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Abstract

RNA molecules play many pivotal roles in the cellular functioning
that are still not fully understood. Any detailed understanding of
RNA function requires knowledge of its three-dimensional structure,
yet experimental RNA structure resolution remains demanding. Re-
cent advances in sequencing provide unprecedented amounts of se-
quence data that can be statistically analysed by methods such as
Direct Coupling Analysis (DCA) to determine spatial proximity or
contacts of specific nucleic acid pairs, which improve the quality of
structure prediction. To quantify this structure prediction improve-
ment, we here present a well curated dataset of about seventy RNA
structures with high resolution and compare different nucleotide-
nucleotide contact prediction methods available in the literature.
We observe only minor difference between the performances of the
different methods. Moreover, we discuss how these predictions are
robust for different contact definitions and how strongly depend on
procedures used to curate and align the families of homologous RNA
sequences.

Introduction

RNA molecules play fundamental roles in a large variety of processes within cells.
For example messenger RNAs (mRNAs) carry the genetic information akin to
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blueprint for protein synthesis, transfer RNA (tRNA) then carry specific amino
acids during protein synthesis to the site of protein elongation[1]. More recently
other tasks of RNA were identified, such as noncoding RNAs (ncRNAs) fulfilling
fundamental roles in the control of gene expression [2, 3] or small interference
RNAs (siRNAs) and micro RNAs (miRNAs) that can regulate and repress the
expression of target gene by interfering with the transcriptional regulation [4, 5].

Long non-coding RNAs (IncRNAs) also contribute to these modulation mech-
anisms even if they are less understood. Metabolite-binding RNA structures
called riboswitches that belong to the 5’ untranslated regions (5’-UTR) of the
mRNA bind selectively and with high affinity small molecules and this biding in-
duces major conformation rearrangements of the three-dimensional structure of
the riboswitches. The two competing conformations can inhibit or activate the
expression of the target gene by interfering with the translation regulation. The
study of IncRNAs is of particular high interest as they are frequently involved
in pathogenic mechanisms and thus can be targeted for therapeutic strategies
[6].

To truly understand the molecular mechanisms of IncRNAs and their func-
tion, it is important to know their three-dimensional structure. Experimental
techniques to determine the 3d structure include ”classical” methods such as
X-ray diffraction crystallography or nuclear magnetic resonance (NMR), which
provide direct structural information. Other methods do not directly provide
structural information but have first to be carefully interpreted (e.g. small-angle
scattering (SAXS)[7] or Fluorescence Resonance Energy Transfer (FRET) [8]).
Yet in spite of considerable progress of experimental techniques, the number
of structurally resolved RNA structures collected in public databases [9, 10] is
still small due to experimental limitations and considerably lags the number of
known sequences.

Computational methods contributed substantially to decipher how RNA
structure and dynamics determine its functions [11, 12, 13]. A series of com-
putational tools have been developed to predict the RNA structure from the
sequence using different approaches that can be roughly divided in fragment-
based, physics-based and comparative modeling [14, 15, 16, 17, 18, 19, 20, 21,
22,23, 24, 25, 26, 27]. Their performances are improving as one can see from the
results of the three RNA-puzzle rounds [28, 29, 30] where a set of experimentally
resolved 3D structures has been blindly predicted.

Recent investigations [26, 31, 32] have shown that the performances of these
methods can be substantially improved by using information extracted from
multiple sequence alignment (MSA) of families of homologous RNAs. Im-
provements are achieved by identifying top-ranked site-pairs with stronger co-
evolutionary signals and using them as distance constraints in modeling tools.

Thanks to the advancement of next generation sequencing technologies, the
huge and increasing amount of sequence data available can be fully exploited to
study and model RNA structures.

To get more insights in these issues, in this paper we set up a manually cu-
rated dataset of about seventy RNA structures with high resolution and evaluate
the performances of different contact prediction methods on this set. Moreover,
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we analyze the impact of important features on their performances such as the
effective number of homologous RNA sequence that are available, the nucleotide-
nucleotide contact definition and the procedure to construct, align and curate
the MSA.

Methods

Dataset curation

We manually curated a dataset of three-dimensional RNA structures starting
our analysis from the whole Protein Data Bank [9] and selecting all RNA struc-
tures that satisfied the following criteria :

e the RNA structures were not in a complex with proteins or DNAs
e only monomeric structures were considered
e the length of the RNA sequences had to be bigger than 40 nucleic bases

e in cases of structures with similar sequences (sequence identity (SI) be-
tween pairs of sequences of 50%) we choose the structures with higher
resolution

e only structures resolved via X-ray crystallography were taken into account
with resolution below 3.6 A

We associated one RNA family from the Rfam database [33] to each entry in
the dataset by choosing the family with the highest match to the sequence. This
search has been done employing INFERence of RNA ALignment tool (Infernal)
using the BIT value as a match score [34].

For each family we then computed the number of effective sequences M,y
via the pydca software package [35]. This value is computed from the alignment
of the given family as M.rr = >, wi, where wy, is the weight of the k" entry in
the given cluster of similar sequences that is identified using a cut-off on the SI
equal to 0.8 [36].

We further split the final set D comprised by 69 RNA structures into two
subsets : D" containing 36 structures associated to RNA families with a
Mgy larger than 70. The 33 remaining entries belong to DEow set and have a
MSA with Mcsr < 70. The list of all entries in D with their characteristics is
reported in the Table 1 of the Supplementary information.

Contact definition

In order to study how the nucleotide-nucleotide contact definition influences the
performance of DCA methods, we computed and compared positive predicted
values (PPVs) using different criteria to construct the contact maps from PDB
structures. We choose and tested six distance-based criteria to classify if a pair
of nucleotides is in direct physical interaction or not:
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1. Two nucleotides are in contact if the distance between the N9 atoms of a
purine or the N1 of a pyrimidine is smaller than 9.5 A.

2. Two nucleotides are in contact if the distance between their C1’ atoms is
smaller than 12.0 A.

3. Two nucleotides are in contact if the distance between two of any of their
heavy atoms is smaller than 3.5, 5.5, 7.5 and 9.5 A.

Multiple sequence alignment and curation

As the quality of the multiple sequence alignment critically impacts the accuracy
of the subsequent contact prediction, we tested different methods to perform and
curate such alignments. We then studied how the mean-field DCA performances
changed according to the method used.

1. Search. We started to verify if the construction of the RFAM families
can influence the prediction performance. To do that we used either the
RFAM families as given in RFAM v14.1, but we also reconstruct them
using both less and more stringent E-value cut-offs equal to 0.0001 and 0.99
respectively. This search is done using the Infernal software (cmsearch)
and the precomputed covariance model (CM) of the given family.

2. Align. The first methods used to perform the MSA of the RFAM families
is the Infernal software [34]. More in details all entries of the RFAM
family considered are aligned using the corresponding covariance model
(CM) that is a specific profile stochastic context-free grammar that scores
a combination of sequences and RNA secondary structure consensus. We
tested also other three commonly used tools for the multiple sequence
alignment of RNAs that are CLUSTALW [37], MUSCLE [38] and MAAFT
[39].

3. Trim. From the MSA of the given family we test three different possibil-
ities : in the first one only positions corresponding to the target sequence
were considered for the DCA computations; in the second and the third
ones, before the DCA computation we trimmed the MSA by selecting only
columns that have less than 50% and 20% of gaps respectively.

Coevolution-based methods

Different methods have been developed for the implementation of the direct
coupling analysis (DCA) of RNAs. Given a family of homologous RNA se-
quences, these statistical models assigns probabilities P(S) to each sequence
S = ajas...ap, of length L using the the Boltzmann law as

P(S) =  exp(—3H), 1)
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where (8 is the inverse of the temperature usually fixed to one without loss of
generality, Z the partition function and H the Hamiltonian taken of the form

L L
—8H = Zhl(al) —I—ZJij(ai,aj) (2)
i=1 i<j

that contains single site terms, i.e. h;(a;), and nucleotide pair interactions
Jij(a;,a;). In DCA these parameters are inferred from the input MSA using
different approaches that are briefly shown here. See also the references [40, 41]
for recent reviews on the topic.

e Mean-field DCA. Here, a standard mean-field approximation of the par-
tition function is done in order to obtained the couplings and the single-
site fields in a computational efficient way. Within this approximation the
Jij(ai,a;) are obtained as

Jij(ai,a;) = —(C")ij(as, a ) (3)

where C' is the matrix of correlations whose elements are given by C;;(a;, a;) =
fij(ai,a;)— fi(a:) fi(a;) with fi;(a;, a;) and f;(a;) the empirical frequency
counts obtained from the MSA columns. The single-site fields h;(a;) are
obtained self-consistently from the frequencies f;(a;) and the couplings in

eq (3). We used the mean-field implementation in pydca [35].

¢ Boltzmann Learning. In this statistical approach the parameter J;;(a;, a;)
and h;(a;) are obtained from the minimization of the negative log likeli-
hood

I = —% > Log (P(S")) (4)
b=1

where P(S%) (b = 1...B) is a set of independent equilibrium configurations
of the model, i.e. RNA sequences that belong to a MSA. A direct way
to solve the problem is to do a ”brute-force” minimization starting from
an initial guess for the values of the couplings and fields and using a
gradient descent algorithm that employs a Markov chain Monte Carlo
method for the gradient evaluation. For more details on the method and
the implementation that we used see [42].

e We use the EVcouplings [31] implementation that exploit a pseudo-
likelihood maximization direct couplings analysis (plmDCA) [43]. In this
method the probability in eq (4) can be substituted with the conditional
probability of observing one variable a,. given the observation of the others
ar = (a1..,ar_1,ary1..ar). Given the MSA, one has then to minimize the
conditional log likelihood
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B
g9=->Y_Y Log(P(alla})) (5)

b=1r=1

with regularization to estimate the couplings and the fields. This strategy,
while retains the accuracy of the full likelihood approach, greatly increases
its computational efficiency.

e GREMLIN [44]employs a learning procedure that is based on the pseudo-
likelihood optimization. However GREMLIN can incorporate prior infor-
mation on predicted secondary structure and on sequence separation. This
incorporation allows the method to be likely more accurate when the num-
ber of aligned sequences is limited [44].

e CCMpred [45] is an implementation based on plmDCA similar to EV-
Fold. CCMPred is computationally optimized for GPU architectures.

e PSICOV[46] computes the so-called precision matrix defined as

Jij(ai, aj)

Jii(ai, a;)Jj(a;, a;)

pij(ai,a;) = 7 (6)

in terms of the inverse of the covariance matrix (3). p;; encodes the corre-
lation between any pair of amino acids or nucleotides at two sites, in terms
of the frequencies at all other sites and identify which pairs are likely to be
in direct physical contact in the native structure. The estimation of the
inverse covariance matrix is done employing a graphical Lasso approach
and the final PSICOV score is given by Zai’a]_ pij(ai,a;) followed by an

average product correction (APC) [47].

Results

Assessing the performance of DCA-based methods

In this section we compare the performance of the prediction methods tested,
namely the mean-field of pydca [35], EVcouplings [31], Boltzmann learning [42],
GREMLIN [44], CCMpred [45] and PSICOV [46]. In fig. (1.a) we report the
positive predicted values (PPV) on the dataset D as a function of the number
of contacts. Here we are considering all contacts in the PDB structures that are
distant in the sequence more than four nucleotides.

The performance based on PPV are generally quite good. We find PPV on
the order of 75% for the top L/10 contacts that goes smoothly down to 0.25% if
one considers the top L contacts. Among all methods no statistically significant
differences can be observed as measured from the Kolmogorov-Smirnov test of
the different prediction results. A slightly more accurate performance for small
number of contact can be observed for pydca and GREMLIN for L/10 number
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of contacts while at L/2 contacts the EVcouplings is few percents more accurate
than other predictors (see also Table 1).

When performances are evaluated on D i.e. the set of PDBs associated
to RFAM families with M.¢s > 70, the performances reach higher PPV equal
to about 60% (at L/2) in contrast with a PPV of 26% in the DL set in which
only families with M.z < 70 are considered (see fig.2 and Table 1).

In fig. (1.b) we investigate how performances are related to M. s by plotting
the average PPV rate of different methods versus the M,¢¢ of the given RFAM
family. We observe a clear growth of the prediction accuracy up to My values
equal to about 200 while above that threshold the performances stay approx-
imately constant. This behavior could be due to the fact that families with
increasing number of sequences tend to have higher probability of misannota-
tions and biases and thus after that M.¢¢ threshold the additional information
and noise are both added to the MSA.

performances are not only related to the M.y of RFAM families but also
from how well the target sequence aligns. In order to check this dependence
in fig. (2.a) we plotted the averaged PPV with the BIT value computed from
Infernal, a score measuring the probability of the query sequence to match the
covariance model. We observe a linear relation between these two quantities.
To check the effect of both M, ;¢ and the BIT score, we first divided each of pH
and DT in two subsets considering only the entries with BIT scores higher or
lower than 45. Then we computed the performances in each of the four sets and
we found a stronger impact of the number of effective sequences with respect to
the BIT score (2.b)

We also analyzed in detail which type of contacts are better predicted. In
table 1 we report the PPV for different nucleotide pairs and we can clearly see
that C:G and A:U, that (mainly) correspond to canonical base pairs, are usually
well predicted with a PPV of 75% and 65% respectively. These contact types
are much better identified than the other contacts since the physical interaction
between them is stronger and as consequence also the co-evolutionary signal.
Note that the fact that C:G pair is more stable than A:T could be related to
the slight difference between their prediction accuracy. There are however also
non-canonical pairs that are relatively well predicted, even if to a much less
extent, such as the G:U pairs with a PPV of 32%.

A C G U
18% | 10% | 21% | 64%
10% | 6% % | 3%
21% | 5% | 17% | 32%
64% | 3% | 32% | 10%

i lolleli

Table 1: Positive predicted values (PPV) according to the type contact consid-
ered.

To asses more in deep the ability of the DCA methods to predict the more
challenging non-WC long-range 3D contacts, that give important information
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regarding the three-dimensional structure of RNA molecules, we repeat the anal-
ysis shown above but excluding from the experimental RNA map, all contacts
that are in a 5x5 windows centered at any WC base pairs.

In table (2) we report the PPV for these type of contacts at L/10 numbers
of contacts. We can immediately observe that the values are much smaller than
in the case in which all residues are considered. There is essentially no signal in
the DY set while for D the PPV is between 20% and 25% with the plmDCA
method EVcouplings that reaches the best performance.

PPV @ o pydea <PPV>
a EVFold
0'758 _ ¢ BoltzmL
g A GREMLIN
v CCMPRED
05 ) PSICOV
L
0.25: ?
®
Meff
L L 1 Y} L
L/10 Lss L2 L 2L 100 500 1000

Figure 1: (a) Prediction performances of the different methods analyzed in this
papers by PPV as a function of the number of top scoring contacts. All contacts
that are separated along the sequence by at least 4 nucleotides are considered.
(b) Averaged PPV of all prediction methods as a function of the effective number
of sequences M.

(b)

<PPV>
BIT < 45
BIT > 45

Meft < 70
20%
33% 62%

Meft > 70

10 100

Figure 2: (a) Averaged PPV of all prediction methods as a function of the
BIT value for the chosen RFAM family. (b) Table of comparison for PPV as
influenced by different M,y and BIT.

Finally, we test the computational efficiency of different methods by assessing
their runtime for the complete set of RNA structures D. We run all tests on a
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Methods TOPp L/2 TOPpu L/2 TOPpr L/2
pydca [35] 43.0% 60.3% 24.2%
EVcouplings [31] 44.8% 62.3% 25.8%
Boltzmann Learning[42] 43.1% 61.0% 23.7%
GREMLIN [44] 41.1% 57.5% 23.3%
CCMpred [45] 42.2% 59.4% 23.6%
PSICOV [46] 41.9% 59.1% 23.1%
Table 2: Performance of the DCA-based methods analyzed on the different
datasets.
1 h s DHigh OSg DLow
(]
075 > ¢
= ? o
a 05 0.25 Y
¥
0.25 9 e M
‘L/10 L/s L2 L 2L L}1o L/s L/2 L 2L

Figure 3: Prediction performances of the methods on the D¥ and D¥ datasets.
Only contacts that are separated along the sequence of at least 4 nucleotides
are considered here.

Methods TOPp L/10 TOPpu L/10 TOPp: L/10
pydca [35] 10.9% 18.8% 2.4%
EVcouplings [31] 14.9% 24.3% 4.4%
Boltzman Learning [42] 13.0% 22.4% 2.8%
GREMLIN[44] 10.8% 17.5% 3.5%
CCMpred [45] 11.3% 18.3% 3.6%
PSICOV [46] 12.0% 20.3% 2.9%

Table 3: Accuracy of the different DCA-based methods for the prediction of the
long-range tertiary contacts.

Intel i7-7700 six-core processor.

As we can see from (4), the mean-field DCA in pydca and EVcouplings
are the fastest approaches with a global run-time for all structures of D of
about 10/21 minutes. They are about 5 times faster than CCMpred, a pseudo-
likelihood based methods known to be particularly performing when optimized
on GPU-based architecture, and from 15 to 30 faster than GREMLIN and PSI-
COV. The slowest method is the Boltzmann Learning that is about 300 times
slower than mean-field DCA. Note that, as shown in Table (4), the methods tend
to have two bottlenecks in terms of run-time, the first is for long RNA sequences
such as the one show that is the large ribosomal subunit from Haloarcula maris-
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mortui while the second one is for deep MSA such as the family RF00163 with
more than 3 x 10° RNA sequences.

Methods Run-time Longest RNA  Deepest MSA
(h) (min) (min)
pydca [35] ~ 0.2 ~ 0.2 ~3
EVcouplings [31] ~ 0.2 ~ 0.4 ~3
Boltzmann Learning [42] ~ 60 ~ 844 ~5
GREMLIN [44] ~6 ~ 16 ~ 45
CCMpred [45] ~1 ~ 30 ~ 7
PSICOV [46] ~3 ~ 37 ~ 15

Table 4: Run-time comparison of the different DCA-based methods. The longest
RNA analyzed is the large ribosomal subunit from Haloarcula marismortui with
a length of N=496 (RFAM RF02540) while the deepest MSA corresponds to the
synthetic Hammerhead Ribozyme whose family RF00163 has more than 3 x 10°
RNA sequences.

Contact type and prediction robustness

We test the robustness of the DCA-based contact predictions with respect to
varying contact definitions. In table 5, we compare the PPV values of mean-
field DCA for the six different contact definitions that have been introduced in

Methods.
Contact type N1-N9 | C1’-C1’ All All All All
Dist. Threshold (A) 9.5 12.0 3.5 5.5 7.5 9.5
PPV 43.0% | 45.9% | 41.2% | 48.1% | 54.0% | 57.0%

Table 5: Accuracy of the mean-field DCA for different contact definitions classi-
fied according to the distance threshold and the atoms used in the computation
of the nucleotide pair distance.

Regarding the type of contacts analyzed, we see that there is no substantial
difference in considering different type of contact criteria N1-N9 (9.5A), All
atoms (3.5A) and C1’-C1’ (9.5A) where the threshold distances have been taken
from [48]. For this reason we took, as criteria along all the paper, the distance
between N1 atoms for purine and N9 atoms for pyrimidine that are the atoms
that established the glicosylic bond with the C1’ atoms of the pentose sugar.

Non-surprisingly, the PPV accuracy improves if the distance criteria is re-
laxed. For example using all atoms distance from 3.5 till 9.5 we have a PPV
that increases from about 40% till a values close to 60%.

10
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RFAM family construction, sequence alignment and trim-
ming

In this section we analyze how the preliminary steps of the computation, i.e the
search for homologous sequences and the MSA curation, impact on the DCA
prediction of RNA contacts. As a first step, since almost half of the RFAM
considered do not have a large enough M.¢s value, we modify the E-value cut-
off used to constitute the RNA families in Rfam 14.1. We did it employing the
cmsearch option of Infernal [34] without modifying the covariance models of the
family but choosing a large E-value threshold equal to 0.99. On the other side,
since the introduction of too many sequences in a given family can introduce
noise, we also repeated the same analysis but with a more stringent cut-off of

0.0001.
Methods  TOPp L/2 TOPpn L/2 TOPp: L/2
= E-value 0.0001 41.4% 57.8% 23.6%
§ Rfam 14.1 43.0% 60.3% 24.2%
»n»  E-value 0.99 43.8% 60.5% 25.6%
ClustalW 22.2% 27.5% 16.5%
&  Infernal 43.0% 60.3% 24.2%
= MUSCLE 28.0% 37.9% 17.1%
MAFFT 27.5% 37.8% 16.3%
g Fullyc fseq 43.0% 60.3% 24.2%
£ Fullyg 43.5% 60.7% 24.7%
Fullgapgo 436% 605% 251%

Table 6: Impact of the MSA construction, alignment and trimming on the
performances of the mean-field DCA contact prediction method.

The results do not change significantly but we can observe few trends : the
enlarging of the thresholds slightly improves the contact prediction of families
with M, ¢¢ less then 70 while keeping constant the prediction of the other ones.
A more severe cut-off makes instead the performance predictions lower of about
2%.

The way in which the alignment is performed impacts the prediction per-
formances more substantially. Alignments obtained via ClustalW lead to less
accurate PPV values of about 20%. MUSCLE and MAAFT perform better than
Clustal W with more or less the same accuracy (PPV values of about 30%). Fi-
nally, alignments done using Infernal improve substantially the performance
with a PPV score that is about 10% above those obtained using MUSCLE and
MAAFT. The higher PPV values from Infernal are, however, not surprising,
as the covariance models used in Infernal are constructed from seed alignments
that in turn are constructed using available information and annotations about
RNA sequences such as RNA 2d structure.

Finally, the way in which the alignment is trimmed also does not change the
mean-field DCA performances and usually excluding the columns in MSA that

11
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have less than 50% of nucleotides results in accurate contact predictions.

Example of contact predictions

In order to provide an example of RNA contact prediction we analyze the ap-
tamer domain of the Adenine Riboswitch from Vibrio vulnificus. Its three-
dimensional structure has been deposited in the Protein Data Bank with the
code 4TZX [49]. This type of ncRNA that resides in the 5 untranslated region of
the add adenosine deaminase mRNA is one of the smallest (about 120 residue)
riboswitches and it controls the translation machinery. When adenine, to which
it binds, is not present, the aptamer region has a fold that prevent translation
initiation. In the presence of adenine, ligand-binding allosteric effects lead to
the rearrangement of the secondary structure of the aptamer region and as a
consequence to the initiation of translation.

In these conditions, the structure is formed by three helices P1, P2, and
P3 (see fig (4)) and three loops. In physical space, three dimensional contacts
occurring between stem-loop 2 and 3 stabilize the 3D structure.

In order to predict the contacts, we start from the RFAM RF00167 (BIT
score 59.4) and re-align all sequences in the family using Infernal tool. We then
applied mean-field DCA implemented in pydca and the results are shown in
Table 7 and in Figure 4.

N=7 | N=14 | N=35 | N=71 | N=142
PPV (cut 95A) | 1.0 | 1.0 | 086 | 055 | 0.35
PPV (cut 115 A) | 1.0 | 1.0 | 089 | 070 | 051

Table 7: Predicted Positive Values (PPV) for different number of contact N
and different thresholds for the Adenine Riboswitch from Vibrio vulnificus.

As we can see from 7 the PPV are quite high as all 20 but one WC base
pairs of the three stems are correctly identified in the first 35 contacts (=L/2).
Moreover there are also several 3D contacts, i.e. long range contacts in the
sequence that are away from any WC base pairs, predicted. For example there
are 5 contacts in the green circle of the contact map of Fig. 4 that signal
an interaction between the loops 2 and 3. In total in the first 7 3D contacts,
4 of them (PPV3p = 57%) are correctly predicted (distance threshold at 9.5
A) but this number rises to 6 (PPVsp = 86%) if the distance threshold is
enlarged to 11.5 A. As shown in a series of recent papers, the correct prediction
of these 3D contacts and their use as constraints in molecular modeling tools
can substantially improve the accuracy of the RNA 3D structure prediction
[13, 26, 31, 32].

12
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Figure 4: (a) Contact map of the Adenine Riboswitch from Vibrio vulnificus:
in blue the contact from PDB struture 4TZX, in green and red the correct and
wrong predicted contacts respectively (in the top 35 pairs). In (b) we plot its
secondary structure with in green all correct predicted WC base-pairs in the top
35 pairs.

Discussion

Co-evolution between pairs of nucleotides in MSA of homologous RNAs has
shown can provide important information about the three-dimensional structure
of RNA. As RNA structure and function are closely interlinked, co-evolutionary
methods promise to play an important role in the understanding of a wide series
of RNA-based biological mechanisms.

In order to assess the accuracy of six different widely known DCA meth-
ods more precisely, we first constructed a well curated dataset of about 70
RNA structures with good resolution. We then perform MSA alignment of
their corresponding RFAM families and run six contact prediction methods :
mean-field pydca, EVcouplings, Boltzman Learning, GREMLIN, PSICOV and
CCMPRED.

We find that there are no statistical significant differences between their
performances as measured by PPV. The prediction performance strongly depend
on two factors : the first one is the number of effective sequences M, of the
given RFAM family. Indeed we show that only families that have at least M.y
of the order of about 100 tend to lead to more reliable predictions performances.
The second is the procedure used to perform the alignment. In this regard
alignments done using Infernal give results much better than those obtained
with other methods with the caveat that the Infernal covariance model is based
on additional information.

We also noticed that the prediction of 3D contacts that are far in the se-
quence and from any WC base pairs, does not reach yet a satisfactory perfor-
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mance for the majority of the entries. While expected (these contacts should
exhibit weaker signals when compared with the WC base pairs) this is also
unfortunate as prediction of such long-ranged contacts can considerable boost
the 3D structure prediction. Machine-learning methods could be used in this
more difficult identification since these methods are constructed and optimize
to detect weak signals from noisy background.

Finally, both the resolution of RNA 3D structures and the types of contact
considered do not impact significantly our measure of the methods’ performance.

In summary, improving RNA contact predictions remains a challenge. The
analysis done in this paper, with the construction of a new dataset of RNA
structures and all tests done, provides new insights on DCA-based approaches
highlighting their strong and weak points and could be a starting point for
future improvements of the fields.
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