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1 Meanings of the word “nonparametric”

The terminology nonparametric has been introduced by Wolfowitz in 1942 to en-
compass a group of statistical techniques for situations where one does not specify
the functional form of the distributions of the random variables that one is dealing
with. In its earlier form, this comprised mainly methods working with rank statis-
tics, and was also coined “distribution free” methods. Most often these methods are
applied to perform hypothesis tests. For an example of such a hypothesis test, see
the entry by Jurec̆ková (same volume). Other examples include the Kolmogorov-
Smirnov test, the runs test, sign test, Wilcoxon signed rank test, the Mann-Whitney
U -test and Fisher’s exact test. For an overview and details, see Hollander and Wol-
fowitz (1999). This type of nonparametric methods has the advantage that it can
be applied to ordinal and rank data; the data may be frequencies or counts, and
do not have to be measured on a continuous scale.

In more recent times, nonparametric statistics has evolved to settings where a
model for the data is not specified a priori, but is in some form determined from the
data. This will be explained in more detail below. In such nonparametric models
there are parameters to estimate, even many parameters in most cases, hence the
name-giving might be somewhat misleading. Main examples of such estimation
methods are kernel estimators, splines and wavelet estimators. These techniques
are also known as “smoothing methods”.

2 Nonparametric regression estimation

In parametric regression models we relate the mean of a response variable Y , condi-
tional on covariates X via a parametric function. For example, in linear regression
models, we assume that Y = β0+Xβ1+ε, where β0 and β1 are unknown parameter
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vectors and ε is often assumed to be a normal random variable with zero mean and
an unknown variance σ2. In nonparametric regression we do not specify the func-
tional form for the conditional mean of Y and write the model as Y = f(X) + ε,
where X may be random, or take fixed values. The terminology smoothing arises
from the commonly made assumption for most methods (however, see the wavelet
section below) that the unspecified function f is smooth.

Nonparametric estimation starts with choosing a basis which defines a space
of functions. The function f is then approximated within this space by f̃(x) =∑J

j=1 βjψj(x). The basis functions may also depend on further parameters, spec-
ifying for example the location. These may be estimated or specified in advance.
Fourier series are one example. Nonparametric estimation of f then proceeds with
estimating the unknown parameters. Spaces of functions are often infinite dimen-
sional, hence the number of basis functions to be used, J in the above sum, is
a tuning parameter. The more basis functions taken, the better the approxima-
tion will be, in general. However, estimating more parameters comes at a cost of
increased variance and increased computational effort.

The smoothing methods are in a similar way used for the estimation of density
functions. While histograms give rough approximations, the nonparametric den-
sity estimators are smooth curves. For nonparametric density estimation, splines,
wavelets or kernels may be used. For the latter method, see for example Wand and
Jones (1995).

2.1 Spline estimation

The choice of the basis characterizes the estimated function. Often taken choices are
spline functions. A jth degree polynomial spline is a curve that consists of piecewise
jth degree polynomial parts that are continuously joined together at knots. The
smoothness of the resulting function depends on whether also the higher derivatives
of the spline are continuous. When each observation xi, i = 1, . . . , n is taken as a
knot, this results in a smoothing spline. When a set of knots κ1, . . . , κK is chosen,
withK < n, the sample size, the function is a regression spline. In cases thatK < n,
estimation of the unknown spline coefficients βj can be done via least squares in
case of (approximate) normal errors ε. For smoothing splines, one introduces a
penalty term that is related to the derivatives of f . Also for regression splines,
penalties on the coefficients may be stated, to reduce the influence of the choice
of the knots. This results in penalized regression splines. An expanded description
of spline regression methods can be found in the entry by Opsomer and Breidt
(same volume). Some main references are Eubank (1988), Wahba (1990), Green
and Silverman (1994) and Ruppert, Wand and Carroll (2003).

2.2 Wavelet estimation

Thanks to a fast decomposition algorithm (Mallat, 1989), wavelet bases have gained
considerable success as a representation for data to be smoothed. Wavelet basis
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functions are short waveforms located at a specific point in time or space and with
a specific scale. This locality in time and frequency provides a tool for a multiscale
and sparse representation of data. Especially piecewise smooth data, with isolated
singularities, or data with otherwise intermittent behavior are typical objects for
which wavelets are well suited. Indeed, the singularities can be captured by a
relatively limited number of local wavelet basis functions, with appropriate scales,
while the smooth intervals in between the singularities produce many but small
contributions in a wavelet decomposition.

While other methods may have difficulties in catching singularities, in a
wavelet decomposition they pose no bottleneck, provided that at the position of a
singularity the wavelet representation is locally more refined than in between the
singularities. The location of the singularities is done automatically, even in the
presence of noise, by the fact that the coefficients corresponding to the basis func-
tions at those positions are large, as they carry the contributions that constitute
the singularity. Singularities are thus well captured by selecting the largest coef-
ficients, rather than a predetermined subset. Putting the smallest coefficients to
zero therefore removes most of the noise without affecting the noise-free data too
much. The usage of this thresholding or any sophisticated variant, which is always a
nonlinear processing, is the main argument for using a wavelet decomposition. The
nonlinear processing (keeping in mind that the wavelet forward transform and re-
construction themselves are linear) relates directly to the intermittent nature of the
data, i.e., the presence of isolated singularities in otherwise smooth behavior. The
use of thresholds relies on the sparsity property of a wavelet respresentation. The
multiscale property, on the other hand, is mostly used for additional across-scale
processing, for instance to remove false positives after thresholding (for smoother
intervals between singularities) or to correct for false negatives by looking across
scales (for sharper reconstruction of singularities). Also scale dependent process-
ing is necessary in the case of correlated noise on the observations (Donoho and
Johnstone, 1995).

The selection of appropriate thresholds has been a major domain of research.
Limiting or even reducing to zero the number of false positives is the objective of
an important class of thresholds, including the universal threshold (Donoho and
Johnstone, 1994) or False Discovery Rate thresholds (Benjamini and Hochberg,
1995). Another class of thresholds focusses on the expected, integrated squared loss,
i.e., risk, of the result. Stein’s Unbiased Risk Estimator and modifications (such
as cross-validation) provide practical methods for finding minimum risk thresholds.
A third, and wide class of threshold assessment methods is based on Bayesian —
mostly empirical Bayes — models, such as EBayesthresh (Johnstone and Silverman,
2004, 2005). The prior model for noise-free coefficients reflects the idea of sparsity,
mostly through a zero-inflated or otherwise mixture model with heavy tails (where
heavy here includes everything heavier than the normal distribution).
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2.3 Kernel and local polynomial estimation

Kernel estimation of a regression function starts from the idea that the function is
locally well approximated by a low order polynomial curve. The Nadaraya-Watson
estimator locally approximates the curve f at value x by a constant regression
function. Observations Xi close to x get a large weight, and observations further
away receive less or zero weight. The kernel function K determines the weighting
and is assumed to be a density function. The estimator takes the following form,
f̂h(x) =

∑n
i=1Kh(x−Xi)Yi

/∑n
i=1Kh(x−Xi), where h is called the bandwidth.

This is a tuning parameter, small values of h imply that only close neighbours
get a large weight, this might result in a rather wiggly fit. Large values of h
will result in much smoother fitted curves. Several studies have focussed on ap-
propriate bandwidth choices, for example via cross-validation or plug-in methods
based on asymptotic properties of the estimator. Variants on this estimator are
the Priestley-Chao and Gasser-Müller estimator. Local polynomial estimators are
similar in spirit. Instead of taking a local constant approximation of the function
f around x, a local polynomial approximation is obtained. More information on
kernel regression methods can be found in the entry by Opsomer and Breidt (same
volume). For more details, see Fan and Gijbels (1996).

3 Other applications of nonparametric estimation

Nonparametric estimation is used beyond the classical regression models and den-
sity estimation as well. Examples of its use are found in functional data analysis
and functional regression models where the response or some of the covariates, or
both, are functions (Hsing and Eubank, 2015). A flexible modeling of generalized
additive models makes use of nonparametric estimators, and in particular spline
estimators, to estimate smooth functions for the location, scale and shape param-
eters of the wide class of distributions that fits in this framework (Rigby, et al.,
2019).
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