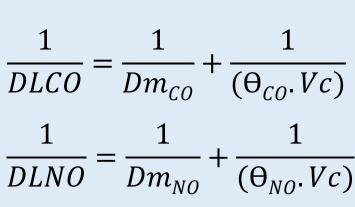
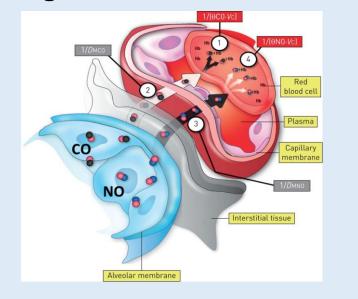


Altered Ventilation efficiency at exercise after recovery from COVID-19 infection versus healthy controls Maufroy E¹, Scoubeau C², Forton K², Bellaches M¹, Tordeur C³, Faoro V², Deboeck G¹

¹Research Unit in Rehabilitation Sciences, Faculty of Motor Sciences, Université Libre de Bruxelles, Bruxelles, Belgium


²Cardiopulmonary Exercise Physiology Laboratory, Faculty of Motor Sciences, Université Libre de Bruxelles, Bruxelles, Belgium


³Laboratory of Physics and Physiology – LPHYS, Departement of Medical Cardiology, Erasme Hospital, Univsersité Libre de Bruxelles & Cardiopulmonary Exercise Physiology

Laboratory, Faculty of Motor Sciences, Université Libre de Bruxelles, Belgium

Background

- Long-term dyspnea and reduced exercise capacity are the most common symptoms reported by long covid patients and the cause is still unknow. ^{1,4}
- Double pulmonary diffusing capacity (DLNO/CO) is able to dissociate the membrane component (Dm) and the capillary volume (Vc) participating in gas exchange.²
- Roughton-Forster equation ³

 Cardiopulmonary exercise testing (CPET) is the gold standard for measuring aerobic capacity and diagnosing exerciseinduced dyspnea.⁴

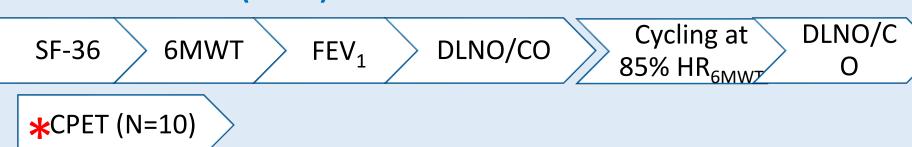
Aims of the study

- Investigate DLNO/CO at rest and submaximal exercise in post-COVID-19.
- Investigate cardiopulmonary response and aerobic capacity in long COVID-19 patients.

Methods

Population (N=40)

- 20 non hospitalized COVID-19 patients (COVID) were tested at 4 ± 2 months post infection, along with 20 healthy subjects (CTL) matched by sex/age/BMI.
- Inside the COVID-19 patients, 10 patients met the definition of long-COVID (Long COVID). ⁵


Protocol

Single visit including measurement at baseline and after exercise.

Baseline: quality of life (SF-36), 6 minute walk test (6MWT), lung function (FEV₁), double pulmonary diffusion (DLNO/CO).

At exercise: DLNO/CO after 10 minutes of cycling at 85% of the maximal heart rate measured during the 6MWT (85% HR_{6MWT}).

Measurements (N=40)

* Only the 10 long COVID performed a CPET

Results

COVID versus CTL (N=40)

No differences were observed between the groups regarding the measurements of SF-36, 6MWT, FEV₁, DLNO/CO.

Long COVID versus CTL

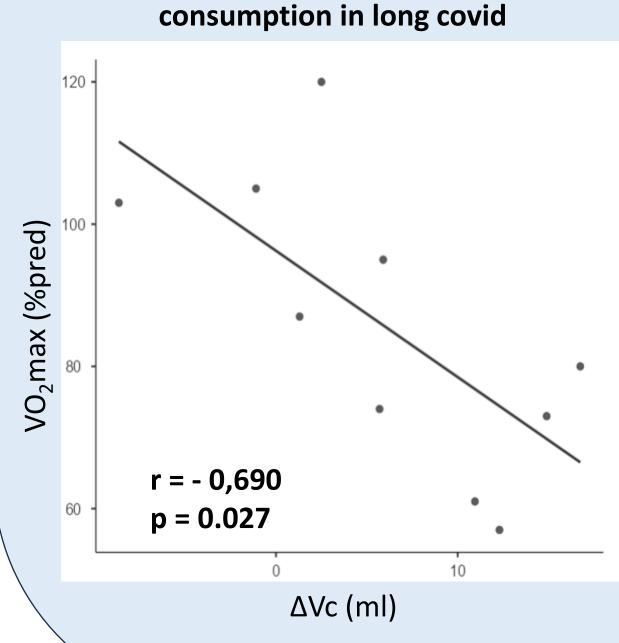
Population characteristics

	Long COVID	CTL
	(N = 10)	(N=10)
Sex (F) %	90	90
Age (year)	28 ± 14	31 ± 15
BMI (kg/m2)	22,6 ± 3,4	21,8 ± 2,1
SF-36	69 ± 21	83 ± 11
Distance (m)	669 ± 83	648 ± 74
FEV ₁ (% pred)	101 ± 17	103 ± 11

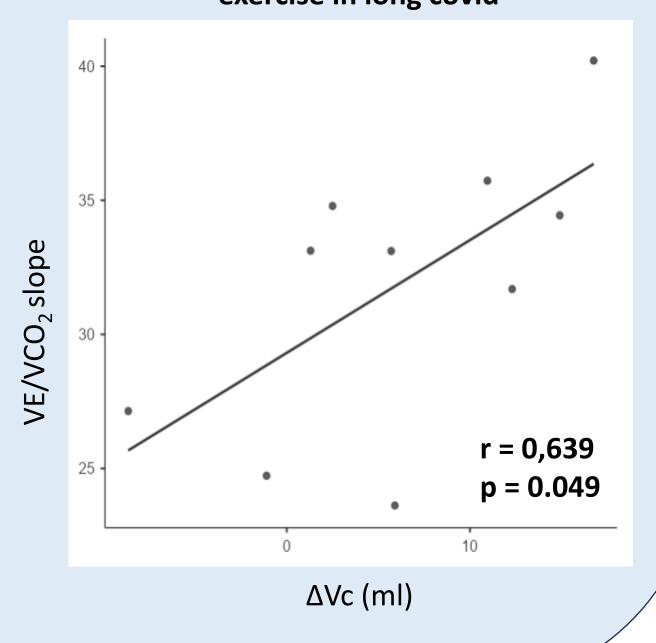
CPET in long covid and healthy subjects (CTL database)

	Long COVID (N=10)	CTL database (N=10)		
VE/VCO ₂	31,9 ± 5,2#	26,1 ± 2,2		
VO _{2max} (%pred)	85 ± 20	97 ± 16		

p<0.05 : different from CTL
Database : CPET data from healthy subject sourced from the laboratory's database (matched by sex/age/BMI)


DLNO/CO at rest and after submaximal exercise

	Long COVID (N =10)		CTL (N=10)	
	Baseline	Exercise	Baseline	Exercise
DLNO (% pred)	87 ± 16	106 ± 16 ***∆∆	91 ± 11	100 ± 15***
DLCO (% pred)	79 ± 16	92 ± 16***	79 ± 10	90 ± 16***
Alveolar volume (%pred)	92 ± 12	97 ± 12 ** △	100 ± 1	101 ± 12
Dm (ml/min/mmHg)	65 ± 24	79 ± 25 *** ΔΔ	67 ± 18	75 ± 21***
Vc (ml)	66 ± 26	72 ± 24	65 ± 18	71 ± 26


*p<0.05,**p<0.01,***p<0.001: difference between rest and exercise

 Δ p<0.05, $\Delta\Delta$ p<0.01, $\Delta\Delta\Delta$ p<0.001 : exercise-induced greater evolution in long COVID compared to CTL.

Correlation between the delta of capillary volume (ΔVc) evolution and predicted oxygen

Correlation between the delta of capillary volume (ΔVc) evolution and the ventilatory response to exercise in long covid

Conclusion

- The greater increase in the membrane diffusion (Dm) in long COVID, compared to their control for the same level of submaximal exercise, suggests an altered diffusing capacity.
- A ventilatory inefficiency during exercise and a reduced trend in maximal aerobic capacity appear to be correlated with greater exerciseinduced changes in capillary volume in long COVID-19 patients.

References

- ¹ Dal Negro RW, Turco P, Povero M. Long-lasting dyspnoea in patients otherwise clinically and radiologically recovered from COVID pneumonia: a probe for checking persisting disorders in capillary lung volume as a cause. Multidiscip Respir Med. 2022 Sep 30;17(1):875.
- ² Zavorsky G, et al. ERS Technical Standards, Eur Respir J 2017; 49 : 1600962
- ³ Hughes M. The Roughton–Forster equation for pulmonary diffusion: how it happened. Eur Respir J 2022; 60: 2200789
- ⁴ Durstenfeld MS, Sun K, Tahir P, Peluso MJ, Deeks SG, Aras MA, Grandis DJ, Long CS, Beatty A, Hsue PY. Use of Cardiopulmonary Exercise Testing to Evaluate Long COVID-19 Symptoms in Adults: A Systematic Review and Meta-analysis. JAMA Netw Open. 2022 Oct 3;5(10)
- ⁵ Fernández-de-las-Peñas, C. Long COVID: current definition. Infection 50, 285–286 (2022).

Contact

Email: emilie.maufroy@ulb.be

Institution: Université Libre de Bruxelles (ULB), Bruxelles,

Belgium

Abbreviation: DLNO/DLCO: double pulmonary diffusing capacity; NO: nitric oxide; CO: carbon monoxide; Dm: membrane component; Vc: capillary volume; Θ: affinity of the gaz for haemoglobin; CPET: Cardiopulmonary exercise test; COVID: non-hospitalized post-COVID patients; CTL: healthy subjects; VE/VCO₂ slope: ventilatory response to exercise, VO₂max: oxygen consumption at maximal exercise; ΔVc: delta of capillary volume between baseline and exercise.