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1 The Cramér-Rao lower bound

The Cramér-Rao inequality gives a lower bound for the variance of an unbiased
estimator of a parameter. It is named after work by Cramér (1946) and Rao
(1945). The inequality and the corresponding lower bound in the inequality are
stated for various situations. We will start with the case of a scalar parameter
and independent and identically distributed random variables X1, . . . , Xn, with
the same distribution as X.

Denote X = (X1, . . . , Xn) and denote the common probability mass function
or probability density function of X at a value x by f(x; θ) where θ ∈ Θ, which
is a subset of the real line R and x ∈ R. Denote the support of X by R, that is,
R = {x : f(x; θ) > 0}.

Assumptions.

(i) The partial derivative ∂
∂θ log f(x; θ) exists for all θ ∈ Θ and all x ∈ R and

it is finite. This is equivalent to stating that the Fisher information value

IX(θ) = E
[(

∂
∂θ log f(X; θ)

)2]
is well defined, for all θ ∈ Θ.

(ii) The order of integration and differentiation in
∫

∂
∂θ log f(x; θ)dx is inter-

changeable. If the support of X, that is, the set R, is finite, then the in-
terchangeability is equivalent with the condition that the support does not
depend on θ. A counter-example on uniformly distributed random variables
is elaborated below.
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The Cramér-Rao inequality

Under assumptions (i) and (ii), if θ̂ = g(X) is an unbiased estimator of θ, this

means that E[θ̂] = θ, then

var(θ̂) ≥ 1/ [n · IX(θ)] .

The lower bound in this inequality is called the Cramér-Rao lower bound.

The proof starts by realizing that the correlation of the score V = ∂
∂θ

∑n
i=1 log fX(Xi; θ)

and the unbiased estimator θ̂ is bounded above by 1. This implies that
(
var(V ) ·

var(θ̂)
)1/2 ≥ cov(V, θ̂). The assumptions are needed to prove that the expected

score E(V ) is zero. This implies that the covariance cov(V, θ̂) = 1, from which the
stated inequality readily follows.

A second version of the Cramér-Rao inequality holds if we estimate a func-
tional κ = H(θ). Under assumptions (i) and (ii), if X is a sample vector of in-
dependent observations from random variable X with density function f(x; θ) and

κ̂ = h(X) is an unbiased estimator of H(θ), such that the first derivative dH(θ)
dθ

exists and is finite for all θ, then

var(κ̂) ≥
[
dH(θ)

dθ

]2
/ [n · IX(θ)] .

Similar versions of the inequality can be phrased for observations that are
independent but not identically distributed.

In the case of a vector parameter θ, the variance of the single parameter esti-
mator var(θ̂) is replaced by the covariance matrix of the estimator vector Σθ̂. This
matrix is bounded by a matrix expression containing the inverse of the Fisher in-
formation matrix, where bounded means that the difference between the covariance
matrix and its “upper bound” is negative semidefinite matrix.

The Cramér-Rao inequality is important because it states what the best at-
tainable variance is for unbiased estimators. Estimators that actually attain this
lower bound are called efficient. It can be shown that maximum likelihood estima-
tors asymptotically reach this lower bound, hence are asymptotically efficient.

2 Cramér-Rao and UMVUE

If X is a sample vector of independent observations from the random variable X
with density function fX(x; θ) and θ̂ = g(X) is an unbiased estimator of θ, then

var(θ̂) = 1/ [n · IX(θ)] ⇔ θ̂ = aV + b with probability one, where V is the score
and a and b are some constants. This follows from the proof of the Cramér-Rao
inequality: the lower bounded is reached if the correlation between the score and

the estimator is one. This implies that var
(

V
σV

+ θ̂
σθ̂

)
= 0 ⇒ V

σV
+ θ̂

σθ̂
= c almost

surely for some constant c. We here used the notation σX to denote the standard
deviation of a random variable X.
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The coefficients a and b may depend on θ, but θ̂ should be observable without
knowing θ.

If a and b exist such that θ̂ is unbiased and observable, then θ̂ has the smallest
possible variance among all unbiased estimators: it is then certainly the uniformly
minimum variance unbiased estimator (UMVUE).

It may, however, be well possible that no a and b can be found. In that case,
the UMVUE, if it exists, does not reach the Cramér-Rao lower bound. In that case,
the notion of sufficiency can be used to find such UMVUE.

Counter example: estimators for the upperbound of uniform
data

Let X ∼ unif[0, a], so fX(x) = 1
aI(0 ≤ x ≤ a), where I(c ≤ x ≤ d) is the indicator

function of the interval [c, d]. We want to estimate a. The maximum likelihood
estimator (MLE) is âMLE = max

i=1,...,n
Xi, which is biased. Define âu = n

n−1 âMLE,

which is unbiased. The method of moments leads to an estimator âMME = 2X,
which is also unbiased. The score is Vi =

∂
∂a log fX(Xi; a) = − 1

a . This is a constant
(so, not a random variable), whose expected value is of course not zero. This
is because the partial derivative and expectation cannot be interchanged, as the
boundary of the support of X depends on a. As a consequence, the Cramér-Rao
lower bound is not valid here. We can verify that var(âMLE) =

n
(n+2)(n+1)2 a

2 and

var(âu) = 1
n(n+2)a

2. This is (for n → ∞) one order of magnitude smaller than

var(âMME) =
1
3na

2 and also one order of magnitude smaller than what you would
expect for an unbiased estimator if the Cramér-Rao inequality would hold.

3 A Bayesian Cramér-Rao bound

It should be noted that biased estimators can have variances below the Cramér-Rao
lower bound. Even the MSE (mean squared error), which equals the sum of the
variance and the squared bias can be lower than the Cramér-Rao lower bound (and
hence lower than any unbiased estimator could attain). A notable example in this
respect is Stein’s phenomenon on shrinkage rules (Efron and Morris, 1977).

In practice, large classes of estimators, for example most nonparametric es-
timators, are biased. An inequality that is valid for biased or unbiased estimators
is due to van Trees (1968, p. 72), see also Gill and Levit (1995) who developed
multivariate versions of the inequality.

We assume that the parameter space Θ is a closed interval on the real line and
denote by g some probability distribution on Θ with density λ(θ) with respect to the
Lebesgue measure. This is where the Bayesian flavor enters. The θ is now treated
as a random variable with density λ. We assume that λ and f(x; ·) are absolutely
continuous and that λ converges to zero at the endpoints of the interval Θ. Moreover
we assume that E[ ∂

∂θ log f(X; θ)] = 0. We denote I(λ) = E[{log λ(θ)}2] and have
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that E[IX(θ)] =
∫
IX(θ)g(θ)dθ. Then, for an estimator θ̂ = θ̂(X), it holds that

E[{θ̂ − θ}2] ≥ 1

E[IX(θ)] + I(λ)
.

A second form of this inequality is obtained for functionals κ = H(θ). Under
the above assumptions, for an estimator κ̂ = h(X) of H(θ), such that the first

derivative dH(θ)
dθ exists and is finite for all θ,

E[{κ̂−H(θ)}2] ≥
{E[ d

dθH(θ)]}2

E[IX(θ)] + I(λ)
.
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