden above
the IceTop tanks and the dependency on composition and hadronic interaction models used for
energy assignments.

In general it is reasonable to assume that the muon signal becomes significant in tanks at a
large distance from the shower axis. Signals in tanks closer to the shower core are dominated by
the electromagnetic components. Considering the charge signal distribution, the so-called muon
enriched parameter per individual shower is introduced and estimated, where the original idea
comes from Ref. [3]. This muon-based mass sensitive parameter would make it possible to divide
data sets into heavy and light primary groups and therefore the composition studies eventually can
be performed. In addition, using this approach one would be able to reduce systematic uncertainties,
in particular, those depending on composition assumption, since the energy spectrum of cosmic
rays can be reconstructed using the ratio between the shower size measured at 125 m from the
shower axis (S125) and the estimated muon parameter.

In this contribution we describe a detailed analysis technique for estimating the mass-sensitive
parameter and its possible application to the measurement of cosmic ray mass composition with the
IceTop surface array.

2. Data sets and quality cuts

The analysis discussed here uses the standard IceCube Monte-Carlo simulations based on the
hadronic interaction model of Sibyll 2.1 [4]. Four different primary particles (proton, helium,
oxygen, iron) are simulated with 20,000 showers each with a spectral index of -1 from the energy
range of 1014 to 1017 eV. The simulations are weighted to the spectral index of -2.7. The showers
generated by CORSIKA [5] are propagated into the detector, in which the individual tank response

2



P
o
S
(
I
C
R
C
2
0
2
1
)
3
1
2

Mass sensitive parameter for IceTop

Figure 1: Left: The 2-dimensional histogram of charge signal per single tank as a function of distance from
the shower axis. The charge signal is in the unit of Vertical Equivalent Muon (VEM). Both HLC and SLC
signals are used. The z-axis is the number of events. Right: The charge distribution for a fixed distance
from 350 to 450 m for the proton and iron primaries. The first distinct peak stems from electromagnetic
components and the second one is caused by muons at 1 VEM.

is simulated by Geant4 [6] including snow overburden and barometric conditions. About 10% of
2012 data measured by IceTop was used as a test sample for the comparison with simulations.

All standard quality cuts are applied [2]. The shower reconstruction algorithm should converge
and the number of stations must be larger than 5. The core position of the air shower must be within
the radius of 400 m. The zenith angle range from 0 to 18◦ is applied for the present analysis. Cuts
on the shower size log10(S125/VEM) from 1 to 1.5 are applied, which correspond to the true energy
from 1016 to 1016.5 eV.

3. Analysis

In IceTop the shower size (S125), which is a signal at a reference distance of 125 m from the
shower axis, is estimated with high accuracy of Δlog10(S125/VEM) ≈ 0.05 [7]. However, there is
no muon number estimated for individual shower. Thus, the first step to perform this analysis is to
estimate the muon enriched parameter. Note that this parameter contains still a small contamination
of electromagnetic components due to the muon selection efficiency. Thus, we call it the muon
enriched parameter.

3.1 Charge distribution

The 2-dimensional charge distribution for 10% of 2012 IceTop data as a function of distance
can be seen on the left in Fig. 1. The charge is in the unit of Vertical Equivalent Muon (VEM),
which is a signal initiated by a muon passing vertically through the tank. For this analysis both
Hard Local Coincidence (HLC) and Soft Local Coincidence (SLC) signals are used. The HLC
signals occur when two tanks from the same station are triggered within a time window of 1 `s,
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whereas the SLC signals do not have such triggered neighbor. The charge signal decreases with
increasing lateral distances and there is a peak at around 1 VEM, which is mainly created by muons.
This muon signal mainly comes from SLC signals, since a SLC signal is likely to occur at large
distance due to its small trigger probability. To illustrate the shape of the charge distribution at a
fixed distance more detailed, it is divided by a distance bin of 100 m.

Figure 1 (right) is the vertical slice of the 2-dimensional charge distribution, e.g. for a distance
from 350 to 450 m. There are two distinct peaks: the first peak stems from electromagnetic
components of showers and the second one is the muon peak at 1 VEM. The muon peak is more
dominant for the case of iron showers. The reason is that for the same energy the iron-induced air
showers produce more muons observable at the ground level. In order to select muon signals for the
muon parameter, a straightforward cut is applied to the charge distribution. The value of 0.7 VEM
for the charge cut is obtained by the valley position from the signal calibration of a single tank [8].
This cut implies that the charges above the cut still contain some contamination of electromagnetic
background. In general, to suppress the background one has to fit both the signal and the background
distribution and subtract the background. However, this fitting procedure does not work properly
for each individual shower due to low statistics. Therefore, we use this cut and the background will
be corrected by the muon correction factor later (section 3.3). The charge distributions from data
and Monte Carlo are in agreement with each other, however, a detailed comparison of data and
Monte Carlo with the composition assumption, e.g. the H4a model, is under investigation [9].

3.2 Estimation of muon parameter

Considering the charge signal distribution, the parameter sensitive to the muon content was
estimated, which is the sum of the charge signals (≥ 0.7 VEM) divided by the total number of tanks

Figure 2: Estimated muon-based parameter (d∗`) at a fixed distance from 350 to 450 m, event by event, for
proton (red) and iron (blue) primaries.
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Figure 3: True muon contributions to used charge for the muon estimation for proton (left) and iron (right)
primaries. The blue filled histograms are the charge distributions after the true muon selection.

and the area of the tanks at a fixed distance from the shower axis:

d∗` =

∑
2ℎ0A64

#C0=: × �4 5 5
, (1)

where the effective area of a tank �4 5 5 is calculated with the radius of 91 cm. Figure 2 shows the
estimated muon-based parameter (d∗`) per individual showers, i.e. event by event, at a reference
distance of 400 m, assuming proton and iron primaries. The distribution of the muon parameter for
the iron shower is slightly shifted to the right, which implies that the value of the muon parameter at
400 m is larger for iron. d∗` is contaminated by electromagnetic backgrounds, so that the correction
has to be done by using the true muon density.

3.3 Muon correction factor

In order to derive the muon correction factor, true muon signals were selected by using the
true muon information. The charge pulses, which were generated in the tank after propagating
CORSIKA output particles, are used. However, this charge is raw data, i.e. it is not calibrated
and the snow is not corrected. Then the fraction of the signals caused by muons in each tank is
calculated. If the signal has the muon fraction larger than half of the total charge signal ( 5` > 0.5),
then this is considered as true muon signal. This cut for the true muon selection is actually obtained
by the optimization of the muon purity and the statistical point of view.

Figure 3 presents true muon contributions to the muon estimation for proton (left) and iron
(right) primaries. After the muon selection, a large amount of electromagnetic components are
reduced and the muon peak appears significantly. About 30% of charge signals remained for proton
and iron primaries, respectively. By using the same procedure, the parameter for the true muon
signal was estimated. The estimated muon parameter before and after muon selection can be seen
in Fig. 4. The difference becomes smaller at larger distances. It means that the muons are more
dominant than the electromagnetic components at larger distances. So, this difference was taken
into account as the correction factor. d∗`(blue) and d

′
`(green) are the muon parameters before
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Figure 4: The muon parameter before and after the muon selection as a function of distances for proton (left)
and iron (right) assumptions. d∗`(blue) and d

′
`(green) are the muon parameters before and after the muon

selection, respectively.

and after the muon selection, respectively. The muon Correction Factor (CF) is defined by the
ratio between the reconstructed d∗` and the true d′` muon parameter as shown in Fig. 5. Red
circles are for the assumption of proton induced showers and blue squares for iron induced showers.
This correction factor becomes obviously smaller for larger lateral distances, e.g. 600 m. Since
this correction factor depends on the energy, i.e. the energy estimator S125, the fitting with a
linear function 5 (G) = ?0�,�4 · G + ?1�,�4 was performed. Coefficients of the linear fitting are
?0� = 0.78± 0.54 and ?1� = 0.91± 0.43 for proton-induced air showers, and ?0�4 = 0.71± 0.40
and ?1�4 = 0.84 ± 0.32 for iron-induced showers. For experimental data an average value from
proton and iron primaries in each S125 bin is used as a correction factor: ?030C0 = 0.81 ± 0.63
and ?130C0 = 0.83 ± 0.49. Along with this, the correction function depending on the energy was
obtained from the fit results. So, the estimated muon parameter was multiplied by the inverse of the

Figure 5: Energy-dependent muon correction factor (CF) for proton and iron primaries, showing the lines
of best fit. d∗` is corrected by CF per individual showers to obtain the `-based parameter. The average value
(black triangle) from proton and iron distributions is applied to experimental data.
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Figure 6: Left: Ratio between the shower size S125 and the muon-based parameter d`400 as a function of
S125 for proton and iron assumptions. The lines of best fit are shown as well. Right: Its projection onto the
y-axis.

correction factor event by event. Figure 6 shows the fraction of the estimated muon-based parameter
d`400 with the muon correction to the shower size S125 for proton and iron assumptions (left),
shown with the projection onto the y-axis (right).

4. Result

By means of the correlation of the shower size and the estimated muon parameter, the muon-
based mass sensitive parameter is estimated. It is often called the normalized shower size, :
parameter [10], which is defined as:

: =
log10( S125

d`,400,data
) − log10( S125

d`,400
)H

log10( S125
d`,400
)Fe − log10( S125

d`,400
)H
, (2)

log10(
S125
d`,400

)H,Fe = cH,Fe · log10(S125) + dH,Fe. (3)

The coefficients 2�,�4, 3�,�4 were determined by fitting the distribution of the normalized shower
size ratio (125/d`400 (Fig. 6). The coefficients are 2� = −0.15 ± 0.06, 3� = 2.47 ± 0.07 and
2�4 = −0.05 ± 0.04, 3�4 = 2.11 ± 0.06 for proton and iron primaries, respectively.

Figure 7 shows the evolution of the : parameter as a function of S125 in the primary energy
range of 1016 to 1016.5 eV. This distribution reveals clearly themass dependence. From the definition
of the : parameter, the value of : is 0 for the assumption of proton showers and 1 for iron showers.
The intermediate primary particles are between 0 and 1. The data seems to favor the heavy
primaries, as we expected in this energy range. This parameter can be used to separate the events
into the different mass groups. The first energy bin for showers induced by primary helium nuclei
has a higher : value than the other bins. It might be related with a bias of energy estimator, however,
a detailed investigation is ongoing.
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Figure 7: Muon-based mass sensitive parameter : as a function of the energy estimator (S125) for experi-
mental data compared with simulations of four different primary masses based on the hadronic interaction
model of Sibyll 2.1. Only statistical error bars are shown.

5. Conclusion and outlook

Considering the charge signal distributions measured by IceTop, a muon enriched parameter
(d`400) per individual shower was defined and estimated. Using this parameter and the shower size
S125, the energy-dependent mass sensitive ratio : was estimated event by event. The study also
showed that this analysis method seems to work properly for the IceTop data. This mass sensitive
parameter can be applied for mass composition and, in combination with S125, for reconstruction
of energy spectrum of primary cosmic rays [10]. This work is in progress.
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