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Abstract
The dynamics of a community of four planktonic bacterial strains isolated from river water was followed in R2 broth for 72 h 
in batch experiments. These strains were identified as Janthinobacterium sp., Brevundimonas sp., Flavobacterium sp. and 
Variovorax sp. 16S rRNA gene sequencing and flow cytometry analyses were combined to monitor the change in abundance 
of each individual strain in bi-cultures and quadri-culture. Two interaction networks were constructed that summarize the 
impact of the strains on each other’s growth rate in exponential phase and carrying capacity in stationary phase. The networks 
agree on the absence of positive interactions but also show differences, implying that ecological interactions can be specific 
to particular growth phases. Janthinobacterium sp. was the fastest growing strain and dominated the co-cultures. However, 
its growth rate was negatively affected by the presence of other strains 10 to 100 times less abundant than Janthinobacterium 
sp. In general, we saw a positive correlation between growth rate and carrying capacity in this system. In addition, growth 
rate in monoculture was predictive of carrying capacity in co-culture. Taken together, our results highlight the necessity 
to take growth phases into account when measuring interactions within a microbial community. In addition, evidence that 
a minor strain can greatly influence the dynamics of a dominant one underlines the necessity to choose population models 
that do not assume a linear dependency of interaction strength to abundance of other species for accurate parameterization 
from such empirical data.

Introduction

Riverine microbial communities represent key compo-
nents of lotic ecosystems, as they carry out a number of 
important functions such as recycling of organic matter 
or degradation of pollutants [1, 2]. For the past decades, 
fingerprinting techniques and next-generation sequenc-
ing technologies have allowed microbiologists to detect 

specific taxa and correlate them with such processes [3–5]. 
Their studies revealed that for instance, abundant bacteria 
belonging to the genus Flavobacterium are involved in typi-
cal organic matter degradation pathways like polysaccharide 
decomposition [6], whereas less abundant bacteria such as 
Variovorax thrive in polluted rivers thanks to their ability 
to degrade xenobiotics like pesticides [7]. Nevertheless, 
these studies do not aim for a detailed understanding of the 
internal functioning of this microbiome. Indeed, microbial 
community dynamics is governed by a number of factors, 
which include environmental parameters and/or interactions 
between community members. In a number of publications, 
authors infer ecological interactions from presence/absence 
or abundance of the different taxa (16S rRNA data) in situ 
[8–10]. Although inferred interactions are in some cases 
confirmed experimentally and can lead to biological insights 
[11, 12], the accuracy of interaction networks constructed 
from abundance data is usually low [13, 14]. Relying on 
Gause’s pioneering work [15], another possibility is to com-
pare growth curves of species in monoculture with those in 
co-cultures. By assessing if species in co-culture do better, 
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equal or worse than in monocultures, the sign and strength 
of pairwise interactions can be deduced [16–19]. Usually, 
systematic measurements of growth curves are carried out 
by quantifying optical density (OD) at wavelengths ranging 
from 590 to 620 nm [19–22]. However, inference of interac-
tions is problematic when the OD is not scaling linearly with 
cell number [23]. Yet, interaction networks derived from 
growth curves based on cell counts are still rare [24, 25]. 
Accurate elucidation of interaction networks is important to 
parameterize the mathematical models, which have become 
important to study key ecological processes affecting micro-
bial communities, such as community assembly, diversity or 
stability [26–28].

Interaction networks have not been derived experimen-
tally for lotic communities yet. Here, we carried out an 
explorative study of the interactions within a model micro-
bial community of four planktonic strains isolated from a 
Belgian river (Janthinobacterium sp., Brevundimonas sp., 
Flavobacterium sp. and Variovorax sp.). This choice was 
based on several criteria, namely that these strains belong 
to genera found in rivers worldwide [29–32] and that they 
have distinct metabolic profiles [21]. Their closest relatives 
(Table 1) have abilities of interest in the river ecosystem, 
e.g. participation in the sulphur cycle for Flavobacterium 
saccharophilum [6], degradation of persistent pollutants for 
Variovorax paradoxus [33], and persistence in the riverine 
microbiome thanks to an aptitude to resist to (i) environmen-
tal stresses such as protozoan grazing for Janthinobacterium 
lividum [34] and to (ii) antibiotics brought by wastewater 
treatment plant effluents for Brevundimonas intermedia [35]. 
This variety of profiles makes these strains interesting to 
study in the context of interactions. In addition, each strain 
displays a unique morphotype in agar plates, which allows 
monitoring cross-contaminations in the experiments. We 
set up an experimental design with mono-, bi- and quadri-
cultures to follow the changes in relative and absolute 
abundances of the bacterial community composition over a 
period of 72 h. We then measured corresponding pairwise 
interaction strengths in bi- and quadri-cultures and repre-
sented them in two interaction networks, each reflecting 
how the community members interact with one another, first 
in exponential phase, then in stationary phase. Additional 
antagonism tests were performed to further investigate some 
of these interactions.

Material and Methods

Strain Information and Selection

In a study published in 2017 [21], Goetghebuer and col-
laborators built up a model river bacterial community 

composed of 20 strains. 16 of these 20 strains were isolated 
from the water column of the Zenne river (Belgium). From 
the 16 strains isolated by Goetghebuer and collaborators, we 
selected four strains belonging to genera commonly found in 
rivers: Janthinobacterium, Brevundimonas, Flavobacterium 
and Variovorax [29, 30, 32], to build up a model bacterial 
community. They were also chosen for the diversity of their 
individual growth rates, metabolic profiles and ecological 
functions, as well as for the morphotype they display on 
R2-agar, easily distinguishable with the naked eye. To 
ensure that descendent cultures obtained in agar plates com-
ing from the lab’s stock were pure, we carried out a genetic 
identification of colonies of each bacterium cultivated in 
monoculture. First, DNA was extracted from a pure colony 
from each strain and the 16S rRNA gene was amplified and 
sequenced with Sanger method (Macrogen, Netherlands). 
The sequences were then trimmed and assembled into con-
tigs with DNASTAR (Lasergene, Madison, USA). Con-
tigs were eventually aligned with databases from BLAST 
(https://​blast.​ncbi.​nlm.​nih.​gov/​Blast.​cgi) and SILVA (https://​
www.​arb-​silva.​de). They were identified as 78R (Janthino-
bacterium sp.), 124Z (Brevundimonas sp.), 515Z (Flavobac-
terium sp.) and 1315Z (Variovorax sp.) (Table 1) and their 
sequences were uploaded to the NCBI GenBank database 
(accession numbers: ON391592 to ON391595).

Experimental Design for Mono‑ and Co‑cultures

We followed the growth of our microbial community in 
batch experiments incubated at 20 °C using R2 broth (R2B) 
(Melford, Ipswich, UK). Each of the four strains was first 
grown separately on R2-agar. Colonies were then transferred 
into R2B and incubated at 20 °C and 176 rpm for 48 h (pre-
cultures). We estimated each pre-culture’s cell concentration 
by flow cytometry (see protocol below) and subsequently 
diluted each pre-culture in R2B to a concentration of ≈ 104 
cells/mL. Two types of co-cultures were assembled: (i) six 
bi-cultures where strains were cultured pairwise, and (ii) 
a quadri-culture with the four strains mixed altogether. In 
both cases, the strains were equally mixed at t = 0 h. Each 
co-culture was incubated in Schott bottles (Duran, UK) in a 
volume of 1 L of R2B, at 20 °C and 176 rpm. Three biologi-
cal replicates of each co-culture were run separately (from 
different pre-cultures, run at different times). An uninocu-
lated 1 L-volume of R2B was monitored as negative control. 
No contamination was detected in the negative control dur-
ing the course of the experiments. Aliquots (25 to 50 mL) 
were collected at eight sampling times (0 h, 18 h, 22 h, 26 h, 
30 h, 41 h, 48 h, 72 h) to assess community composition by 
16S rRNA Illumina sequencing, and smaller aliquots (1 mL) 
were collected at the same sampling times to estimate cell 
concentration by flow cytometry (Fig. 1).

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.arb-silva.de
https://www.arb-silva.de
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The growth of each individual strain in monoculture 
(three biological replicates) was run in the same conditions 
as mentioned above, and 1 mL-aliquots were collected at 23 
sampling times (0 h, 16.5 h, 18 h, 19.5 h, 21 h, 22.5 h, 24 h, 
25.5 h, 27 h, 28.5 h, 30 h, 40.5 h, 42 h, 43.5 h, 45 h, 46.5 h, 
48 h, 64.5 h, 66 h, 67.5 h, 69 h, 70.5 h, 72 h) to assess cell 
concentration by flow cytometry.

DNA Extraction and Illumina Sequencing

Aliquots (25 to 50 mL) of each (co-)culture were collected 
in Falcon tubes and bacterial biomass was pelleted by cen-
trifugation at 10,000 g and 4 °C for 15 min. Supernatants 
were discarded and pellets were kept at − 20 °C until DNA 
extraction. Genomic DNA extraction was performed with 
the DNeasy UltraClean Microbial Kit (Qiagen, Hilden, Ger-
many) following the manufacturer’s protocol. The concentra-
tion and purity of the extracts were estimated using a Nan-
odrop ND-2000 UV–vis spectrophotometer (Thermo Fisher 
Scientific, Waltham, US). The V4 region of the 16S rRNA 
gene was amplified with primers 515F (GTG​YCA​GCMGCC​
GCG​GTAA) and 806bR (GGA​CTA​CNVGGG​TWT​CTAAT) 
and sequenced on an Illumina MiSeq sequencer at Star-
SEQ laboratory (Mainz, Germany) following a paired-end 
approach. Sequences were trimmed at 240 bp using Trimmo-
matic (http://​www.​usade​llab.​org/​cms/?​page=​trimm​omatic) 
and then processed with MOTHUR (https://​mothur.​org), fol-
lowing the MiSeq Standard Operating Procedure [36] (ver-
sion 1.42.3 revised on 6/24/2019). Reads were assembled 
into contigs, and contigs shorter than 275 bp or containing 
ambiguous bases were removed from the dataset. Remain-
ing contigs were aligned against the silva.nr_v138.align 
file trimmed to the V4 region, preclustered to decrease the 
number of sequences to only keep unique sequences, and 
screened for chimeras using the vsearch program. Remain-
ing sequences (contigs) were classified with GreenGenes 
(version gg_13_8_99). Taxon counts were corrected for 16S 
rRNA gene copy number based on copy number for each 

genus (average value when several genomes were availa-
ble) retrieved from the NCBI Nucleotide (https://​www.​ncbi.​
nlm.​nih.​gov/​nucco​re) and rrnDB (https://​rrndb.​umms.​med.​
umich.​edu) databases (in parallel), and then converted to 
relative abundances. Finally, absolute abundance of a given 
taxon was obtained by multiplying its relative abundance 
with the total bacterial count in the relevant sample deter-
mined with flow cytometry.

Bacterial Enumeration by Flow Cytometry

Samples (1 mL) were fixed with paraformaldehyde (3% 
final concentration), left for 15 min at 4 °C, and then stored 
frozen at − 20 °C. Prior to analysis, samples were serially 
tenfold diluted in 0.22 µm-filtered then autoclaved phos-
phate buffered saline, and cell counting was performed on 
two dilutions to target an ideal rate of 200 to 2,000 events/
sec. Flow cytometry was performed according to the pro-
cedure described in [37] with slight modifications. Cells 
were stained with SYBR GREEN I (10,000-fold diluted 
from stock solution in 0.22 µm-filtered DMSO; Amresco, 
Solon, USA). They were then incubated for 20 min in the 
dark at 37 °C. Stained samples were inoculated in technical 
triplicate in a 96-deep-well microplate and analysed using 
an Accuri C6 flow cytometer (BD, Franklin Lakes, US) 
equipped with an auto-loader. Bacterial abundance (cells/
mL) was calculated by counting fluorescent events in 400 
µL after gating plots on the green (FL1) vs red (FL3) fluo-
rescence. For each biological replicate, the growth curve 
was built from the mean bacterial abundance of the technical 
triplicates at each sampling time.

Interaction Matrices

The growth rate μ of a strain was estimated by calculat-
ing the slope of the straight line fitting the logarithmic 
(ln) growth curve in exponential phase. For monocultures, 
a time range between 16.5 and 30 h was selected to fit 

Table 1   Label and taxonomical affiliation of the strains making up the microbial community. Each percentage indicates the percentage of iden-
tity to closest hit

Strain label Phylum (class) Family Closest hit SILVA Closest hit BLAST Oxygen requirement of 
closest hit BLAST

Color of 
colonies on 
R2-agar

78R β-Proteobacteria Oxalobacteraceae Janthinobacterium sp. 
(99.58%)

Janthinobacterium 
lividum (98.16%)

Strictly aerobic [48] Purple

124Z α-Proteobacteria Caulobacteraceae Brevundimonas sp. 
(99.69%)

Brevundimonas interme-
dia (99.62%)

Strictly aerobic [49] Orange

515Z Bacteroidetes Flavobacteraceae Flavobacterium sp. 
(98.32%)

Flavobacterium saccha-
rophilum (95.67%)

Strictly aerobic [6] Yellow

1315Z β-Proteobacteria Comamonadaceae Variovorax sp. (98.25%) Variovorax ginsengisoli 
(97.27%)

Aerobic + facultatively 
anaerobic [50]

White

http://www.usadellab.org/cms/?page=trimmomatic
https://mothur.org
https://www.ncbi.nlm.nih.gov/nuccore
https://www.ncbi.nlm.nih.gov/nuccore
https://rrndb.umms.med.umich.edu
https://rrndb.umms.med.umich.edu
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the exponential phase and calculate the growth rate. For 
bi- and quadri-cultures, a time range between 0 and 41 h 
(depending on the replicate) was taken to fit the expo-
nential phase. The carrying capacity K was computed as 

the average cell concentration reached by the strain at the 
stationary phase over two to three time points. Details of 
time range used for fitting are available in Tables 2 and S1. 

Fig. 1   Scheme summarizing the experimental set-up. Culture experiments and downstream analyses were performed in triplicate. Note that 
sequencing was not applied to monoculture samples. Created with BioRender.com
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Each µ and K final value is the mean value calculated on 
the three biological replicates.

The effect of a strain B on strain A’s growth rate was 
quantified as follows:

The effect of a strain B on strain A’s carrying capacity 
was quantified as follows:

The absolute value and the sign of α and κ indicate the 
strength and the type of the interaction (positive or nega-
tive), respectively. These calculations follow those presented 
in [19]. In order to obtain the value of α for strain A, each 
replicate of µA in bi-culture A_B was compared to each 
replicate of µA in monoculture, and the mean of these nine 
values was reported as α. The same procedure was applied 
for κ values. For quadri-cultures, the effect of three strains 
on the fourth was calculated as detailed above, replacing µ 
and K in bi-culture by µ and K in quadri-culture. We com-
puted the standard deviations of α and κ across replicates for 
each strain pair and selected the maximal standard devia-
tion across all strain pairs as a threshold (replicate 1 of pair 
78R_124Z was excluded of the calculations because 515Z 
was detected at some time points and could have influenced 
the dynamics of that replicate). For an interaction to be con-
sidered significant, α and κ had to be larger than their respec-
tive threshold. For bi-cultures, the threshold for α was 0.163 
and the threshold for κ was 1.899. For quadri-cultures, the 
threshold for α was 0.459 and the threshold for κ was 0.971 
(Table S2).

Antagonism Tests

Antagonism tests were carried out as described in Marinho 
et al. [38] with modifications. Briefly, the liquid culture 
was inoculated after 24 h (exponential phase) or 48 h (sta-
tionary phase) of incubation (R2B, 20 °C, 176 rpm). Then, 

� = ln(
�A in bi−culture A_B

�A in monoculture

)

� = ln(
KA in bi−culture A_B

KA in monoculture

)

3 × 10 µL of liquid culture of the strain that potentially 
produces antimicrobial substances (sampled in exponential 
or stationary phase to match the physiological state of the 
target strain) were inoculated on a R2-agar plate. Once the 
drops had penetrated the solid medium, they were cov-
ered by a thin layer of semi-solid agar (7.5 g/L) to avoid 
dispersion of the cells. Then, semi-solid medium (R2B 
added with 7.5 g/L of agar) mixed with the target strain 
was poured over the productive strain. After incubation at 
20 °C for 24 h, production of antagonistic molecules could 
be assessed by the presence/absence of a zone of inhibition 
appearing above (and beyond the diameter of) the colony 
of the productive strain. These tests were carried out only 
in the bi-cultures 78R_124Z and 78R_1315Z (Table S3).

Oxygen Measurements

To quantify the extent to which oxygen is limiting in our 
experiments, we measured oxygen quantity and saturation 
in Schott bottles containing the quadri-culture in 1 L of 
R2B after 48 h of incubation. The measurements were car-
ried out using an oxygen probe (VWR International, model 
DO 200) and following manufacturer’s protocol. Three 
situations were tested: stirring at 20 °C and 176 rpm, no 
stirring at 20 °C, and no stirring at 20 °C with the addi-
tion of a bubbling device in the bottle. Each situation was 
performed in triplicate. An uninoculated bottle containing 
only 1 L of R2B was set up as negative control (Table S4).

Statistical Analysis

Pearson correlations were computed between the strength 
of interactions and the cell abundance of the target strain 
with function cor.test in R. Correlations were also com-
puted between growth rates and carrying capacities, first 
in mono- versus co-culture, then all cultures considered 
(including a 20-strain mix from [39]). Significance was 
assessed with a t-test at confidence level 95%. P-values 
were corrected for multiple testing with Bonferroni. All 

Table 2   Growth rate and carrying capacity values for each strain in 
monoculture.  Bold values of µ and K are mean values, given with 
their standard deviation. The CV (coefficient of variation) is defined 
as the standard deviation divided by the mean value of µ or K, respec-

tively. The goodness of fit refers to the line fitted to the exponential 
part of the natural logarithmic (ln) growth curve from all replicates 
pooled

Strain number Growth rate µ (h−1) CV (%) Goodness 
of fit (R2)

Time range for fitting µ Carrying capacity K 
(cells/mL)

CV (%) Time range for fitting K

78R 0.57 ± 0.01 1.75 0.94 16.5 h – 25.5 h 1.31 × 109 ± 2.81 × 108 21.50 40.5 h – 72 h
124Z 0.25 ± 0.01 2.28 0.97 16.5 h – 48 h 4.00 × 109 ± 1.21 × 108 3.03 64.5 h – 72 h
515Z 0.42 ± 0.01 2.38 0.95 16.5 h – 30 h 2.44 × 109 ± 5.26 × 108 21.54 40.5 h – 72 h
1315Z 0.27 ± 0.02 7.41 0.93 16.5 h – 42 h 7.96 × 108 ± 4.55 × 108 57.20 64.5 h – 72 h
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statistical tests were performed in R (https://​cran.r-​proje​
ct.​org) version 4.1.2.

Results

The Fastest Growing Strain in Monoculture, 
Janthinobacterium sp. 78R, Dominates 
the Co‑cultures

We sampled mono-, bi- and the quadri-culture of the 
four selected river bacterial strains over 72 h, resolved 
the taxonomic composition in co-cultures with 16S rRNA 
gene sequencing and obtained total cell counts using flow 
cytometry (Fig. 2 and S3).

Individual growth rates of the strains ranged from 0.25 
to 0.57 h−1 (Table 2). The two fastest growing strains were 
(in decreasing order) 78R and 515Z, and the two slowest 
ones were 1315Z and 124Z. Individual carrying capacities 
ranged from ≈ 8 × 108 to 4 × 109 cells/mL, with Brevundi-
monas sp. 124Z being the most productive strain, followed 
by 515Z, 78R and 1315Z being the least productive one.

In all bi-cultures except 78R_515Z (Fig. 2), one strain 
clearly dominated the other one in terms of production of 
cells. Moreover, the abundance of the dominant strain was 
less variable than the abundance of the dominated strain 
(CVs in Table S1). The order of dominance in bi-culture 
was not correlated to the carrying capacity in monocul-
ture: 78R was always the most productive strain in each of 

its three bi-cultures, alike 515Z in bi-cultures 124Z_515Z 
and 515Z_1315Z. 1315Z, despite being the least produc-
tive in monoculture, dominated 124Z in bi-culture. Nota-
bly, Brevundimonas sp. 124Z was systematically the less 
productive one in bi-cultures. These results show that the 
carrying capacity in monoculture was not predictive of the 
order of dominance in bi-culture.

Of note, one biological replicate of 78R_124Z had to be 
discarded due to contamination, which leaves this bi-culture 
with two biological replicates. All other bi-cultures were 
studied with three biological replicates. Details of all α and 
κ values can be found in Table S2.

In the quadri-culture (Fig. S3), the relationship between 
dominant and dominated strains was reproduced in the three 
replicates: whether in exponential or stationary phase, 78R 
was the most abundant strain, followed by 515Z, 1315Z and 
124Z. No strain was lost within the 72 h of incubation, i.e. 
there was no case of competitive exclusion in the time frame 
of this experiment.

Competition Dominates Interactions and Networks 
Differ from Exponential to Stationary Phase

In exponential growth phase (see time range for fitting µ in 
Table S1), there were three significant competitive interac-
tions (negative effect in both ways) (Fig. 3a) (see Material 
and Methods for assessment of significance). Janthinobac-
terium sp. 78R was the only strain significantly negatively 

Fig. 2   Time series representing the dynamics of the monocultures 
(diagonal) and bi-cultures (lower triangle) over 72 h, with cell con-
centrations presented in natural logarithmic (ln) values. Each culture 

was carried out in triplicate. Bacterial abundances of each strain (y 
axis) were calculated as presented in Fig. 1

https://cran.r-project.org
https://cran.r-project.org
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affected in each of its three bi-cultures, and negatively affect-
ing each of its partners.

In stationary phase (see time range for fitting K in 
Table S1), all five significant interactions were negative 
(Fig. 3b), with one case of competition (78R_515Z), and 
four cases of amensalism (negative effect in one way). In the 
competition case, the negative effect on both strains was less 
intense compared to exponential phase, whereas the most 
negatively affected strain in stationary phase was Brevundi-
monas sp. 124Z. In addition, the second most affected strain 
was Variovorax sp. 1315Z, highlighting that the two slowest 
growing strains were the most affected ones regarding car-
rying capacity. This network shows that carrying capacity 
could be affected without the growth rate being changed, 

as it was the case for bi-cultures 124Z_515Z, 124Z_1315Z 
and 515Z_1315Z.

In the quadri-culture, only one interaction was detected 
in exponential phase, namely amensalism towards 
Brevundimonas sp. 124Z by the three other strains 
(Fig. 3c). In stationary phase, the interaction network only 
contained amensalistic negative values. The strength of 
the amensalistic interactions was negatively correlated to 
cell abundance of the target strain (Pearson correlation 
test, n = 4, R = − 0.97, P = 0.03). In fact, all co-cultures 
considered, the strength of the negative interactions (com-
petitive plus amensalistic) was negatively correlated to 
cell abundance of the target strain (Pearson correlation 
test, n = 16, R = − 0.94, P =  4 × 10–8). As for bi-cultures, 
interaction networks constructed for both phases revealed 

Fig. 3   Interaction networks showing interactions measured in bi-cul-
tures (top) and quadri-culture (bottom). Top part of the figure shows 
pairwise interactions obtained from comparison of growth rates 
(exponential phase) (a) and carrying capacities (stationary phase) 
(b) in bi-cultures versus monocultures. Bottom part of the figure 
shows interactions between each strain and the rest of the community, 
obtained from comparison of growth rates (c) and carrying capacities 
(d) in quadri-culture versus monocultures. Red arcs indicate a nega-

tive interaction. Arc thickness reflects the absolute value of the mean 
of α and κ, which is also given in bold indicated with its respective 
standard deviation. For interactions in bi-cultures (a and b), only α 
and κ values above the threshold of, respectively, 0.163 and 1.899 are 
represented. For interactions in quadri-culture (c and d), only α and κ 
values above the threshold of, respectively, 0.459 and 0.971 are rep-
resented (see Methods for threshold calculation) (Color figure online)
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differences that highlight the importance of studying 
interactions in different growth phases.

The Slowest Growing Strain (124Z) Inhibits 
the Growth of the Fastest Growing One (78R) 
in Antagonism Tests

To unravel the nature of interactions in bi-cultures where 
the growth rate of the dominant strain was affected by a 
partner strain being 10 to 100 times less abundant (either in 
exponential or stationary phase), we tested pairs of strains 
78R_124Z and 78R_1315Z for antagonistic relationships 
in double layer agar plates. Antagonism tests detected only 
one case of antibacterial activity, namely Brevundimonas sp. 
124Z inhibiting Janthinobacterium sp. 78R (Table S3). This 
activity was more intense (wider zone of inhibition) when 
both strains were inoculated in exponential phase than in 
stationary phase.

Growth Rate Correlates with Carrying Capacity 
in Co‑cultures

Growth rate in monoculture was significantly positively cor-
related with carrying capacity in bi-culture and quadri-cul-
ture (Fig. 4a). Plus, this plot highlights the greater variability 

in carrying capacity of the slowest growing strains (124Z 
and 1315Z) compared to the fastest growing ones (78R and 
515Z) in both types of co-cultures.

Similarly, growth rates in co-cultures were significantly 
positively correlated with carrying capacities in co-cultures 
(Fig. 4b), whereas no such correlation was observed in 
monocultures (R = − 0.18, P = 0.82). This result indicates 
that there was no trade-off between growth rate and carry-
ing capacity in co-cultures. In addition, we compared the µ 
and K values of each strain in the mono-, bi-, quadri- and 
20-strain cultures (Fig. 5). Of note, growth rates tended to 
decrease with the number of strains present in the culture, 
but were all higher in the 20-strain mix (data retrieved from 
[39]) than in the quadri-culture (Fig. 5), except for Janthino-
bacterium sp. 78R. Carrying capacities followed the same 
trend.

Discussion

In this study, we followed the dynamics of river bacterial 
strains individually in multi-strain cultures and combined 
16S rRNA sequencing and flow cytometry to measure 
growth rates and carrying capacities. These two parame-
ters led to the construction of interaction networks which 
differed in the exponential and stationary growth phase. 

Fig. 4   Comparison of growth rate and carrying capacity values. Panel 
(a) compares growth rate in monoculture to carrying capacity in co-
culture, and panel (b) compares growth rate to carrying capacity in 
three types of multi-strain cultures: bi-culture, quadri-culture and 
mix. The mix refers to a co-culture of 20 strains studied by Goetghe-

buer et al. [39] which included the 4 strains used in this study. Values 
R and p refer, respectively, to Pearson’s correlation coefficient and 
associated p-value. The light grey zone indicates a 95% confidence 
interval (Color figure online)
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Previously published data from a 20-taxa riverine commu-
nity containing our four strains [21, 39] already suggested 
the presence of interactions, but without studying pairwise 
interactions. Our results show that this microbial community 
constitutes a globally competitive system: neither in the bi-
cultures (Fig. S1 and S2) nor in the quadri-culture (Fig. S2 
and S3), did the total cell counts reach higher values than in 
monocultures. There was no case of increased growth rate 
nor carrying capacity in bi- or quadri-culture compared to 
monocultures (Fig. 5); in other words, we did not infer any 
positive interaction (Fig. 3). The fact that competition domi-
nates interspecies interactions at stationary phase has been 
observed in aquatic communities previously [40] as well 
as in a nutrient-rich and homogenized medium [41]. The 
choice of the strains composing the synthetic community is 
an additional factor that can drive interactions towards com-
petitions [42]. In this system, growth rate in monoculture 
was predictive of carrying capacity in co-culture (Fig. 4a), 
as expected in a system dominated by competition where 
strains compete for the same resources. One likely limiting 
resource in our experimental set-up is oxygen, which is rap-
idly depleted (oxygen saturation drops to 5.4% after 48 h of 
incubation, see Table S4), therefore constituting a potential 
stress for the bacteria in culture.

The absence of trade-off between growth rate and carry-
ing capacity in this system is consistent with observations in 

other communities originating from different environments 
such as soil [22] or human gut [20]. In the present study, 
the positive correlation between µ and K was observed in a 
well-mixed planktonic environment, in which resources are 
limited and not renewed (batch). The absence of a trade-off 
is expected in these conditions, as reviewed by Lipson [43] 
who theorized a relationship between µ and K across a broad 
range of environmental conditions and ecological strategies.

Higher-order interactions (HOIs), i.e. the impact of a third 
species on the interaction of two species, are a well-known 
limitation when attempting to describe community dynam-
ics in terms of pairwise interactions [44]. When comparing 
interaction networks derived from bi- and quadri-culture, the 
effect of HOIs is apparent here. For instance, the combined 
effect of 78R, 1315Z and 515Z on 124Z in quadri-culture in 
stationary phase (Fig. 3d) is much weaker than the sum of 
their negative impacts on 124Z in bi-culture (Fig. 3b).

Janthinobacterium sp. 78R is the most competitive strain 
in our microbial community: it has the highest growth 
rate in monoculture (Table 2) and mixed cultures, and the 
highest carrying capacity in mixed cultures (Fig. 5b). By 
reaching large abundances more quickly, thereby depleting 
metabolites that they are competing for, 78R may keep the 
abundance of the competitor low, thus reducing its negative 
impact on 78R in turn. This mechanism may also explain 
78R’s negative effect on other strains. Janthinobacterium is 

Fig. 5   Barplots showing mean growth rates (a) and mean carrying 
capacities (b) versus type of culture (mono = monoculture, bi = bi-
culture, quadri = quadri-culture, mix = community of 20 strains). 
Error bars correspond to standard deviations across three biological 
replicates of the same (co-)culture, except for bi-cultures where they 
correspond to standard deviations across the mean values of the three 

different bi-cultures. Brackets over two bars correspond to unpaired 
Student tests giving a significative p-value: P  <   0.05 (*),  P  < 0.01 
(**) or P < 0.001 (***), after applying Bonferroni’s correction for 
multiple comparisons. Non-significant p-values are not shown. The 
data used to plot the bars corresponding to “mix” come from the 
study conducted by Goetghebuer et al. [39]
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a generalist, having the largest metabolic profile among the 
strains composing the microbial community [21]. It is also 
the only strain able to degrade nucleotides [21], a useful 
capacity in stationary phase when there are few nutrients 
left and nucleotides can be released in the environment from 
dead cells. When oxygen becomes limiting in the environ-
ment, even if other strains may cope better than 78R in such 
conditions (e.g. 1315Z, Table 1), it could be already too 
late for them to overtake 78R because there are not enough 
nutrients left. Although resource depletion is suspected to be 
the main driver of 78R’s success in competition, interference 
competition is another possibility. Indeed, this bacterium 
synthesizes violacein, a violet pigment (Table 1) which is 
known to play a role in response to environmental stress [45] 
and cell survival [34]. Since 78R reaches stationary phase 
earlier than other strains, it is able to produce secondary 
metabolites sooner (such as violacein) that, added to nutri-
ent depletion, can constitute a complementary strategy to 
dominate the rest of the community.

Interestingly, Brevundimonas sp. 124Z did not reach large 
abundances in bi-culture with Janthinobacterium sp. 78R 
(it had 100 times fewer cells) but it nevertheless greatly 
reduced 78R’s growth rate compared to the monoculture. 
This behaviour is hard to capture with population models 
that assume a linear dependency of interaction strength to 
the abundance of other species. We were indeed unable to fit 
the generalized Lotka-Volterra model [19] to the experimen-
tal time series in bi-cultures. This limitation is likely due to 
the presence of non-additive, non-linear interaction terms. 
Such terms could take the form of HOIs or be saturated func-
tions of nutrients (Monod function). Designing and fitting 
such models would, however, require additional information 
that were not measured in the present study (dynamics of 
nutrients, dependence of growth rates on the abundance of 
other species).

Antagonism tests in agar plates (Table S3) showed that 
Brevundimonas sp. 124Z inhibits Janthnobacterium sp. 78R, 
with stronger intensity in exponential than stationary phase. 
This could explain why we observed a negative effect of 
124Z on 78R in exponential phase (despite the difference 
in cell concentration), which does not appear in the net-
work in stationary phase (Fig. 3b). It is also remarkable that 
124Z was the only strain whose exponential phase is much 
shorter in co-culture (stops around t = 30 h, lower triangle 
in Fig. 2) than in monoculture (lasts until t = 48 h, diagonal 
in Fig. 2). This shortening could be caused by the decrease 
of an important resource in the medium. For instance, oxy-
gen depletion rate may be different in co- than in monocul-
ture, as already observed elsewhere [46]. The depletion of 
carbon sources in co-culture could also greatly affect 124Z 
more than others because 124Z is a specialist [21]. These 
hypotheses are supported by the fact that these two param-
eters have already been reported to predict decreased K at 

low growth rate and low substrate concentrations [47]. Thus, 
when modelling batch dynamics, both interaction-dependent 
growth rates and interaction-dependent carrying capacities 
need to be taken into account, as recently done by de Vos 
and colleagues [19].

Conclusion

In this study, we built an experimental set-up that allowed 
sampling of mono-, bi- and quadri-cultures over 72 h to 
calculate two key parameters, i.e. growth rate and carrying 
capacity. These were used to measure pairwise interactions 
between each pair of strains in bi-culture, and between each 
strain and the rest of the community in quadri-culture, both 
in exponential and stationary phases. Resulting interaction 
networks showed significant differences, which highlight the 
importance of taking these two growth phases into account 
when measuring interactions in time series experiments, as 
well as for parametrizing growth models from such exper-
imental data. Moreover, the growth rate of the dominant 
strain was negatively affected by the presence of strains 
much less abundant in the bi-cultures.

In this system, the winner of the competition could be 
expected based on its high growth rate compared to the other 
strains. Since the relationship between µ or K and the num-
ber of strains in the co-culture may not be linear (Fig. 5), it 
would be interesting to study how these values scale with 
species number. The winner of the competition could also be 
expected based on its generalist metabolic profile combined 
to the complex nature of the growth medium (R2B). The 
next relevant step of investigation would be to explore how 
altering conditions, such as varying the quality and quantity 
of the carbon sources in the medium or stress, affect interac-
tions between these strains. Studying interactions between 
river bacteria in the context of such perturbations would help 
understand how they respond to organic pollution.
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