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Abstract: The presence of currents in the interior of cold neutron stars can lead to a state in which
nucleons remain superfluid while the quasiparticle energy spectrum has no gap. We show within the
self-consistent time-dependent nuclear energy density functional theory that the nucleon specific
heat is then comparable to that in the normal phase, contrasting with the classical BCS result in the
absence of super flows. This dynamical, gapless superfluid state has important implications for the
cooling of neutron stars.
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1. Introduction

Produced during gravitational-core-collapse supernova explosions with initial tem-
peratures as high as ∼ 1011 − 1012 K, neutron stars cool down to temperatures of ∼ 109 K
within a few days [1]. The very dense matter in their interior is expected to undergo various
quantum phase transitions analogous to those observed in terrestrial laboratories [2]. Simi-
lar to electrons in conventional terrestrial superconductors, free neutrons in the inner crust
and the outer core of neutron stars are predicted to form a Bardeen–Cooper–Schrieffer (BCS)
condensate of 1S0 Cooper pairs. Nuclear superfluidity has been supported by the rapid
decline in the luminosity of the Cassiopeia A remnant [3–9] and has been corroborated by
radio timing observations of frequency glitches in numerous pulsars [10], which can be
interpreted as global readjustments of the rotational motions of the neutron and proton
superfluids induced by the unpinning of quantized neutron superfluid vortices [11,12] (see,
e.g., ref. [13] for a review).

Despite the importance of the superfluid dynamics for interpreting these latter astro-
physical phenomena, most microscopic calculations of the nuclear pairing properties have
been carried out thus far for static situations (see, e.g., ref. [14] for a recent review). We
have recently studied the dynamics of hot neutron–proton superfluid mixtures with the
self-consistent time-dependent nuclear energy density functional theory [15]. By applying
it to neutron stars, we have computed 1S0 neutron and proton pairing gaps in the homo-
geneous core in the presence of arbitrary currents and we have determined the mutual
neutron–proton entrainment coupling coefficients [16]. We have also shown within the
same framework that there exists a dynamical “gapless” state in which nuclear superfluid-
ity is not destroyed, even though the energy spectrum of quasiparticle excitations exhibits
no gap [17]. As will be presented in Section 2, the absence of an energy gap leads to a
nucleon specific heat that is very different from that in the classical BCS state (in the absence
of super flows). The implications for the cooling of neutron stars [18] will be discussed in
Section 3.
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2. Gapless Superfluidity
2.1. Order Parameter

We have previously studied the nuclear superfluidity at finite temperatures and in the
presence of superflows under the self-consistent time-dependent nuclear energy density
functional framework [15,16]. The behavior of the order parameter ∆q (with q = n, p for
neutron and proton, respectively) was found to be universal after introducing some effective
superfluid velocities Vq and proper rescaling (see Figure 1): ∆(0)

q is the order parameter at

zero temperature in the absence of superflows, T(0)
cq = eγ∆(0)

q /π ' 0.567∆(0)
q is the critical

temperature above which superfluidity is destroyed and VLq = ∆(0)
q /

(
}kFq

)
(with kFq,

the Fermi wave vector) is Landau’s velocity (derived via the eponymous criterion [19,20]
adapted to the context of strongly interacting nuclear superfluid mixtures).
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of superflows as a function of the corresponding effective superfluid velocity Vq expressed in terms of

Landau’s velocity VLq for different temperatures (T(0)
cq being the critical temperature for the superfluid

at rest). See text for details.

2.2. Gapless State and Specific Heat

Focusing on low temperatures, T � T(0)
cq (relevant for mature neutron stars), we

have shown that the energy gap in the quasiparticle density of state Dq shrinks with an
increasing effective superfluid velocity Vq and disappears at Landau’s velocity VLq (see
Figure 2). However, the order parameter ∆q remains finite: the superfluid enters a gapless

state, which persists until the critical velocity V(0)
cq = eVLq/2 ' 1.36VLq is reached. Full

calculations are presented in Ref. [17].
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One of the immediate consequences of gapless superfluidity is the modification of
thermal properties such as the specific heat c(q)V , whereas the classical BCS state leads to an
exponentially suppressed specific heat at low temperatures (see, e.g., ref. [21]):

c(q)V

(
T � T(0)

cq , Vq = 0
)
≈ 3
√

2
π3/2

T(0)
cq

T
π

eγ

5/2

exp

−T(0)
cq

T
π

eγ

c(q)N (T), (1)

c(q)N being the corresponding specific heat in the normal phase and γ ' 0.577216 denoting
the Euler–Mascheroni constant; the specific heat in the gapless state is comparable to that
in the normal phase, and is approximately given by [17]:

c(q)V

(
T � T(0)

cq ,Vq > VLq

)
≈

√√√√√1−

∆q
(
Vq
)

∆(0)
q

VLq

Vq

2

c(q)N (T), (2)

and ∆q is accurately given by the following interpolation [16]:

∆q
(
Vq > VLq

)
∆(0)

q

= 0.5081

√
1−

2Vq

eVLq

(
2.437

Vq

VLq
− 4.443

√
VLq

Vq
+ 5.842

)
. (3)

The ratio between the specific heat in the gapless state and that in the normal phase is,
therefore, an increasing universal function of Vq/VLq.

3. Astrophysical Consequences

Gapless superfluidity has important implications for the cooling of neutron stars, and
in particular, for the interpretation of the thermal emission from quasipersistent soft X-ray
transients, as studied in [18]. These binary systems consist of a neutron star whose crust
is sporadically heated due to mass transfer from a low-mass stellar companion for a long
period of time (from years to decades) before entering a cooling phase when the accretion
stops. The thermal relaxation has been observed for several sources up to about 104 days
after outbursts [22] and is governed by the diffusion of heat in the inner crust of neutron
stars, which is made of ions, free electrons and superfluid neutrons (see, e.g., [23]).

Let us recall that the typical thermal timescale of a crustal layer, delimited by the radial
coordinates rmin and rmax, is given by [24]:

τ ≈ 1
4

(∫ rmax

rmin

dr
√

cV
κ

)2

, (4)

where κ is the thermal conductivity and cV is the total specific heat. Thus far, the neutron
contribution to the crustal specific heat has been generally thought to be negligible, assum-
ing superfluid neutrons are in the classical BCS state. In this case, the thermal relaxation
is expected to be much faster if neutrons are superfluid since τ is shorter according to
Equation (4). To explain the observed late time cooling of some sources, some authors pro-
posed that neutrons are not superfluid in the deepest region of the crust [25,26]. However,
this interpretation has been recently ruled out by microscopic calculations [27,28].

Astrophysical observations and nuclear physics can be reconciled by allowing neutrons
to be in the gapless superfluid state, as we show in ref. [18]. Indeed, the neutron specific
heat is then strongly enhanced compared to that in the BCS state and can now dominate
the electronic and ionic contributions even when considering realistic nuclear pairing
properties [27,28]. The end result is a delayed thermal relaxation of the neutron star crust,
as observed.
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4. Conclusions

Considering the dynamics of nuclear superfluidity in the framework of the self-
consistent time-dependent nuclear energy-density functional theory [15,16], we have shown
that the energy spectrum of quasiparticle excitations exhibits no gap while the order param-
eter ∆q remains finite at low temperatures for effective superfluid velocities Vq exceeding

Landau’s velocity VLq, but lower than the critical velocity V(0)
cq .

Contrary to the classical BCS state, the gapless state is characterized by a very large
specific heat comparable to that in the normal phase. This specific heat at low temperatures
is shown to be a universal function of Vq/VLq. Full details are given in Ref. [17].

Focusing on the inner crust of neutron stars, we have shown in Ref. [18] that the
drastic increase in the neutron specific heat can solve the apparent contradiction between
the observed late time cooling of quasi persistent soft X-ray transients and microscopic
nuclear pairing calculations.
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