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Abstract

The ability to rationally modify targeted physical and biological features of a protein of interest holds promise in numerous
academic and industrial applications and paves the way towards de novo protein design. In particular, bioprocesses that
utilize the remarkable properties of enzymes would often benefit from mutants that remain active at temperatures that are
either higher or lower than the physiological temperature, while maintaining the biological activity. Many in silico methods
have been developed in recent years for predicting the thermodynamic stability of mutant proteins, but very few have
focused on thermostability. To bridge this gap, we developed an algorithm for predicting the best descriptor of
thermostability, namely the melting temperature Tm, from the protein’s sequence and structure. Our method is applicable
when the Tm of proteins homologous to the target protein are known. It is based on the design of several temperature-
dependent statistical potentials, derived from datasets consisting of either mesostable or thermostable proteins. Linear
combinations of these potentials have been shown to yield an estimation of the protein folding free energies at low and
high temperatures, and the difference of these energies, a prediction of the melting temperature. This particular
construction, that distinguishes between the interactions that contribute more than others to the stability at high
temperatures and those that are more stabilizing at low T , gives better performances compared to the standard approach
based on T -independent potentials which predict the thermal resistance from the thermodynamic stability. Our method
has been tested on 45 proteins of known Tm that belong to 11 homologous families. The standard deviation between
experimental and predicted Tm’s is equal to 13.6uC in cross validation, and decreases to 8.3uC if the 6 worst predicted
proteins are excluded. Possible extensions of our approach are discussed.
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Introduction

In the last decade there has been a growing attention on the

study of the thermal stability of proteins and a lot of effort from

both the theoretical and experimental sides have been devoted to

understand its molecular basis. The potential applications are very

broad and include the possibility to rationally modify the thermal

stability of targeted proteins and hence optimize the bioprocesses

in which they are involved [1–3]. This opens interesting

perspectives in all academic and industrial sectors that exploit

the unique properties of proteins, such as food industry, biofuel

production, detergent industry, remediation of environmental

pollutants, therapeutic approaches and drug design [4–6].

As a first step, it is quite important to gain theoretical

understanding of the biophysical principles behind thermal

stability. In a series of works [7–17] the mechanism and the

interactions that promote or prevent thermal stabilization have

been investigated. This is a highly non-trivial issue due to the large

number of factors that influence the thermostability and to the

marginal stabilization reached by the delicate balance between

opposite energetic contributions. A series of factors has been

indicated as responsible for the enhancement of the thermal

resistance, based on the analysis of the amino acid conservation

among the meso- and thermostable proteins belonging to the same

homologous family. However, these factors are often not universal

and family-dependent.

More general investigations of the factors that influence the

thermal resistance have been performed using free energy

calculations with a continuum solvation model [18]. They have

led to the idea that salt bridges promote hyperthermostability in

proteins, whereas they make little contribution to protein stability

at room temperature. This idea is supported by a lattice model

which suggested that salt bridges contribute not only on the

stabilization of the native states but also to the destabilization of

the misfolded conformations [19]. Moreover, on the basis of

temperature-dependent statistical potentials, it has been shown

that not only salt bridges, but also cation-p interactions, aromatic

interactions, and hydrogen bonds between negatively charged and

some aromatic residues tend to thermostabilize proteins, whereas

hydrophobic packing appears to be neutral in this respect [20,21].

Several approaches have been devised for designing mutants

that are more thermally stable than wild-type proteins. Experi-

mental methods include directed evolution, sometimes coupled
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with rational or semi-rational engineering strategies [22,23]; for a

review see [24] and references therein. In silico engineering

approaches have also been developed, which are based on residue

conservation within homologous families, on structural and

dynamical features, or on free energy calculations [25–29]. A

sequence-based in silico method for predicting melting tempera-

tures has been developed and applied to distinguish hyperthermo-

philic from mesophilic microorganisms [30]. Even if these methods

are partially successful, new, faster, more powerful and precise

techniques would be welcome.

It is noteworthy that a lot more computational methods have

been developed to predict the thermodynamic stability of a protein

- in particular the thermodynamic stability changes upon point

mutations (for review of their performances, see [31–34]). These

are often used to also predict thermal stability, although thermal

and thermodynamic stability are only very imperfectly correlated.

Indeed, the thermodynamic stability at a given temperature is

defined by the folding free energy DG at that temperature, and the

thermal stability by the melting temperature Tm. In Figure 1, one

can find an example of the stability curves of two hypothetical

proteins, one mesostable and the other thermostable, with

approximately the same thermodynamic stability at room

temperature (given by the DG� value) but with a significative

difference in thermal stability (given by DTm~T thermo
m {Tmeso

m ) of

about 50uC. There is thus a need to develop efficient and fast

thermal stability predictors, without detour through thermody-

namic stability.

The aim of this paper is to build an in silico method that directly

predicts Tm, which is the best descriptor of thermal stability. For

that purpose we have generalized and optimized the set-up

introduced in [20,21] for defining temperature-dependent statis-

tical potentials. This set-up was originally devised for distance

potentials that describe tertiary interactions, based on propensities

of residue pairs to be separated by a certain spatial distance. Here

we apply it to also define temperature-dependent torsion

potentials, which describe local interactions along the polypeptide

chain and are based on propensities of residues to be associated

with backbone torsion angle domains [35]. The main idea behind

the construction is that, since thermodynamic and thermal stability

are not always correlated, some new potentials that are defined at

different temperatures and thus take into account the thermal

properties of the intra-protein interactions have to be introduced

besides the standard statistical potentials that are defined at an

average temperature. This construction is illustrated in Figure 2.

The practical implementation consists of building different

datasets of proteins with known melting temperature and deriving

statistical potentials from each of these; because of the limited

amount of data only two sets were considered, a mesostable and a

thermostable one. Since there are not enough experimentally

resolved structures with known Tm, we have enlarged the datasets

by introducing some proteins with unknown Tm but for which a

crude estimation of Tm could be obtained from the environmental

temperature of the host organism. This allowed us to derive

smoother potentials and to obtain better performances.

Once the potentials were derived, they were used to give a quite

accurate prediction of the melting temperature of a target protein,

using additional information about the Tm of homologous

proteins. The overall flowchart of the method is summarized in

Figure 3. Its performance was compared to that of the common

procedure that uses temperature-independent potentials and

hence predicts thermal resistance from thermodynamic stability.

Methods

Basic protein dataset S and homologous families
To define temperature-dependent potentials, we used the

protein dataset defined in [20] and denoted as S, which contains

166 protein X-ray structures with resolution ƒ2.5 and known

melting temperature Tm measured for the transition from the

monomeric state to the denatured state. They were collected from

the literature and the ProTherm database [36], and manually

checked on the basis of the original articles. If several Tm-values

were available for a given protein, we chose the Tm at the pH

condition closest to 7; if different Tm’s were available at the same

condition the average value was taken. In Table S0 in File S1 all

the proteins belonging to this set and their characteristics are

reported.

In this dataset, 11 families consisting of at least three

homologous proteins were identified, whose melting temperatures

will be predicted later in this paper and compared to the

Figure 1. Thermal versus thermodynamic stability. An example of the stability curves of an hypothetical couple of mesostable and
thermostable proteins, characterized by an equal thermodynamic stability at room temperature, but different thermal stabilities.
doi:10.1371/journal.pone.0091659.g001
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Å



experimental melting temperatures. These are: a-amylase, lyso-

zyme, myoglobin, b-lactamase, a-lactalbumin, acylphosphatase,

adenylate kinase, cell 12A endoglucanase, cold shock protein,

cytochrome P450 and ribonuclease.

Enlarged, family-dependent, protein datasets Sf

In view of constructing smoother potentials and designing a Tm-

predictor that is specific for the proteins belonging to a given

family f , we have enlarged the basic dataset S. For each of the 11

families f , in turn, additional proteins belonging to f were added

to the dataset S so as to create the family-dependent dataset

denoted as Sf . This procedure thus defines 11 different datasets

Sf , one for each family.

In contrast to the proteins from S, the Tm’s of the additional

proteins in Sf have not been characterized experimentally; only

the environmental temperature of their host organism, Tenv, is

known. This temperature refers to the optimal growth temperature

for the micro- and cool-blooded organisms, while for the warm-

blooded ones it is defined as the body temperature. The values of

the Tenv we are using (listed in Tables S1–S11 in File S1) were

manually checked from the literature. When no optimal growth

Figure 2. Folding free energies at different temperatures. Plot of the stability curve as a function of the temperature, and of the values of the
three folding free energies DG+, DG and DGD at the respective temperatures T+, T , T+ , for a hypothetical protein.
doi:10.1371/journal.pone.0091659.g002

Figure 3. Flowchart of the Tm prediction method for a protein p belonging to the family f .
doi:10.1371/journal.pone.0091659.g003

Protein Thermostability Prediction

PLOS ONE | www.plosone.org 3 March 2014 | Volume 9 | Issue 3 | e91659



temperature was reported for a given microorganism, we took the

mean of the range of temperatures over which it is able to grow.

In order to obtain an estimation of the melting temperature of

these additional proteins, three different methodologies were used.

We would like to stress that these estimations do not pretend to

yield a reliable prediction of the Tm, but they yield a rough

approximation allowing us to decide if they belong to the set of

thermostable or mesostable proteins, as explained later.

The first two methods for estimating the Tm’s are based on the

environmental temperature Tenv. It is well known that Tm and Tenv

are correlated, since thermophilic organisms necessarily host

thermostable proteins (even if the converse is not true). Based on

experimental data on families of homologous proteins, a correla-

tion between Tm and Tenv was indeed observed and the

corresponding regression line was computed [38,39]. The

regression line obtained in [39] is:

T (1)est
m ~0:62Tenvz42:90C: ð1Þ

The associated correlation coefficient, noted r(1) and computed

without cross validation, is equal to 0.82. The T (1)est
m ’s derived with

this formula are listed in Table S1–S11 in File S1.

However this correlation was derived regardless of the type of

proteins. One can expect that inside a given family of homologous

proteins the correlation between Tm and Tenv is stronger due to the

fact that the thermostability is in some way related to specific

protein characteristics. We thus calculated the linear regression

between Tm and Tenv inside each family, even though the number

of proteins per family is small and the statistical significance of the

correlation questionable. The estimated T (2)est
m ’s so obtained are

listed in Tables S1–S11 in File S1 and the regression lines for each

family are given in Table S14 in File S1. The mean of the

correlation coefficients r(2) computed inside each family is equal to

0.84 (without cross validation) and is thus almost equivalent to the

correlation coefficient r(1) calculated on all families together. Note

the peculiar case of the a-lactalbumin family (see Table S5 in File

S1) for which the coefficients of the regression line are very

different from the others. This family contains three proteins that

belong to three warm-blooded organisms with very close Tenv’s

(Homo sapiens 37uC, Bos taurus 38uC and Capra hircus 39uC) but Tm’s

that differ by more than 30uC. The Tm-Tenv regression line

obtained from these proteins is thus probably not reliable. The

regression line of the lysosyme family is also atypical, but to a lesser

extent.

The last method to estimate Tm’s is based on the sequence

similarity between the proteins. We assign as Tm of a given protein

the melting temperature of the protein of the same family that

exhibits the highest sequence identity. This quite strong assump-

tion is justified by the fact that, often, the higher the sequence

identity, the higher the similarity among all structural, functional

and thermodynamic characteristics, including thermostability. For

that purpose, we performed pairwise alignments of all the

sequences inside each family using the FASTA program [40].

The T (3)est
m ’s estimated on the basis of these results are reported in

Tables S1–S11 in File S1.

Thermostable, mesostable and average protein datasets

SD
f , S+

f and Sf

Each of the 11 family-dependent sets Sf was divided into two

equal subsets: the mesostable ensemble S+
f containing the proteins

with (either known or estimated) Tm smaller than a certain

threshold value T̂Tm and a thermostable set SD
f in which all proteins

have TmwT̂Tm. The threshold value T̂Tm was determined in such a

way that the two subsets contain an equal number of proteins; it

thus slightly depends on f .

Each subset was refined separately using the protein-culling

server PISCES [37]. For each pair of proteins in a given subset

that presents a sequence identity w25%, only one protein was kept

according to the following criteria: (1) when one protein has a

known Tm while the other has an estimated Tm we chose the

protein with known Tm; (2) when both proteins have either an

experimentally determined Tm or an estimated Tm, we chose the

one with highest Tm in the thermostable set and with lowest Tm in

the mesostable set. This procedure prevents significant sequence

similarity to occur inside each subset, which could bias the

predictions. It also allows us to increase the difference between the

average melting temperatures �TTm of the meso- and thermostable

subsets, so as to get more differentiated temperature-dependent

potentials.

We also constructed 11 family-dependent datasets Sf from Sf .

These sets were not split in two, but were refined using PISCES

with the criterion that when two proteins (with both either known

or estimated Tm) show a high degree of sequence identity (w25%),

the protein with a melting temperature closest to the mean �TTm is

kept and the other is discarded. This rule is not applied when one

protein has an estimated Tm and the other a known Tm; in such

case the protein with known Tm is kept and the protein with

estimated Tm is discarded.

This procedure yields, for each of the 11 families f , three

protein datasets, a mesostable set S+
f , a thermostable set SD

f , and

an average set Sf . Each of these sets is characterized by �TTm,

defined as the average of the melting temperatures of the proteins

belonging to the set. This average temperature depends on the

considered family. The dependence is, however, very small, and

we will for the simplicity of the notations not add a subscript f to
�TTm. The values of the �TTm’s associated to the different datasets are

given in Table S13 in File S1.

Stastistical potentials
Temperature- and family-dependent statistical potentials were

derived from the datasets S+
f , Sf , SD

f , which are each character-

ized by a different average melting temperature �TTm. This is done

using the Boltzmann law, following [20,21]:

DWf (s,c, �TTm)%{kT ln
F (s,c, �TTm)

F (s,�TTm)F (c, �TTm)
, ð2Þ

where s represent single amino acids or amino acid pairs, and c
spatial distances between residue pairs or backbone torsion angle

domains; F represent relative frequencies computed in the dataset

of average melting temperature �TTm, i.e.

F (s,c,�TTm)~n(s,c,�TTm)=n(�TTm).
In particular, we built two distance potentials and two torsion

potentials. In the torsion potentials, s correspond either to the

amino acid type ai of residue i or to the amino acid types (ai,aj) of

residues i and j, and c corresponds to the backbone torsion angle

domain tk of residue k. Seven (w,y,v) torsion angle domains were

used, defined in [41]. These potentials describe local interactions

along the chain: ivj and i,j[fk{8,kz8g. They are denoted as

DW (a,t, �TTm) and DW (a,a’,t,�TTm).
In the two distance potentials, the structure motif c is the spatial

distance dij between the residues i and j, with jwiz1. In

DW (a,a’,d, �TTm), residues i and j are of type a and a’. In

DW (a,d,�TTm), residue i or j is of type a and the other is of arbitrary
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type. We defined the distance between two residues as the distance

between the geometrical center of the heavy side-chain atoms [20].

The distance values between 3.0 and 8.0 were grouped into

25 bins of 0.2 width; two additional bins describe distances

larger than 8.0 and smaller than 3.0 , respectively. Moreover,

we used a trick to artificially increase the number of occurrences in

each bin and thereby smooth the potential. We summed the

occurrences of neighboring bins, giving them a decreasing weight:

ni~
ni{‘z1

‘
z

ni{‘

‘{1
z . . . niz . . .

niz‘{1

‘

� �
ð3Þ

where ni represents the number of occurrences n(c,s,�TTm) or

n(c, �TTm) in bin i, and ‘ is set equal to 3; n(s,�TTm) and n(�TTm) are

normalized consequently.

In order to deal with the limited size of the datasets, a correction

for sparse data [35] is applied:

F (s,c,�TTm)?
zF (s,�TTm)F (c, �TTm)zneF(s,c,�TTm)

zzne
, ð4Þ

where the expected number of occurrences is

ne~n(s, �TTm)n(c, �TTm)=n(�TTm), and z an adjustable parameter. This

correction ensures that the potentials are close to 0 when the

number of observations in the dataset is too small. The value of z
was chosen to be equal to either 10 or 20.

We computed all the statistical torsion and distance potentials

DWf (s,c,�TTm) using the two values of z and the three different

procedures for estimating Tm from Tenv, described in the previous

subsections. This yields six different series of DWf (s,c,�TTm)’s. The

final torsion and distance potentials that we consider in the

following correspond to the average of these six potentials.

Prediction of the melting temperature Tm

The folding free energy DG at some temperature referred to as
�TTm of a protein p that belongs to the family f is evaluated by a

linear combination of the four torsion and distance potentials

defined in Eq. (2), which are derived from the sets of proteins (Sf ,

S+
f and SD

f ) of average melting temperature �TTm:

DGp[f (�TTm)~
1

N f

b0( �TTm)
XNp

i,j~1

Wf (ai,aj ,dij ,�TTm)

"

zb1( �TTm)
XNp

i,j~1

Wf (ai,dij ,�TTm)�

zb2( �TTm)
XNp

i,j,k~1

Wf (ai,aj ,tk, �TTm)

zb3( �TTm)
XN

i,k~1

Wf (ai,tk,�TTm)

#

ð5Þ

where i=j,j+1 for the distance potentials, k{8ƒivjƒkz8 for

the torsion potentials, N f is a family dependent normalization

factor, and Np is the number of residues of p. Let us for simplicity

denote as DGp , DG+
p and DGp the family- and T-dependent

folding free energies of protein p belonging to f computed using

the statistical potentiels derived from the sets Sf , S+
f and SD

f ,

respectively.

We predict the melting temperature on the basis of these

potentials in two different ways. In the first, we assume that the

melting temperature is proportional to the average folding free

energy DG . This is the common procedure that predicts thermal

from thermodynamic stability. In the second, original, method, we

assume that the melting temperature is proportional to the

difference in folding free energy at two different temperatures:

½DGD{DG+�. In these two procedures, the parameters, generi-

cally denoted as P, are optimized so as to minimize the standard

deviation between the predicted and experimental melting

temperatures of the ensemble of considered proteins; we use for

that purpose the minimization function implemented in Mathema-

tica 7. More precisely:

P̂PD+~ arg min
PD+

½
X

p

(cD+ DGD
p {DG+

p

h i
zdD+{Tm,p)2�,

P̂P ~~ arg min
P

½
X

p

(c DGp

h i
zd {Tm,p)2�, ð6Þ

where PD+~(bD0 ,b+
0 ,bD1 ,b+

1 ,bD2 ,b+
2 ,bD3 ,b+

3 ,N f ,cD+,dD+) and

P ~(b0 ,b1 ,b2 ,b3 ,N f ,c ,d ); the sum over p in these expressions

means the sum over all the proteins with known melting

temperature Tm,p that belong to the 11 homologous families.

The coefficients (cD+,c ) and (dD+,d ) give, respectively, the slope

and the intercepts of the regression line between computed folding

free energies and experimental melting temperatures that best fit

the data.

In order to avoid overestimating the performance of our

method, we performed cross validation using the jack-knife

technique: the parameters are identified on all proteins but one,

which is used as test protein; every protein in turn is considered as

test protein, and the average score is considered.

Results

The contributions of amino acid interactions to protein stability

are known to be temperature-dependent; some may be more

stabilizing than others in the high temperature regime and less

stabilizing than others at low T , or conversely [18,20,21,42,43].

Such dependence need to be taken into account for a proper

analysis of thermal stability properties. For that purpose, we

created different datasets of proteins with known melting

temperatures: in S+ sets only mesostable proteins were considered,

in SD sets all entries are thermostable, and in S sets all proteins

were taken independently of their Tm. Each ensemble has been

associated with a temperature �TTm computed as the mean of the Tm

values of the proteins belonging to the set.

Predicting the melting temperature of a protein from its

structure alone is quite a difficult task, and we therefore focus on

the slightly simpler problem of predicting this temperature using

information from homologous proteins. We hence selected 11

families of proteins of known Tm, labelled by f , and defined 11

triplets of sets SD
f ,S+

f ,Sf , by adding proteins belonging to the

family to the complete set S, following the procedure explained in

the Methods section.

From each of these datasets characterized by an average melting

temperature �TTm, two torsion potentials and two distance potentials

have been derived using the standard statistical-potential formal-

ism that converts the relative amino acid frequencies into free

energy trough the Boltzmann law (Eq.(2)). The torsion potentials

Protein Thermostability Prediction
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are based on the propensities of single amino acids and amino acid

pairs to adopt some backbone torsion angles and describe local

interactions along the chain. The distance potentials describe

tertiary interactions and are computed from propensities of amino

acid pairs to be separated by a certain spatial distance. The total

folding free energy DG at some temperature �TTm is explicitly

computed as a linear combination of these different statistical

potentials, derived from the dataset associated with �TTm (Eq.(5)).

We hence obtain, for each protein p, three folding free energies

DGD
p , DG+

p and DGp ; the coefficients of the combination are

parameters that are fixed in a further step. In Figure 2 these three

folding free energies at different temperatures TD, T+ and T are

depicted on the stability curve of a hypothetical protein.

Two procedures are used to predict the Tm’s from these free

energies. The first assumes a linear correlation between Tm and

DG , which is the standard way of predicting melting tempera-

tures. The second, novel, procedure consists of assuming a linear

correlation between Tm and ½DGD{DG+�. In the last step, the

parameters (i.e. the coefficients of the linear combination of

statistical potentials) were identified so as to minimize the

difference between the computed and experimental Tm’s (Eq.(6)).

To avoid an overestimation of the performance, we systematically

performed cross validations using the jack-knife technique as

explained in the Methods section.

The first procedure, which assumes a correlation between Tm

and DG , is justified by the fact that the thermodynamic and

thermal stabilities are sometimes related, even if this is obviously

not always true. Indeed, in the language of [44] (for a more recent

review see also [45]), one way for the protein to enhance its

thermostability is to increase its thermodynamic stability at all

temperatures, thereby shifting the entire stability curve ‘‘down-

wards’’, i.e. towards lower DG’s. The other two ways to increase

thermal resistance, namely a decrease of the heat capacity change

DCP that brings a modification of the shape of the curve and a

global shift of the curve towards the high temperature region, are

instead better captured by the second procedure, which assumes a

correlation between Tm and the difference between the folding

free energy at different temperatures, i.e. ½DGD{DG+�.
The results of the Tm predictions for all proteins of our dataset

are plotted in Figure 4. Figure 4.a shows the correlation between

the experimental melting temperature and the temperature

predicted from the folding free energy difference ½DGD
p {DG+

p �.
The associated linear correlation coefficient rD+ is equal to 0.68 (P-

value 10{7). Figure 4.b shows instead the correlation between the

experimental Tm’s and the Tm’s predicted from the average

potential DGp . The corresponding linear correlation coefficient is

very low: r = 0.15 and is not statistically significant (P-value 0:3).

Clearly, the new procedure presented here, which predicts melting

temperatures from ½DGD
p {DG+

p � using T-dependent statistical

potentials, is much superior to the common procedure that

predicts Tm from DGp using simple T-independent potentials.

Focusing on the ½DGD
p {DG+

p �-based method, we analyze

whether some proteins are better predicted than others, and

whether badly predicted proteins cause a significant decrease of

the overall performance. In Figure 4.c, the 6 proteins that are

predicted worst are excluded. To identify these proteins, we

excluded at each step the protein whose melting temperature is

predicted worst and we recompute the Tm’s of the remaining

proteins. We repeat the procedure until 6 proteins are excluded. In

this case the linear correlation coefficient rises up to 0.83 (P-value

v10{10).

The standard deviations s between the predicted and experi-

mental values of the melting temperatures, computed for each

family individually, are reported in Table 1; the results per protein

are given in Table S12 in File S1. On average, sD+ is equal to

13.6oC when computed on the basis of the free energy difference

½DGD
p {DG+

p �. This is significantly better than the average s-value

computed with the standard DGp -based method, which yields

s ~17.6oC. Moreover, removing the 6 worst predicted proteins

reduces sD+ from 13.6 to 8.3oC. For comparison, we added in the

Table the results obtained in direct validation, which yield a sD+ of

5.5oC.

The best predicted families are acylphosphatase, a-amylase and

b-lactamase, with sD+-values between 5.9 and 7.5oC, while the

worst are cytochrome P450 and myoglobin, with sD+-values

around 19oC. The proteins from the latter two families contain a

heme, whereas the proteins from the other families contain no

ligands or very small ones (see Tables S1–S11 in File S1). As our

statistical potentials do not take into account the interactions with

the ligands, mutations in the region of the heme are necessarily not

estimated properly. The presence of the heme could thus well be

the reason for the poor predictions in the cytochrome P450 and

myoglobin families.

The average Tm prediction score obtained with the standard,

DG -based, method is significantly lower than the one that uses

½DGD{DG+�. It is however noteworthy that some families are

better predicted with the former method. This is clearly the case

for the endoglucanase family and to a lower extent for the

lysozyme family. This result suggests that these proteins are

thermally stabilized through a shift of the entire stability curve

towards lower DG-values.

Figure 4. Melting temperature prediction. Relation between the experimental melting temperature Texp
m and the predicted temperatures: (a)

TD+
m is computed from the folding free energy difference ½DGD

p {DG+
p � (correlation coefficient r+D = 0.68), (b) Tm from the folding free energy DGp

(r = 0.15), and (c) TD+?
m from ½DGD

p {DG+
p � excluding the 6 proteins that are predicted worst (r+D? = 0.83).

doi:10.1371/journal.pone.0091659.g004
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Discussion

A complete understanding of the features that determine

protein thermal stability is still far from being reached. We have

however made some progress towards this goal. The originality of

our approach lies in the use of temperature-dependent statistical

potentials, derived from distinct sets of protein structures,

containing either mesostable or thermostable proteins. Linear

combinations of these meso- and thermostable potentials, with

coefficients identified so as to minimize the standard deviation

between experimental and predicted Tm’s, were used to predict

the melting temperature on a set of 45 proteins that belong to 11

different homologous families.

These potentials allowed us to determine in an objective way the

interactions that contribute most to protein stability in different

temperature ranges and also, interestingly, the interactions that are

less destabilizing - in other words, less repulsive - according to the

temperature. For example, the temperature-dependent distance

potentials point salt bridges, cation-p and aromatic interactions to

contribute more to stability at high temperatures than hydropho-

bic packing, and conversely, and the interactions between

positively charged residues to be less repulsive at high than at

low temperature relative to other interactions [20,21].

The novel temperature-dependent torsion potentials introduced

here show also a significant dependence on the temperature. They

provide indeed a non-negligible improvement of the Tm prediction

performance. However, they are much more difficult to interpret

in terms of specific interactions than distance potentials. Indeed,

they reflect the propensities of amino acids and amino acid pairs to

be associated to backbone torsion angle domains in their vicinity

along the polypeptide chain, up to eight sequence positions

further. These propensities are obviously related to secondary

structure preferences but in an intricate way.

Another important feature that ensures the success of our

approach is the focus on families of homologous proteins. We

indeed defined family- and temperature-dependent statistical

potentials, that include more proteins of the family under

consideration and hence bias the potentials towards it. Note that

we nevertheless kept the pairwise sequence similarity in the set to

be at most 25%, to avoid uncontrolled biases. As the number of

proteins with known Tm is quite limited, we also used proteins of

unknown Tm but of known Tenv to enlarge the datasets from which

potentials are derived, using three different rules to roughly

estimate the former from the latter.

Note that the same approach as the one proposed here can be

used for general Tm predictions, independently of protein families.

However, this – as expected — decreases significantly the score of

the predictions. On the other hand, we would like to emphasize

that our method predicts the Tm of a given protein from the Tm of

homologous proteins, which have sometimes very different

sequences. A much easier goal would be to predict the change

in melting temperature upon point mutations (DTm).

The results presented here are very encouraging, but severely

suffer from lack of data. Indeed, the number of proteins with

experimentally determined structure and melting temperature is

too limited, both for deriving sufficiently reliable temperature-

dependent statistical potentials, and for biasing them properly

towards a given protein family. The comparison of the score

obtained in cross validation (sD+~13:60C between predicted and

measured Tm’s) with the score in direct validation (sD+~5:50C)

indicates that improvement can be expected from an increased

dataset. Another source of errors is due to the fact that some

families contain ligands, such as the hemes for the myoglobin and

cytochrome families. These ligands sometimes strongly affect the

stabilization properties of the proteins but cannot be taken into

account in our potentials, which are limited to the residues of the

polypeptide chain. This inevitably brings up the value of s. Finally,

some experimental error should be included in the evaluation.

This involves the intrinsic experimental error but, more impor-

tantly, the fact that the available experimental data are sometimes

not performed exactly in the same experimental conditions in

terms of pH, ionic strength, etc.

This discussion allows us to conclude on a positive note: the

performance of our method is already quite good but is expected

Table 1. Values of the standard deviations sD+ and s between the measured and the predicted melting temperatures (in

degrees); sD+? means the standard deviation excluding the 6 proteins whose Tm is predicted worst; N indicates the number of
proteins in the family.

Family DGD{DG+
� �

DG ½DGD{DG+� ½DGD{DG+� N

jack knife jack knife jack knife no jack knife

sD+ s sD+? sD+

Acylphosphatase 7.5 25.2 4.7 3.0 3

Ribonuclease 17.3 23.0 3.5 2.7 5

Lysozyme 15.0 13.2 8.1 4.2 4

Cell 12A endoglucanase 13.7 9.6 5.4 4.4 5

Adenylate kinase 12.1 15.2 3.3 9.4 6

a-Amylase 7.5 9.5 7.6 4.2 4

a-Lactalbumin 17.6 21.0 15.9 6.9 3

Myoglobin 19.9 19.4 15.4 7.8 3

Cytochrome P450 18.6 21.8 10.7 12.0 5

b-Lactamase 5.9 20.1 7.1 2.7 4

Cold shock 14.4 14.9 10.2 3.8 3

Average 13.6 17.6 8.3 5.5

doi:10.1371/journal.pone.0091659.t001
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to significantly improve when larger datasets of proteins with

known Tm, obtained in identical experimental conditions, will be

available.

Supporting Information

File S1 Table S0, List of proteins with known melting

temperature used in this study. Table S1–S11, List of proteins

with known Tm or Tenv belonging to the 11 homologous families.

Table S12, Experimental and predicted Tm’s of the proteins that

belong to the 11 families. Table S13, Average melting temperature
�TTm in the different datasets Sf . Table S14, Family-dependent Tm-

Tenv regression lines.
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