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Abstract TALYS is a software package for the simulation
of nuclear reactions below 200 MeV. It is used worldwide
for the analysis and prediction of nuclear reactions and is
based on state-of-art nuclear structure and nuclear reaction
models. A general overview of the implemented physics and
capabilities of TALYS is given. The general nuclear reaction
mechanisms described are the optical model, direct reactions,
compound nucleus model, pre-equilibrium reactions and fis-
sion. The most important nuclear structure models are those
for masses, discrete levels, level densities, photon strength
functions and fission barriers. A wide variety of nuclear reac-
tions simulated with TALYS will be demonstrated, ranging
from low-energy neutron cross sections, astrophysics, high-
energy charged particle reactions and other reactions. TALYS
is a nuclear reaction software which aims to give a com-
plete description of nuclear reaction observables, and to be
an important link between fundamental nuclear physics and
applications.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . .
2 Nuclear reactions . . . . . . . . . . . . . . . . . . . .

2.1 Observables . . . . . . . . . . . . . . . . . . . .
2.2 Reaction mechanisms . . . . . . . . . . . . . . .

2.2.1 Low energies . . . . . . . . . . . . . . . .
2.2.2 High energies . . . . . . . . . . . . . . . .

2.3 Cross section definitions . . . . . . . . . . . . .
2.3.1 Exclusive cross sections . . . . . . . . . .
2.3.2 Binary cross sections . . . . . . . . . . . .
2.3.3 Total particle production cross sections . .

a e-mail: A.Koning@iaea.org (corresponding author)
b e-mail: Stephane.Hilaire@cea.fr
c e-mail: Stephane.Goriely@ulb.be

2.3.4 Residual production cross sections . . . . .
2.3.5 Gamma-ray production cross sections . . .
2.3.6 Fission cross sections . . . . . . . . . . . .

2.4 Spectra and angular distributions . . . . . . . . .
2.4.1 Discrete angular distributions . . . . . . .
2.4.2 Exclusive spectra . . . . . . . . . . . . . .
2.4.3 Binary spectra . . . . . . . . . . . . . . .
2.4.4 Total particle production spectra . . . . . .
2.4.5 Double-differential cross sections . . . . .
2.4.6 Recoils . . . . . . . . . . . . . . . . . . .

3 Optical model . . . . . . . . . . . . . . . . . . . . .
3.1 Spherical OMP: neutrons and protons . . . . . .

3.1.1 Dispersive OMP: neutrons . . . . . . . . .
3.1.2 Semi-microscopic JLMB OMP . . . . . . .
3.1.3 Extension to 1 GeV . . . . . . . . . . . . .

3.2 Deformed OMP: neutrons . . . . . . . . . . . . .
3.3 Spherical OMP: complex particles . . . . . . . .

3.3.1 Deuterons . . . . . . . . . . . . . . . . . .
3.3.2 Tritons . . . . . . . . . . . . . . . . . . .
3.3.3 Helium-3 . . . . . . . . . . . . . . . . . .
3.3.4 Alpha particles . . . . . . . . . . . . . . .

3.4 OMP continuity and parameter adjustment . . . .
4 Direct reactions . . . . . . . . . . . . . . . . . . . . .

4.1 Distorted Wave Born Approximation . . . . . . .
4.2 Deformed nuclei: Coupled channels . . . . . . .

4.2.1 Symmetric rotational model . . . . . . . .
4.2.2 Harmonic vibrational model . . . . . . . .
4.2.3 Vibration-rotational model . . . . . . . . .
4.2.4 Asymmetric rotational model . . . . . . . .

4.3 Odd nuclei: Weak coupling . . . . . . . . . . . .
4.4 Giant resonances . . . . . . . . . . . . . . . . .

5 Compound nucleus reactions . . . . . . . . . . . . . .
5.1 Binary compound cross section and angular dis-

tribution . . . . . . . . . . . . . . . . . . . . . .
5.2 Width fluctuation correction factor . . . . . . . .

5.2.1 The HRTW method . . . . . . . . . . . . .

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epja/s10050-023-01034-3&domain=pdf
mailto:A.Koning@iaea.org
mailto:Stephane.Hilaire@cea.fr
mailto:Stephane.Goriely@ulb.be


  131 Page 2 of 85 Eur. Phys. J. A           (2023) 59:131 

5.2.2 Moldauer expression . . . . . . . . . . . .
5.2.3 The GOE triple integral . . . . . . . . . . .

5.3 Thermal and resonance energy range . . . . . . .
6 Pre-equilibrium reactions . . . . . . . . . . . . . . .

6.1 Two-component exciton model . . . . . . . . . .
6.2 Photon exciton model . . . . . . . . . . . . . . .
6.3 Pre-equilibrium spin distribution . . . . . . . . .
6.4 Continuum stripping, pick-up, break-up and

knock-out reactions . . . . . . . . . . . . . . . .
6.4.1 Transfer reactions . . . . . . . . . . . . . .
6.4.2 Knockout reactions . . . . . . . . . . . . .
6.4.3 Break-up reactions . . . . . . . . . . . . .

6.5 Angular distribution systematics . . . . . . . . .
7 Direct capture . . . . . . . . . . . . . . . . . . . . .
8 Multiple emission . . . . . . . . . . . . . . . . . . .

8.1 Multiple Hauser–Feshbach decay . . . . . . . . .
8.2 Multiple pre-equilibrium emission . . . . . . . .
8.3 Initially populated target nuclei . . . . . . . . . .

9 Nuclear masses and deformations . . . . . . . . . . .
9.1 Experimental nuclear masses . . . . . . . . . . .
9.2 Theoretical nuclear masses . . . . . . . . . . . .
9.3 Deformation parameters . . . . . . . . . . . . .
9.4 Isotopic abundances . . . . . . . . . . . . . . . .

10Discrete levels . . . . . . . . . . . . . . . . . . . . .
10.1 Completeness and property assignment . . . . . .
10.2 Coupling schemes for deformed nuclides . . . . .

11Level densities . . . . . . . . . . . . . . . . . . . . .
11.1 Phenomenological level densities . . . . . . . . .

11.1.1The Fermi Gas Model . . . . . . . . . . .
11.1.2The level density parameter a . . . . . . . .
11.1.3The spin cut-off parameter . . . . . . . . .
11.1.4Constant temperature model . . . . . . . .
11.1.5The Back-shifted Fermi gas Model . . . . .
11.1.6Collective effects in the level density . . . .

11.2 Microscopic level densities . . . . . . . . . . . .
12Photon strength functions and transmission coefficients

12.1 Analytical Lorentzian-type models for PSFs . . .
12.1.1Standard Lorentzian model . . . . . . . . .
12.1.2Generalized Lorentzian model . . . . . . .
12.1.3Hybrid model . . . . . . . . . . . . . . . .
12.1.4Parameters for the SLO, GLO and hybrid

models . . . . . . . . . . . . . . . . . . .
12.1.5SMLO model . . . . . . . . . . . . . . . .

12.2 Microscopic models for PSFs . . . . . . . . . . .
12.2.1Skyrme-Hartree-Fock plus QRPA model . .
12.2.2Relativistic Mean Field plus QRPA model .
12.2.3Gogny-Hartree-Fock-Bogoliubov plus QRPA

model . . . . . . . . . . . . . . . . . . . .
12.3 Additional dipole contribution . . . . . . . . . .

12.3.1The low-energy enhancement . . . . . . .
12.3.2Pygmy resonances . . . . . . . . . . . . .

12.4 Adjustment of the PSF . . . . . . . . . . . . . .
12.4.1Photoabsorption cross section . . . . . . .

12.5 Isospin forbidden transitions . . . . . . . . . . .
13Fission . . . . . . . . . . . . . . . . . . . . . . . . .

13.1 Fission transmission coefficients . . . . . . . . .
13.1.1Single humped barrier . . . . . . . . . . .
13.1.2Multiple-humped barriers . . . . . . . . .

13.2 Fission barrier parameters . . . . . . . . . . . . .
13.3 Fission barrier level densities . . . . . . . . . . .

13.3.1Explicit treatment of collective effects . . .
13.3.2Effective treatment of collective effects . .

13.4 Class II/III states . . . . . . . . . . . . . . . . .
13.4.1Double humped fission barrier . . . . . . .
13.4.2Triple humped fission barrier . . . . . . . .

14Fission yields and neutron and gamma observables . .
14.1 Fission fragment distribution models . . . . . . .

14.1.1GEF model . . . . . . . . . . . . . . . . .
14.1.2HF3D model . . . . . . . . . . . . . . . .
14.1.3SPY model . . . . . . . . . . . . . . . . .
14.1.4TALYS applications . . . . . . . . . . . .

14.2 High energies: temperature-dependent Brosa model
15Astrophysical reaction rates . . . . . . . . . . . . . .
16Illustration of TALYS calculations . . . . . . . . . . .

16.1 Radiative neutron capture . . . . . . . . . . . . .
16.2 Photoneutron cross sections . . . . . . . . . . . .
16.3 (n, xnγ ) cross sections . . . . . . . . . . . . . .
16.4 Actinides and fission cross sections . . . . . . . .
16.5 Astrophysical rates . . . . . . . . . . . . . . . .
16.6 Radionuclide production . . . . . . . . . . . . .
16.7 High-energy models . . . . . . . . . . . . . . . .

17TALYS in a larger system . . . . . . . . . . . . . . .
18Outlook . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction

The fundamentals of nuclear models for low and intermedi-
ate energy nuclear reactions were laid down around 60 to 80
years ago and we still make use of their basic features. Our
compact, subjective list of important nuclear models devel-
oped in history would include the liquid drop model for mass
and fission predictions, the Fermi gas model of nuclear level
densities and the Breit-Wigner model to describe neutron
resonance reactions, which stem from before the 1940s. The
optical model for nucleon scattering and statistical compound
nucleus model date from the 1950s and these models still rep-
resent the foundation of the current nuclear reaction model-
ing in the fast energy range. Important additions from the
1960s are the width fluctuation corrections to the statistical
model, the coupled-channels model for direct reactions and
the pre-equilibrium nuclear reaction mechanism.

Today, one can state that nuclear reaction mechanisms
can be broadly divided into direct and compound nucleus
reaction processes with pre-equilibrium reactions as an inter-
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mediate phenomenon between those two. For these reac-
tion models to correctly predict nuclear reaction observ-
ables, they need to be combined with nuclear structure infor-
mation, in particular nuclear masses, deformation param-
eters, discrete level information, level densities, photon
strength functions, optical potentials and fission paths. All
the aforementioned models have been modernized by the
nuclear physics community in the past decades and the pur-
pose of this paper is to show that these models, includ-
ing most of the essential refinements, have been imple-
mented into one consistent computational scheme called
TALYS.

Besides the gradual advance in nuclear theories and the
availability of more and more precise experimental data for
their validation, an important revolution for nuclear reac-
tion modeling that has taken place in the past decades is the
exponential increase in computer power, in particular for the
possibility

• to analyze not only one nuclear reaction channel, but all
competing reaction reaction channels, for many energies
and nuclides simultaneously,

• to implement nuclear models with less and less approxi-
mations,

• to obtain basic ingredients for nuclear reaction calcula-
tions from fundamental nuclear structure models,

• to implement nuclear models in a readable and structured
way enabling future generations of computer scientists to
understand and reuse them,

• to use a more systematic, standardized interface for data
to other software, enlarging the possibilities and applica-
tions for nuclear reaction model codes.

The above outline of the essentials of nuclear reac-
tion modeling provided the motivation to develop TALYS,
which is a computer program for the analysis and predic-
tion of nuclear reactions that involve photons, neutrons, pro-
tons, deuterons, tritons, 3He- and alpha-particles as pro-
jectiles, in the 0–200 MeV energy range for almost the
entire nuclide chart. We have implemented a large suite
of nuclear reaction models into a single software package
to ensure that this entire particle-nuclide-energy domain is
covered.

There are two main purposes of TALYS, which are
strongly connected. First, it is a nuclear physics tool that
can be used for the analysis of nuclear reaction experiments.
The interplay between experiment and theory gives us insight
in the fundamental interaction between particles and nuclei,
and precise measurements enable us to constrain our mod-
els. In return, when the resulting nuclear models are believed
to have sufficient predictive power, they can give an indica-
tion of the reliability of measurements. Currently, TALYS has
been used, or at least cited, in about 6000 different papers, and

Fig. 1 Current segmentation of TALYS publications by application
area

a significant part of them concerns the analysis of existing or
new measurements. It is clear that our software project would
be nowhere without an extensive and high-quality experi-
mental database for validation of nuclear models and their
parameters.

After the nuclear physics stage comes the second func-
tion of TALYS, namely as a nuclear data tool. Either in
a default mode, when no measurements are available, or
after fine-tuning adjustable parameters of the various reac-
tion models to match experimental data, TALYS can gener-
ate nuclear data for all open reaction channels, on a user-
defined projectile-target-energy-angle grid. Accurate, reli-
able nuclear data is essential for existing and new nuclear
technologies. Important applications that rely directly or indi-
rectly on data generated by nuclear reaction simulation codes
like TALYS are: the entire fuel cycle of conventional and
future nuclear power reactors, medical isotope production,
nuclear fusion, accelerator applications, various branches of
astrophysics, space applications, homeland security, radio-
therapy, single-event upsets in microprocessors, geophysics
and many more. Figure 1 gives an arbitrary division of the
current use of TALYS in various fields.

The TALYS code project started around 2000, when two
research organisations, NRG Petten, the Netherlands and
CEA-DAM Bruyères-le-Châtel, France, decided to imple-
ment their combined knowledge of nuclear models into one
single software package. Since then, virtually all TALYS
development has taken place at NRG and CEA-DAM, later
also at the Université Libre de Bruxelles (Belgium), and in
recent years at the IAEA in Vienna.

In its first decade, the development of TALYS used to
follow the “first completeness, then quality” principle. With
that, we certainly never suggested that we were using toy
models to arrive at some quick and dirty results, since sev-
eral reaction mechanisms coded in TALYS are based on
sophisticated theoretical models whose implementation is
only possible with the current-day computer power. It rather
means that, in our quest for completeness, we try to divide

123



  131 Page 4 of 85 Eur. Phys. J. A           (2023) 59:131 

our effort equally among all nuclear reaction types. The pre-
cise description of all possible reaction channels in a sin-
gle calculational scheme is such an enormous task that we
have chosen, to put it bluntly, not to devote several years
to the theoretical research and absolutely perfect implemen-
tation of one particular reaction channel which accounts
for only a small part of the total reaction cross section.
Instead, we aim to enhance the quality of TALYS equally
over the whole application range and always search for
the largest shortcoming that remains after the last improve-
ment. We now think that “completeness and quality” has
been accomplished for several important parts of the pro-
gram. The reward of this approach is that with TALYS we
can cover the whole path from fundamental nuclear reac-
tion models to the creation of complete data libraries for
nuclear applications, with the obvious side note that the
implemented nuclear models will always need to be upgraded
using better physics. An additional objective since the begin-
ning of TALYS development is full transparency of the
implemented nuclear models, in other words, an understand-
able source program, and coding structure as modular as
possible.

The idea to construct a computer program that gives a
simultaneous prediction of many nuclear reaction channels,
rather than a very detailed description of only one or a few
reaction channels, is not new. Well-known examples of all-in-
one open source codes from the past century are GNASH [1],
ALICE [2], STAPRE [3], and EMPIRE [4]. They have been,
and are still, used not only for research but also for the cre-
ation of the nuclear data libraries that exist around the world.
All these codes have helped to shape the ideas for the devel-
opment of TALYS.

TALYS is newer in the sense that it has been written
entirely from scratch in the 21st century (with the excep-
tion of one very essential module, the coupled-channels code
ECIS-06 [5]), using a consistent set of programming proce-
dures and a strong focus on validation and reproducibility.
To complete our list of nuclear model reaction codes we also
mention other important codes of the past decades which
are currently in use: CoH3 [6], Ccone [7] and YAHFC [8],
which like TALYS are designed around the optical and statis-
tical model. To our knowledge, not all these codes are (yet)
open source however.

What probably sets TALYS apart is the very large user
database, currently leading to more than 6000 publications
in which TALYS is cited, and which also provided feedback
over the years to help us make the code more user-friendly
and robust.

As specific features of the TALYS package we mention

• In general, an exact implementation of many of the lat-
est nuclear models for direct, compound, pre-equilibrium
and fission reactions.

• A continuous, smooth description of reaction mecha-
nisms over a wide energy and mass range. A safe state-
ment is that these limits are 0.001–200 MeV and 12 <

A < 339, but it is computationally possible to go beyond
that.

• Completely integrated optical model and coupled-
channels calculations by the ECIS-06 code [5].

• Incorporation of optical model parameterisations for
many nuclei, both phenomenological, optionally includ-
ing dispersion relations, and microscopic, and for
actinides from the IAEA Reference Input Parameter
Library [9] (RIPL).

• Total and partial cross sections, energy spectra, angular
distributions, double-differential spectra and recoils.

• Discrete and continuum photon production cross sec-
tions.

• Excitation functions for residual nuclide production,
including isomeric cross sections.

• An exact modeling of exclusive channel cross sections,
e.g. (n, 2np), and spectra.

• Automatic reference to nuclear structure parameters as
masses, discrete levels, resonances, level density parame-
ters, deformation parameters, fission barrier and gamma-
ray parameters, generally from the RIPL database but
also beyond that.

• Various width fluctuation models for binary compound
reactions and, at higher energies, multiple Hauser-
Feshbach emission until all reaction channels are closed.

• Various phenomenological and microscopic models for
ground-state properties, level densities, photon strength
functions, optical model potentials, and fission proper-
ties.

• Various fission models to predict cross sections, fission
fragment and product yields, neutron and gamma multi-
plicities, and prompt fission neutron and gamma spectra.

• Models for pre-equilibrium reactions, and multiple pre-
equilibrium emission up to any order.

• Generation of parameters for the unresolved resonance
range.

• Reconstruction of resonance range into pointwise cross
sections using tabulated resonance parameters.

• Calculation of astrophysical reaction rates based on a
Maxwell-Boltzmann distribution for incident projectiles
(or a Planck distribution for incident photons).

• Option to start with an excitation energy distribution
instead of a projectile-target combination, helpful for
coupling TALYS with intranuclear cascade codes or fis-
sion fragment analyses, or for calculating β-delayed pro-
cesses.

• Use of systematics if an adequate theory for a particular
reaction mechanism is not yet available or implemented,
or simply as a predictive alternative for more physical
nuclear models.
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• Medical isotope production yields as a function of accel-
erator energy and beam current.

• Output files for automatic generation of nuclear data in
ENDF-6 format [10] using the TEFAL program [11].

• Flexible input and output to enable automatic optimiza-
tion to experimental data and generation of covariance
data by the TASMAN program [11] using Monte Carlo
techniques.

• A transparent source program.
• Input/output communication that is easy to use and under-

stand.
• An extensive tutorial and descriptive manual.
• A large collection of sample cases.
• Publicly available, regularly updated, and major upgrades

bi-annually released.

The last 7 items in the above list will not be further dis-
cussed in the remaining Sections of this paper, since this is not
a tutorial but a TALYS review paper, focussing on the physics.
The central message is that we always provide a complete set
of answers for a nuclear reaction, for all open channels and
all associated cross sections, spectra, angular distributions,
etc. It depends on the current status of nuclear reaction the-
ory, and our ability to implement that theory, whether these
answers are generated by sophisticated physical methods or
by a simpler empirical approach.

This paper consists globally of three parts:

• Nuclear reaction models
In Sect. 2 we will first give a global introduction of
TALYS, including a general discussion of nuclear reac-
tions and the types of observables that can be obtained.
After that we will focus on the nuclear reaction models:
the optical model in Sect. 3, direct reactions in Sect. 4,
compound nucleus reactions in Sect. 5, pre-equilibrium
reactions in Sect. 6, direct capture in Sect. 7, and multiple
emission in Sect. 8.

• Nuclear structure ingredients
Nuclear structure models for masses and deformations
are discussed in Sect. 9, discrete levels in Sect. 10, level
densities in Sect. 11, photon strength functions in Sect. 12
and fission in Sect. 13.

• TALYS applications
Astrophysics will be discussed in Sect. 15 and fission
yields in Sect. 14. An illustration of the use of TALYS
for several nuclear reaction calculations will be given in
Sect. 16. The use of TALYS in a wider application system
will be discussed in Sect. 17.

We end this paper with an outlook in Sect. 18.

2 Nuclear reactions

An outline of the general theory and modeling of nuclear
reactions can be given in many ways. A common classifi-
cation is in terms of time scales: short reaction times are
associated with direct reactions and long reaction times with
compound nucleus processes. At intermediate time scales,
pre-equilibrium processes occur. An alternative, more or less
equivalent, classification can be given with the number of
intranuclear collisions, which is one or two for direct reac-
tions, a few for pre-equilibrium reactions and many for com-
pound reactions, respectively. As a consequence, the cou-
pling between the incident and outgoing channels decreases
with the number of collisions and the statistical nature of the
nuclear reaction theories increases with the number of colli-
sions. Figures 2 and 3 explain the role of the different reaction
mechanisms during an arbitrary nucleon-induced reaction in
a schematic manner. They will all be discussed in this paper.

The collection of nuclear models and their inputs are sum-
marized in the TALYS flowchart of Fig. 4. After the discus-
sion of the basic reaction mechanisms below, we return to
the most important theoretical aspects of the nuclear models
implemented in TALYS in later sections.

When discussing nuclear reactions in the context of a com-
puter code, as in this paper, a different starting point is more
appropriate. We think it is best illustrated by Fig. 5. A par-
ticle incident on a target nucleus will induce several binary
reactions which are described by the various competing reac-
tion mechanisms that were mentioned above. The end prod-
ucts of the binary reaction are the emitted particle and the
corresponding recoiling residual nucleus. In general this is,
however, not the end of the process. A total nuclear reaction
may involve a whole sequence of residual nuclei, especially

Fig. 2 The role of direct, pre-equilibrium and compound processes in
the description of a nuclear reaction and the outgoing particle spectra.
The C, P and D labels correspond to those in Fig. 3
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Fig. 3 Schematic drawing of an outgoing particle spectrum. The
energy regions to which direct (D), pre-equilibrium (P) and compound
(C) mechanisms contribute are indicated. The dashed curve distin-
guishes the compound contribution from the rest in the transitional
energy region

at higher energies, resulting from multiple particle emission.
All these residual nuclides have their own separation ener-
gies, optical model parameters, level densities, fission bar-
riers, gamma strength functions, etc. that must properly be

taken into account along the reaction chain. The implemen-
tation of this entire reaction chain forms the backbone of
TALYS. The program has been written in a way that enables
a clear and easy inclusion of all possible nuclear model ingre-
dients for any number of nuclides in the reaction chain. Of
course, in this whole chain the target and primary compound
nucleus have a special status, since they are subject to all
reaction mechanisms, i.e. direct, pre-equilibrium, compound
and fission and, at low incident energies, width fluctuation
corrections in compound nucleus decay. Also, at incident
energies below a few MeV, only binary reactions take place
and the target and compound nucleus are often the only two
nuclei involved in the whole reaction. Historically, it is for
the binary reactions that most of the theoretical methods have
been developed and refined, mainly because their validity,
and their relation with nuclear structure, could best be tested
with exclusive measurements. In general, however, Fig. 5
should serve as the illustration of a total nuclear reaction at
any incident energy. The projectile, in this case a neutron, and
the target (ZC , NC −1) form a compound nucleus (ZC , NC )

with a total energy

Etot = ECM + Sn(ZCN , NCN ) + E0
x , (1)

Fig. 4 Schematic illustration of TALYS flowchart, including input, nuclear models, and output of TALYS. See text for more details
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Fig. 5 Schematic representation of a neutron-induced reaction on a
nucleus (Zc,Nc −1). The dashed arrow represents the incident channel,
while the continuous arrows represent the various decay possibilities.
Emax
x denotes the maximal excitation energy possibly reached in each

residual nucleus and Sk the particle separation energy for particle k.
For each nucleus a few discrete levels are drawn, together with a few
continuum energy bins. Spin and parity degrees of freedom are left out
of this figure for simplicity. Fission is indicated by an f

where ECM is the incident energy in the CM frame, Sn is
the neutron separation energy of the compound nucleus, and
E0
x the excitation energy of the target, which is often zero,

i.e. representing the ground state. The compound nucleus
is described by a range of possible spin (J ) and parity (�)
combinations, which for simplicity are left out of Fig. 5.
From this state, transitions to all open channels may occur by
means of direct, pre-equilibrium and compound processes.
The residual nuclei formed by these binary reactions may be
populated in the discrete level part and in the continuum part
of the available excitation energy range. In Fig. 5, we have
only drawn three binary channels, namely the (ZC , NC −1),
(ZC − 1, NC ) and (ZC − 1, NC − 1) nuclei that result from
binary neutron, proton and deuteron emission, respectively.
Each nucleus is characterized by a separation energy per pos-
sible ejectile. If the populated residual nucleus has a maximal
excitation energy Emax

x (Z , N ) that is still above the sepa-
ration energies for one or more different particles for that

nucleus, further emission of these particles may occur and
nuclei with lower Z and N will be populated. At the end of
the nuclear reaction (left bottom part of Fig. 5), all the reac-
tion population is below the lowest particle separation energy,
and the residual nucleus (ZC − z, NC −n) can only decay to
its ground or isomeric states by means of gamma decay. In
a computer program, the continuum must be discretized in
excitation energy (Ex ) bins. We can take these bins equidis-
tant (the default) or non-equidistant, although we already
want to stress the important fact here that the emission energy
grid for the outgoing particles is non-equidistant in TALYS.
After the aforementioned binary reaction, every continuum
excitation energy bin will be further depleted by means of par-
ticle emission, gamma decay or fission. Computationally, this
process starts at the initial compound nucleus and its highest
energy bin, i.e. the bin just below Emax

x (ZC , NC ) = Etot ,
and subsequently in order of decreasing energy bin/level,
decreasing N and decreasing Z . Inside each continuum bin,
there is an additional loop over all possible J and �, whereas
for each discrete level, J and � have unique values. Hence,
a bin/level is characterized by the set {Z , N , Ex , J,�} and
by means of gamma or particle emission, it can decay into
all accessible {Z ′, N ′, Ex ′ , J ′,�′} bins/levels. In this way,
the whole reaction chain is followed until all bins and levels
are depleted and thus all channels are closed. In the process,
all particle production cross sections and residual production
cross sections are accumulated to their final values.

In the rest of this Section, we will zoom in on the various
parts of Fig. 5 to describe the various stages of the reaction,
depending on the incident energy, and we will mention the
nuclear reaction mechanisms that apply.

2.1 Observables

After this short introduction of the sequence of particle emis-
sion, it is appropriate to list all the different observables that
TALYS can calculate. As output, for a single projectile +
target combination and a range of incident energies, TALYS
produces cross sections (assuming incident neutrons here,
but similar for other all other projectiles) for:

• total (n, tot), elastic (n, el), reaction (n, reac) and non-
elastic (n, non) reactions,

• radiative capture channel (n, γ ),
• single particle production channels (n, n′), (n, p), (n, d),

(n, t), (n, h), (n, α),
• discrete level inelastic reactions, (n, n′

1), (n, n′
2), etc. and

the continuum (n, n′
cont), and similarly for all other ejec-

tiles,
• multi-particle reactions (n, 2n), (n, np), etc,
• total fission (n, f ) reaction and its subdivision into first,

second, etc. chance partial fission,
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• residual production (n, x)AZEl, mostly relevant at higher
energies, as far as not yet covered by the exclusive chan-
nels mentioned above,

• production of the ground state and isomers, if present,
e.g. (n, n′)A(g)

Z El, (n, n′)A(m)
Z El, and similarly for all other

channels and residual production at higher energies, e.g.
(p, x)A(m)

Z El,
• total particle production (n, xn), (n, xp), etc, mostly rel-

evant at higher energies.

As for secondary distributions, TALYS produces:

• the elastic scattering angular distribution,
• the angular distributions for inelastic scattering per dis-

crete level, and similarly for the other ejectiles,
• double-differential emission spectra for all outgoing par-

ticles,
• recoil distributions for the residual nuclides,
• particle production yields,
• discrete and continuum gamma-ray distributions for all

open channels, including gamma production cross sec-
tions.

This is a rather complete list of nuclear reaction observables
which can be validated with the associated experimental data.
Moreover, this output is required to fill a complete nuclear
data library in the fast energy range for technological appli-
cations. The capabilities of TALYS do not stop here however.
Additional simulated quantities are:

• Maxwellian-averaged cross sections (MACS) and astro-
physical reaction rates,

• fission yields, isomeric ratios and related neutron and
gamma observables: average total number of prompt fis-
sion neutrons, ν̄, per mass, ν(A), and per number, P(ν),
prompt fission neutron and gamma spectra(PFNS and
PFGS, respectively), etc,

• reproduction of pointwise cross sections from resonance
parameters,

• production yields and spectra from an excited nucleus as
starting condition, i.e. without specifying a projectile,

• complete tables of nuclear structure information: discrete
level scheme, level densities, photon strength functions
and fission properties, optical potentials, etc..

2.2 Reaction mechanisms

In the projectile energy range between 1 keV and several hun-
dreds of MeV, the importance of a particular nuclear reaction
mechanism appears and disappears upon varying the incident
energy. We will now describe the particle decay scheme that
typically applies in the various energy regions. Because of

the Coulomb barrier for charged particles, it will be clear
that the discussion for low-energy reactions usually con-
cerns incident neutrons. In general, however, what follows
can be generalized to incident charged particles. The energy
ranges mentioned in each paragraph heading are just meant
as helpful indications, which apply to a typical medium mass
nucleus.

2.2.1 Low energies

Elastic scattering and capture (E < 0.2 MeV)
If the energy of an incident neutron is below the excitation
energy of the first inelastic level, and if there are no (n, p),
etc. reactions that are energetically possible, then the only
reaction possibilities are elastic scattering, neutron capture
and for actinides, fission. At these low energies, only the
(ZC , NC − 1) and (ZC , NC ) nuclides of Fig. 5 are involved,
see Fig. 6. First, the shape (or direct) elastic scattering cross
section can directly be determined from the optical model,
which will be discussed in Sect. 3. The compound nucleus
is formed at one single energy Etot = Emax

x (ZC , NC ) and a
range of J,�-values. This compound nucleus either decays
by means of compound elastic scattering back to the ini-
tial state of the target nucleus, or by means of neutron cap-
ture, after which gamma decay follows to the continuum and
to discrete states of the compound nucleus. The competi-
tion between the compound elastic and capture channels is
described by the compound nucleus theory, which we will
discuss in Sect. 5. It should be clear that this model only cov-
ers the case where the levels in the compound nucleus have a
dense spacing, which generally holds for a few to a few tens of
keV of incident neutron energy. At lower energies, resonance
reaction theory applies. The elastic and capture processes
comprise the first binary reaction. To complete the descrip-
tion of the total reaction, the excited (ZC , NC )nucleus, which
is populated over its whole excitation energy range by the pri-
mary gamma emission, must complete its decay. The highest
continuum bin is depleted first, for all J and �. The sub-
sequent gamma decay increases the population of the lower
bins, before the latter are depleted themselves. Also, contin-
uum bins that are above the neutron separation energy Sn of
the compound nucleus contribute to the feeding of the (n, γ n)

channel. This results in a weak continuous neutron spectrum,
even though the elastic channel is the only true binary neu-
tron channel that is open. The continuum bins and the discrete
levels of the compound nucleus are depleted one by one, in
decreasing order, until the ground or an isomeric state of the
compound nucleus is reached by subsequent gamma decay.
If a nuclide is fissile, fission may compete as well, both from
the initial compound state Emax

x (ZC , NC ) and from the con-
tinuum bins of the compound nucleus, the latter resulting
in a (n, γ f ) cross section. Both contributions add up to the
so-called first-chance fission cross section.
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Fig. 6 Same as Fig. 5 for the neutron-induced reaction at low energy.
The dashed arrow represents the incident channel, while the contin-
uous arrow represents the elastic channel. The only possibilities are
elastic scattering and capture of the neutron in the compound nucleus,
with subsequent decay to the ground state or an isomeric state of the
compound nucleus. A small part of the population may decay back to
the target nucleus by means of the (n, γ n) channel (dotted arrow). For
fissile nuclei, fission may be another open channel

Inelastic scattering to discrete states (0.2 < E < 4 MeV)
At somewhat higher incident energies, the first inelastic chan-
nels open up, see Fig. 7. Reactions to these discrete levels
have a compound and a direct component. The former is
again described by the compound nucleus theory, while the
latter is described by the Distorted Wave Born Approxima-
tion (DWBA) for spherical nuclei and by coupled-channels
equations for deformed nuclei, see Sect. 4. When the inci-
dent energy crosses an inelastic threshold, the compound
inelastic contribution generally rises rapidly and predomi-
nates, whereas the direct component increases more grad-
ually. Obviously, the elastic scattering, capture and fission
processes described in the previous subsection also apply
here. In addition, there is now gamma decay to an isomeric
state or the ground state in the target nucleus after inelastic
scattering. When there are several inelastic levels open to
decay, the compound contribution to each individual level is
still significant. However, the effect of the width fluctuation
correction on the compound cross section is already small in
this case, as will be outlined in Sect. 5.

2.2.2 High energies

Pre-equilibrium reactions (E > 4 MeV)
At higher incident energies, inelastic cross sections to both
the discrete states and the continuum are possible, see Fig. 5.
Like reactions to discrete states, reactions to the continuum
also have a compound and a direct-like component. The lat-

Fig. 7 Same as Fig. 6 for neutron-induced reaction at somewhat higher
energy. The dashed arrow represents the incident channel, while the
continuous arrows represent the decay possibilities. In addition to the
possibilities sketched in Fig. 6, there is now inelastic scattering followed
by gamma decay in the target nucleus

ter are usually described by pre-equilibrium reactions which,
by definition, include direct reactions to the continuum. They
will be discussed in Sect. 6. Also non-elastic channels to other
nuclides, through charge-exchange, e.g. (n, p), and transfer
reactions, e.g. (n, α), generally open up at these energies,
and reactions to these nuclides can take place by the same
direct, pre-equilibrium and compound mechanisms. Again,
the channels described in the previous subsections also apply
here. In addition, gamma decay to ground and isomeric states
of all residual nuclides occurs. When many channels open
up, particle decay to individual states, e.g. compound elastic
scattering, rapidly becomes negligible. For the excitation of
a discrete state, the direct component now becomes predom-
inant, since that involves no statistical competition with the
other channels. At about 15 MeV, the total compound cross
section, i.e. summed over all final discrete states and the
excited continuum, is however still larger than the summed
direct and pre-equilibrium contributions.

Multiple compound emission (E > 8 MeV)
At incident energies above about the neutron separation
energy, the residual nuclides formed after the first binary
reaction contain enough excitation energy to enable further
decay by compound nucleus particle emission or fission.
This gives rise to multiple reaction channels such as (n, 2n),
(n, np), etc. For higher energies, this picture can be gener-
alized to many residual nuclei, and thus more complex reac-
tion channels, see Fig. 5. If fission is possible, this may occur
for all residual nuclides, which is known as multiple chance
fission. All excited nuclides will eventually decay to their
isomeric and ground states.
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Multiple pre-equilibrium emission (E > 40 MeV)
At still higher incident energies, above several tens of MeV,
the residual nuclides formed after binary emission may con-
tain so much excitation energy that the presence of further
fast particles inside the nucleus becomes possible. These can
be imagined as strongly excited particle-hole pairs resulting
from the first binary interaction with the projectile. The resid-
ual system is then clearly non-equilibrated and the excited
particle that is high in the continuum may, in addition to the
first emitted particle, also be emitted on a short time scale.
This so-called multiple pre-equilibrium emission forms an
alternative theoretical picture of the intra-nuclear cascade
process, whereby now not the exact location and momentum
of the particles is followed, but instead the total energy of the
system and the number of particle-hole excitations (exciton
number). In TALYS, this process can be generalized to any
number of multiple pre-equilibrium stages in the reaction by
keeping track of all successive particle-hole excitations, see
Sect. 8.2. For these incident energies, the binary compound
cross section becomes small: the non-elastic cross section
is almost completely exhausted by direct reactions and pri-
mary pre-equilibrium emission. Of course, the reaction pro-
cess will end with multiple compound decay. Again, Fig. 5
applies.

2.3 Cross section definitions

In TALYS, cross sections for reactions to all open channels
are calculated. Although the types of most of these partial
cross sections are generally well known, it is appropriate to
define them for completeness and to outline the book-keeping
of the various cross sections, including all the sum rules they
obey. The particular nuclear models that are needed to obtain
the cross sections are described later in terms of more funda-
mental quantities. Unless otherwise stated, we use incident
neutrons as example in what follows and we consider only
photons (γ ), neutrons (n), protons (p), deuterons (d), tritons
(t), helium-3 particles (h) and alpha particles (α) as compet-
ing particles. Also, to avoid an overburdening of the notation
and the explanation, we will postpone the competition of
fission to the last part of this subsection.

Total cross sections
The most basic nuclear reaction calculation is that with the
optical model, which will be explained in more detail in
Sect. 3. Here, it is sufficient to summarize the relations that
can be found in many nuclear reaction textbooks, namely that
the optical model yields the reaction cross section σreac and,
in the case of neutrons, the total cross section σtot and the
shape-elastic cross section σshape−el . They are related by

σtot = σshape−el + σreac. (2)

If the elastic channel is, besides shape elastic scattering, also
fed by compound nucleus decay, the latter component is a
part of the reaction cross section and is called the compound
elastic cross section σcomp−el . With this, we can define the
total elastic cross section σel ,

σel = σshape−el + σcomp−el , (3)

and the non-elastic cross section σnon−el ,

σnon−el = σreac − σcomp−el , (4)

so that we can combine these equations to give

σtot = σel + σnon−el . (5)

The last equation contains the quantities that can actually
be measured. We also note that the competition between
the many compound nucleus decay channels ensures that
σcomp−el rapidly diminishes for incident neutron energies
above a few MeV, in which case σnon−el becomes practically
equal to σreac.

A further subdivision of the outcome of a nuclear reaction
concerns the breakdown of σnon−el : this cross section con-
tains all the partial cross sections. For this we introduce the
exclusive cross sections, from which all other cross sections
of interest can be derived.

2.3.1 Exclusive cross sections

In this paper, we call a cross section exclusive when the out-
going channel is precisely specified by the type and number
of outgoing particles (plus any number of photons). Well-
known examples are the inelastic or (n, n′) cross section
and the (n, 2n) cross section, which corresponds with two,
and only two, neutrons (plus accompanying photons) in the
outgoing channel. We denote the exclusive cross section as
σ ex (in, i p, id , it , ih, iα), where ik stands for the number of
ejectiles of type k. In this notation, where the incident par-
ticle is assumed implicit, e.g. the (n, 2np) cross section is
given by σ ex (2, 1, 0, 0, 0, 0), for which we will also use the
shorthand notation σn,2np. For a non-fissile nucleus, the sum
over all exclusive cross sections is equal to the non-elastic
cross section

σnon−el =
∞∑

in=0

∞∑

i p=0

∞∑

id=0

∞∑

it=0

∞∑

ih=0

∞∑

iα=0

σ ex (in, i p, id , it , ih, iα), (6)

where it should be understood that σ ex (1, 0, 0, 0, 0, 0) is the
inelastic cross section σn,n′ , i.e. it does not include elastic
scattering.
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The precise calculation of exclusive cross sections and
spectra is a complicated book-keeping problem. We will
describe the exact formalism here. In what follows we use
quantities with a prime for daughter nuclides and quantities
without a prime for mother nuclides in a decay chain. Con-
sider an excitation energy bin or discrete level Ex in a nucleus
(Z , N ). Let P(Z , N , Ex ) represents the population of this
bin/level before it decays. Let sk(Z , N , Ex , Ex ′) be the part
of the population that decays from the (Z , N , Ex ) bin/level
to the residual (Z ′, N ′, Ex ′) bin/level, whereby (Z , N ) and
(Z ′, N ′) are connected through the particle type k, with the
index k running from γ -rays up to α-particles. With these
definitions, we can link the various residual nuclides while
keeping track of all intermediate particle emissions. A spe-
cial case for the population is the initial compound nucleus
(ZC , NC ), which contains the entire initial reaction popula-
tion at its total excitation energy Emax

x (projectile energy +
binding energy), i.e.

P(ZC , NC , Emax
x ) = σnon−el , (7)

while the populations to all the other bins/levels are zero.
For the initial compound nucleus, sk(ZC , NC , Emax

x , Ex ′)
represents the binary feeding to the excitation energy bins of
the first set of residual nuclides. This term generally consists
of direct, pre-equilibrium and compound components.

The population of any bin in the decay chain is equal to
the sum of the decay parts for all particles that can reach this
bin from the associated mother bins, i.e.

P(Z ′, N ′, Ex ′(i ′)) =
∑

k=γ,n,p,d,t,h,α

∑

i

sk(Z , N , Ex (i), Ex ′(i ′)), (8)

where the sum over i runs over discrete level and contin-
uum energy bins in the energy range from Ex ′(i ′) + Sk to
Emax
x (Z , N ), where Sk is the separation energy of particle

k so that the sum only includes decay that is energetically
allowed, and Emax

x (Z , N ) is the maximum possible excita-
tion energy of the (Z , N ) nucleus. Note again that the particle
type k determines (Z , N ).

To obtain the exclusive cross sections, we need to start with
the initial compound nucleus and work our way down to the
last nucleus that can be reached. First, consider a daughter
nucleus (Z ′, N ′) somewhere in the reaction chain. We iden-
tify all exclusive channels (in, i p, id , it , ih, iα) that lead to
this residual (Z ′, N ′) nucleus, i.e. all channels that satisfy

in + id + 2it + ih + 2iα = NC − N ′

i p + id + it + 2ih + 2iα = ZC − Z ′. (9)

For each of these channels, the inclusive cross section per
excitation energy bin, S, is equal to the sum of the feeding

from all possible mother bins, i.e.

S(in, i p, id , it , ih, iα, Ex ′(i ′)) =
∑

k=γ,n,p,d,t,h,α

∑

i

sk(Z , N , Ex (i), Ex ′(i ′))
P(Z , N , Ex (i))

×S(in − δnk, i p − δpk, id − δdk, it − δtk, ih − δhk,

iα − δαk, Ex (i)), (10)

where we introduce Kronecker delta’s, with characters as
subscript, as

δnk = 1 if k = n (neutron)

= 0, otherwise, (11)

and similarly for the other particles. Note that S is still
inclusive in the sense that it is not yet depleted for further
decay. The summation runs over the excitation energies of
the mother bin from which decay into the Ex ′(i ′) bin of the
residual nucleus is energetically allowed. Feeding by gamma
decay from bins above the (Z ′, N ′, Ex ′(i ′)) bin is taken into
account by the k = γ term, in which case all of the Kronecker
delta’s in Eq. (11) are zero.

With Eq. (7) as initial condition, the recursive procedure is
completely defined. For a fixed nucleus, Eq. (10) is calculated
for all excitation energy bins, in decreasing order, until the
remaining population is in an isomeric or ground state of
the nucleus. When there is no further decay possible, the
exclusive cross section per ground state/isomer, numbered
by i , can be identified,

σ ex
i (in, i p, id , it , ih, iα) = S(in, i p, id , it , ih, iα, Ei ). (12)

The total exclusive cross section for a particular channel is
then calculated as

σ ex (in, i p, id , it , ih, iα) =
∑

i=0,isomers

σ ex
i (in, i p, id , it , ih, iα). (13)

The procedure outlined above automatically sorts and
stores all exclusive cross sections, irrespective of the order
of particle emission within the reaction chain. For example,
the (n, np) and (n, pn) channels are automatically added.
The above formalism holds exactly for an arbitrary number
of emitted particles.

We stress that keeping track of the excitation energy Ex

throughout this formalism is essential to get the exact exclu-
sive cross sections for two reasons:

(i) the exact determination of the branching ratios for exclu-
sive isomeric ratios. The isomeric ratios for different
exclusive reactions that lead to the same residual product,
e.g. (n, np) and (n, d), both leading to (ZC −1, NC −1),
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are generally different from each other and thus also from
the isomeric ratios of the total residual product. Hence, it
would be an approximation to apply isomeric branching
ratios for residual products, obtained after the full reac-
tion calculation, a posteriori on the exclusive channels.
This is avoided with our method,.

(ii) the exclusive spectra, which we will explain in Sect. 2.4.2.

When TALYS computes the binary reaction models and the
multiple pre-equilibrium and Hauser-Feshbach models, it
stores both P(Z , N , Ex ) and sk(Z , N , Ex , Ex ′) for all resid-
ual nuclei and particles. This temporary storage enables us
to first complete the full reaction calculation, including all
its physical aspects, until all channels are closed. Then, we
turn to the exclusive cross section and spectra problem after-
wards. It can thus be considered as an isolated book-keeping
problem.

2.3.2 Binary cross sections

Some of the exclusive channels need, and get, more attention
than others. The exclusive binary cross sections, for reac-
tions that are characterized by one, and only one, particle out
are special in the sense that they comprise both discrete and
continuous energy transitions. Inelastic scattering can occur
through both direct collective and compound transitions to
the first few excited levels and through pre-equilibrium and
compound reactions to the continuum. Let us assume that
for a target nucleus the basic structure properties like spin,
parity, etc. of the first N levels are known. Then, the inelastic
cross section, σn,n′ is the sum of the total discrete inelastic
cross section σ disc

n,n′ and the continuum inelastic cross section
σ cont
n,n′

σn,n′ = σ disc
n,n′ + σ cont

n,n′ , (14)

where σ disc
n,n′ is the sum over the inelastic cross sections for

all the individual discrete states

σ disc
n,n′ =

N∑

i=1

σ i
n,n′ . (15)

A further breakdown of each term is possible by means of
reaction mechanisms. The inelastic cross section for each
individual state i has a direct and a compound contribution:

σ i
n,n′ = σ

i,direct
n,n′ + σ

i,comp
n,n′ , (16)

where the direct component comes from DWBA or coupled-
channels calculations, see Sect. 4. Similarly, for the inelas-
tic scattering to the continuum we can consider a pre-
equilibrium and a compound contribution

σ cont
n,n′ = σ

preeq
n,n′ + σ

cont,comp
n,n′ . (17)

The set of definitions (Eqs. 14-17) can be given in a com-
pletely analogous way for the other binary channels σn,p,
i.e. σ ex (0, 1, 0, 0, 0, 0), σn,d , σn,t , σn,h and σn,α . For the
depletion of the reaction population that goes into the pre-
equilibrium channels, which will be discussed in Sect. 6, it is
helpful to define here the total discrete direct cross section,

σ disc,direct =
∑

i

∑

k=n′,p,d,t,h,α

σ
i,direct
n,k . (18)

We mention here that the entire formalism above also applies
to so-called super-elastic scattering, in which the target
nucleus is in an excited state, transfers its energy to the pro-
jectile and falls back to the ground state. Finally, we also con-
sider an alternative division for the non-elastic cross section.
It is equal to the sum of the inclusive binary cross sections

σnon−el =
∑

k=γ,n′,p,d,t,h,α

σ
inc,bin
n,k , (19)

where again at the present stage of the outline we do not
consider fission and ejectiles heavier than α-particles. This
is what we actually use in the inclusive nuclear reaction cal-
culations. With the direct, pre-equilibrium and compound
models, several residual nuclides can be formed after the
binary reaction, with a total population per nucleus that is
equal to the terms of Eq. (19). The residual nuclides then
decay further until all channels are closed. Note that σ inc,bin

is not a “true” cross section in the sense of a quantity for a
final combination of a product and light particle(s).

2.3.3 Total particle production cross sections

Especially for incident energies higher than about 10 MeV,
it is appropriate to define the composite or total neutron pro-
duction cross section, σn,xn . It can be expressed in terms of
the exclusive cross sections as follows

σn,xn =
∞∑

in=0

∞∑

i p=0

∞∑

id=0

∞∑

it=0

∞∑

ih=0

∞∑

iα=0

inσ
ex (in, i p, id , it , ih, iα), (20)

i.e. in the more common notation,

σn,xn = σn,n′ + 2σn,2n + σn,np + 2σn,2np + .... (21)

Again, σn,xn is not a true cross section since the incident and
outgoing channels are not exactly defined by its individual
reaction components. The neutron multiplicity, or yield, Yn
is defined as

Yn = σn,xn

σnon−el
. (22)
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Similarly, the total proton production cross section, σn,xp is
defined as

σn,xp =
∞∑

in=0

∞∑

i p=0

∞∑

id=0

∞∑

it=0

∞∑

ih=0

∞∑

iα=0

i pσ
ex (in, i p, id , it , ih, iα), (23)

and the proton multiplicity, or yield, Yp is defined as

Yp = σn,xp

σnon−el
, (24)

and similarly for the other particles. We note that we do not, in
practice, use Eq. (20) to calculate the composite particle pro-
duction cross section. Instead, we first calculate the inclusive
binary cross section of Eq. (19) and then, during the deple-
tion of each residual nucleus by further decay we directly
add the reaction flux, equal to the sk(Z , N , Ex , Ex ′) term of
Eq. (8), to σn,xn , σn,xp, etc. This procedure has already been
sketched in the multiple decay scheme at the beginning of
this Section.

2.3.4 Residual production cross sections

We can define another important type of derived cross sec-
tion using the exclusive cross section, namely the residual
production cross section σprod . All exclusive cross sections
with the same number of neutron and proton units in the
outgoing channel sum up to the same residual nucleus pro-
duction cross section for the final nucleus (Z , N ), i.e.

σprod(Z , N ) =
∞∑

in=0

∞∑

i p=0

∞∑

id=0

∞∑

it=0

∞∑

ih=0

∞∑

iα=0

σ ex (in, i p, id , it , ih, iα)δN δZ , (25)

where the Kronecker delta’s are defined by

δN = 1 if in + id + 2it + ih + 2iα = NC − N

= 0 otherwise,

δZ = 1 if i p + id + it + 2ih + 2iα = ZC − Z

= 0 otherwise, (26)

where the first compound nucleus that is formed from the
projectile and target nucleus is denoted by (ZC , NC ). As
an example, consider the n + 56Fe → 54Mn +x reac-
tion. The exclusive cross sections that add up to the 54Mn
production cross section are σn,2np, σn,nd , and σn,t , or
σ ex (2, 1, 0, 0, 0, 0), σ ex (1, 0, 1, 0, 0, 0), and σ ex (0, 0, 0, 1,

0, 0), respectively.
Since all exclusive cross sections contribute to the residual

production cross section for one nuclide (Z , N ) only, Eq. (6)
automatically implies

σnon−el =
∑

Z

∑

N

σprod(Z , N ). (27)

Similar to Eq. (13), Eq. (25) is separated per isomer

σprod,i (Z , N ) =
∞∑

in=0

∞∑

i p=0

∞∑

id=0

∞∑

it=0

∞∑

ih=0

∞∑

iα=0

σ ex
i (in, i p, id , it , ih, iα)δN δZ , (28)

and the equivalent of Eq. (13) is

σprod(Z , N ) =
∑

i=0,isomers

σprod,i (Z , N ). (29)

Also here, we do not calculate σprod and σprod,i using
Eqs. (25) and (28), although optionally TALYS includes it
as a numerical check in the output for residual nuclides close
to the target. Analogous to the total particle production, we
determine the residual production cross section, for both the
isomers and the ground state, after the complete decay of
each nucleus by means of an inclusive calculation.

2.3.5 Gamma-ray production cross sections

As mentioned at the end of Sect. 2.3.1, while the reaction
flux goes through the entire decay chain, TALYS also does
the book-keeping of all gamma decays between discrete lev-
els via branching ratios (to be discussed in Sect. 10). This
means we have the decay branches sγ (Z , N , EP , ED) for
any nuclide, where EP and ED are the excitation energies
of the parent and daughter level, respectively. Again, this
is computed for exclusive and inclusive cross sections and
any pair of P and D which are connected through non-zero
branching ratios, e.g. for σ disc

n,n′γ (P → D), σ disc
n,2nγ (P → D)

etc. and also for σprod,γ (Z , N )(P → D).

2.3.6 Fission cross sections

For clarity, we have kept the fission channel out of the discus-
sion so far. The generalization to a picture in which fission is
possible is however not too difficult. For fissile nuclides, the
first expression that needs generalization is that of the non-
elastic cross section expressed as a sum of exclusive cross
sections, Eq. (6). It reads

σnon−el =
∞∑

in=0

∞∑

i p=0

∞∑

id=0

∞∑

it=0

∞∑

ih=0

∞∑

iα=0

σ ex (in, i p, id , it , ih, iα) + σ f , (30)

where the total fission cross section σ f is the sum over exclu-
sive fission cross sections
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σ f =
∞∑

in=0

∞∑

i p=0

∞∑

id=0

∞∑

it=0

∞∑

ih=0

∞∑

iα=0

σ ex
f (in, i p, id , it , ih, iα), (31)

where σ ex
f (in, i p, id , it , ih, iα) represents the cross section

for fissioning after the emission of in neutrons, i p protons,
etc. Well-known special cases areσn, f = σ ex

f (0, 0, 0, 0, 0, 0),
σn,n f = σ ex

f (1, 0, 0, 0, 0, 0) and σn,2n f = σ ex
f (2, 0, 0, 0,

0, 0), which are also known as first-chance, second-chance
and third-chance fission cross section, respectively. Equa-
tion (31) is more general in the sense that it also includes cases
where particles other than neutrons can be emitted before the
residual nucleus fissions, e.g. (n, np f ), which may occur at
higher incident energies.

The generalization of the non-elastic cross section of
Eq. (19) is

σnon−el =
∑

k=γ,n′,p,d,t,h,α

σ
inc,bin
n,k + σ bin

f , (32)

where σ bin
f represents fission from the initial compound state.

Note that the fission term here excludes the (n, γ f ) process
since that is treated as a subchannel after the binary capture
reaction.

Analogous to Eq. (25), we can define a cross section for
each fissioning residual product

σ
f is
prod(Z , N ) =

∞∑

in=0

∞∑

i p=0

∞∑

id=0

∞∑

it=0

∞∑

ih=0

∞∑

iα=0

σ ex
f (in, i p, id , it , ih, iα)δN δZ . (33)

At higher energies, the meaning of σ
f is
prod(Z , N ) is more rel-

evant than the exclusive fission cross sections. Consequently,
for the total fission cross section we have

σ f =
∑

Z

∑

N

σ
f is
prod(Z , N ). (34)

What remains to be explained is how σ ex
f is computed.

First, we need to add to Eq. (8) a term we denote by
s f (Z , N , Ex (i)), which is the part of the population that fis-
sions from the (Z , N , Ex (i)) bin. Hence, for fissile nuclides
we have

P(Z , N , Ex (i)) = s f (Z , N , Ex (i))

+
∑

k=γ,n,p,d,t,h,α

∑

i

sk(Z , N , Ex (i), Ex ′(i ′)). (35)

where in this case the sum over i runs over discrete levels and
continuum bins from 0 to Ex (i) − Sk . The exclusive fission
cross section σ ex

f is

σ ex
f (in, i p, id , it , ih, iα) =

∑

i

s f (Z , N , Ex (i))

P(Z , N , Ex (i))

×S(in, i p, id , it , ih, iα, Ex (i)), (36)

where i runs from 0 to Emax
x (Z , N ). The rest of the calcula-

tion of the exclusive particle cross section proceeds exactly
as before. Equation (10) is now automatically depleted from
the fission cross section (36), in the sense that the sk terms
alone, summed over γ and particles only, no longer add up
to the population P .

2.4 Spectra and angular distributions

In addition to cross sections, TALYS also computes energy
spectra, angular distributions and energy-angle distributions.

2.4.1 Discrete angular distributions

The elastic angular distribution dσ el

d	
has a direct and a com-

pound component:

dσ el

d	
= dσ shape−el

d	
+ dσ comp−el

d	
, (37)

where the shape-elastic part comes directly from the opti-
cal model while the compound part comes from compound
nucleus theory. An analogous relation holds for inelastic scat-
tering to a single discrete state i

dσ i
n,n′

d	
= dσ

i,direct
n,n′

d	
+ dσ

i,compound
n,n′

d	
, (38)

where the direct component comes from DWBA or coupled-
channels calculations. For charge exchange, we can write

dσ i
n,p

d	
= dσ

i,direct
n,p

d	
+ dσ

i,compound
n,p

d	
, (39)

and analogous expressions can be written for the other binary
reactions (n, d), etc.

Of course, the integration over solid angle of every angular
distribution defined here must be equal to the corresponding
cross section, e.g.

σ
i,direct
n,n′ =

∫
d	

dσ
i,direct
n,n′

d	
. (40)

In the output of TALYS, we use a representation in terms of
outgoing angle and one in terms of Legendre coefficients, i.e.
Equation (37) can also be written as

dσ el

d	
=
∑

L

(Cshape−el
L + Ccomp−el

L )PL(cos 
), (41)
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where PL are Legendre polynomials. For inelastic scattering
we have

dσ i
n,n′

d	
=
∑

L

(Ci,direct
L + Ci,comp

L )PL(cos 
), (42)

and similarly for the other binary channels. The Legendre
expansion is required for the storage of the results in nuclear
data libraries.

2.4.2 Exclusive spectra

An exclusive spectrum is not only specified by the exact num-
ber of emitted particles, but also by their outgoing energies.

In TALYS, exclusive spectra are calculated in the same
loops that take care of the exclusive cross sections. The inclu-
sive continuum spectra are obtained by taking the deriva-
tive of the inclusive cross sections per excitation energy of
Eq. (10) with respect to the outgoing particle energy Ek′ ,

Ek′ = Ex − Ex ′(i ′) − Sk′ , (43)

where Sk′ is the separation energy for outgoing particle k′.
Note that since the inclusive cross section per excitation
energy S depends on Ek′ via sk , the product rule of differen-
tiation applies to Eq. (10). Therefore, the inclusive spectrum
per excitation energy for an outgoing particle k′ of a given
(in, i p, id , it , ih, iα) channel is

dS

dEk′
(in, i p, id , it , ih, iα, Ex ′(i ′)) =

∑

k=γ,n,p,d,t,h,α

∑

i

[
sk(Z , N , Ex (i), Ex ′(i ′))

P(Z , N , Ex (i))

× dS

dEk′
(in − δnk, . . . , iα − δαk, Ex (i))

+δkk′
dsk(Z , N , Ex (i), Ex ′(i ′))

dEk′

× S(in − δnk, . . . , iα − δαk, Ex (i))

P(Z , N , Ex (i))

]
,

(44)

where, as initial condition, the derivatives of sk(ZC , NC ,

Emax
x , Ex ′(i ′)) are the binary emission spectra. The first term

on the right-hand side corresponds to the spectrum of the
feeding channel and the second term denotes the contribu-
tion of the last emitted particle. The calculation of Eq. (44)
can be done simultaneously with the exclusive cross section
calculation, i.e. we follow exactly the same recursive proce-
dure. The final exclusive spectrum for outgoing particle k′ is
given by

dσ ex

dEk′
(in, i p, id , it , ih, iα)

=
∑

i=0,isomers

dS

dEk′
(in, i p, id , it , ih, iα, Ei ), (45)

The terms on the right hand side are the exclusive spectra per
ground state or isomer. The latter naturally result from our
method, even though only the total exclusive spectra of the
left hand side are of interest.

We stress that for a given (in, i p, id , it , ih, iα) channel,
Eq. (44) is calculated for every outgoing particle k′ (i.e. n, p,
d, t, h and α). Hence, e.g. the (n, 2npα) channel is charac-
terized by only one exclusive cross section, σn,2npα , but by
three spectra, one for outgoing neutrons, protons and alpha’s,
respectively, whereby all three spectra are constructed from
components from the first up to the fourth particle emission
(i.e. the α can have been emitted in each of the four stages).
In practice, this means that all spectra have a first order pre-
equilibrium component (and for higher energies also multi-
ple pre-equilibrium components), and a compound compo-
nent from multiple emission. Upon integration over outgoing
energy, the exclusive cross sections may be obtained,

σ ex (in, i p, id , it , ih, iα)

= 1

in + i p + id + it + ih + iα

∑

k′=n,p,d,t,h,α
∫

dEk′
dσ ex

dEk′
(in, i p, id , it , ih, iα). (46)

Finally, the exclusive fission cross sections are also accompa-
nied by spectra. For example, the first two neutrons emitted
in the (n, 2n f ) channel (third-chance fission) are described
by an outgoing neutron spectrum. The exclusive spectrum of
outgoing particle k′ in a fission channel is

dσ ex
f

dEk′
(in, i p, id , it , ih, iα) =

∑

i

s f (Z , N , Ex (i))

P(Z , N , Ex (i))

× dS

dEk′
(in, i p, id , it , ih, iα), (47)

while the exclusive particle spectra are again described by
Eq. (44). For double-differential spectra, the usual gener-
alization holds. We also repeat here that the total (observ-
able) fission cross section is always calculated by letting
reaction population go into the fission channel from each
(Z , N , Ex , J,�) channel until all nuclides have ended up
in their ground or isomeric states, irrespective of the user
request for an exclusive channel calculation. Also, it should
be clear, the formalism described above does not include neu-
trons produced by the fissioning nucleus itself. We describe
that in Sect. 14.
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2.4.3 Binary spectra

Similar to the cross sections, the exclusive spectra deter-
mine various other specific spectra of interest. The exclusive
inelastic spectrum is a special case of Eq. (45)

dσn,n′

dEn′
= dσ ex

dEn′
(1, 0, 0, 0, 0, 0). (48)

Since Eq. (44) represents an energy spectrum, it includes by
definition only continuum transitions, i.e. it does not include
the binary reactions to discrete states. Hence, upon integra-
tion, Eq. (48) only gives the continuum inelastic cross section
of Eq. (14):

σ cont
n,n′ =

∫
dEn′

dσn,n′

dEn′
. (49)

Similar relations hold for the binary (n, p), (n, d), (n, t),
(n, h) and (n, α) spectra. The contributions to the binary
spectra generally come from pre-equilibrium and continuum
compound spectra.

2.4.4 Total particle production spectra

Similar to the total particle production cross sections, the
composite or total neutron spectrum can be expressed in
terms of exclusive spectra as follows

dσn,xn

dEn′
=

∞∑

in=0

∞∑

i p=0

∞∑

id=0

∞∑

it=0

∞∑

ih=0

∞∑

iα=0

dσ ex

dEn′
(in, i p, id , it , ih, iα), (50)

i.e. in the other notation,

dσn,xn

dEn′
= dσn,n′

dEn′
+ dσn,2n

dEn′
+ dσn,np

dEn′
+ dσn,2np

dEn′
+ .... (51)

Similar relations hold for the (n, xp), etc. spectra. Note that,
in contrast with Eq. (20), the multiplicity is already implicit
in the exclusive spectra.

Again, in practice we do not use Eq. (50) to calculate the
composite spectra but instead add the dsk(Z , N , Ex , Ex ′)/
dEk′ term that appears in Eq. (44) to the composite spectra
while depleting all nuclides in an inclusive calculation. We
do use Eq. (50) as a numerical check in the case of a few
outgoing particles. Finally, integration of the total neutron
spectrum and addition of the binary discrete cross section
give the total particle production cross section

σn,xn =
∫

dEn′
dσn,xn

dEn′
+ σ disc

n,n′ , (52)

and similarly for the other particles.

2.4.5 Double-differential cross sections

The generalization of the exclusive spectra to angular depen-
dent cross sections is done by means of the exclusive double-
differential cross sections

d2σ ex

dEk′d	
(in, i p, id , it , ih, iα), (53)

which are obtained by either physical models or systematics.
Integration over angles yields the exclusive spectrum

dσ ex

dEk′
(in, i p, id , it , ih, iα)

=
∫

d	
d2σ ex

dEk′d	
(in, i p, id , it , ih, iα). (54)

The other relations are analogous to those of the spectra, e.g.
the inelastic double-differential cross section for the contin-
uum is

d2σn,n′

dEn′d	
= d2σ ex

dEn′d	
(1, 0, 0, 0, 0, 0), (55)

and the total neutron double-differential cross section can be
expressed as

d2σn,xn

dEn′d	
=

∞∑

in=0

∞∑

i p=0

∞∑

id=0

∞∑

it=0

∞∑

ih=0

∞∑

iα=0

d2σ ex

dEn′d	
(in, i p, id , it , ih, iα). (56)

For the exclusive calculation, the angular information is only
tracked for the first particle emission. The reason is that
for incident energies up to about 20 to 30 MeV, only the
first emitted particle deviates from an isotropic angular dis-
tribution. Multiple compound emission to the continuum is
essentially isotropic. The isotropic contribution to the exclu-
sive double-differential spectrum is then simply determined
by the part of the corresponding cross section that comes
from Hauser-Feshbach decay. At higher incident energies,
where the approximation of only one forward-peaked par-
ticle becomes incorrect, the interest in exclusive spectra, or
for that matter, the computational check of Eq. (56), is no
longer there. The presence of multiple pre-equilibrium emis-
sion at energies above several tens of MeV requires that we
include angular information for every emitted particle in the
total double-differential cross section, i.e. the left-hand side
of Eq. (56). Again, this is all tracked correctly in the full
inclusive calculation.
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2.4.6 Recoils

Qualitative analysis
In a nuclear reaction code, the calculations are usually per-
formed in the center of mass (CM) frame, while the experi-
mental data are obtained in the Laboratory (LAB) frame. It
is therefore necessary to perform a transformation either by
(i) expressing the experimental data in the CM frame or by
(ii) expressing the CM model results in the LAB frame. Of
course, the cross sections are the same in both frames, but
the spectra are certainly different. The best example is given
by the elastic peak in an emission spectrum which is a Dirac
delta peak in the CM frame and rather looks like a Gaussian
when measured experimentally. The reason for this, apart
from the fact that the projectile beam is not perfectly mono-
energetic, is that the composite system has a velocity in the
LAB frame before decay occurs. Consequently if one con-
siders the emission of an ejectile with a well defined energy
in the CM frame, the ejectile energy in the LAB frame will
not be unique because of all the CM emission angles. More
precisely, a maximum ejectile energy will be obtained when
the emission occurs at 0◦, and a minimum will be obtained at
180◦, together with all the intermediate situations. Dealing
with this situation is simple if only one nucleus decays, but if
two particles are sequentially emitted, the first emission prob-
abilities create a velocity distribution of the residual nuclei
in the LAB frame. One must first loop over these velocities
before one can compute the secondary emission.

General method
As mentioned in Sect. 2.3.1, in TALYS each nucleus that
can decay is described by an array P(Z , N , Ex ) which gives
the population in a bin/level with excitation energy Ex of
the nucleus (Z , N ). A special case is the initial compound
nucleus which contains all the initial reaction population at
its total excitation energy Emax

x . For the kinematics of the
binary reactions, it is necessary to keep track of the veloci-
ties and moving directions of these nuclei in the LAB frame,
so that we can reconstruct the LAB spectra from the decays
in the CM frame. We therefore have to add in principle three
dimensions to the P array. The first one to keep track of the
recoil energy, and the two other ones for the emission angles.
However, such book-keeping would become very time con-
suming, especially for high energies.

Hence, we only take into account the recoil energies and
the usual
r angle and define another array Prec(Z , N , Ex , Er ,


r ) which indicates the fraction of the total population
P(Z , N , Ex ) moving with the kinetic energy Er in the direc-
tion 
r with respect to the beam direction in the LAB frame.
Obviously,

P(Z , N , Ex ) =
∑

Er ,
r bins

Prec(Z , N , Ex , Er ,
r ). (57)

Again, the initial compound nucleus (ZC , NC ) is a special
one. Its kinetic energy E0

r in the LAB frame is unique and is
given by

E0
r =

√
(E2

p + 2MpEp + M2
C ) − MC , (58)

where Ep is the projectile kinetic energy in the LAB, Mp the
projectile mass and MC the compound nucleus mass, and it
moves in the beam direction (i.e. 0◦). Before any emission is
calculated, the initial reaction population is stored in the array
element Prec(Zc, Nc, Emax

x , E0
r , 0). As explained before, the

population of the residual nuclei bins are calculated by loop-
ing over all possible ejectiles, emission energies and angles
in the CM frame. Therefore, each time we decay from a
mother bin to a residual bin, we know exactly what fraction
of the total bin population is emitted in a given CM (energy,
angle) bin. We then simply couple the CM emission energies
and angles with the CM kinetic energy and moving direc-
tion in the LAB frame to determine simultaneously the ejec-
tile double-differential spectrum in the LAB and the residual
nucleus population in the corresponding LAB (energy, angle)
bin. This may seem simple from a qualitative point of view,
it is however not trivial to implement numerically and can be
time consuming.

Quantitative analysis
From now on, for simplicity, we assume that the kinemat-
ics of the binary reactions can be considered as a classical
process, i.e. we exclude γ decay and relativistic kinemat-
ics in the recoil calculation. We here consider the emission
of a given ejectile from a given energy bin i of the decay-
ing nucleus (Z , N ) which moves with a given velocity vcm
(or kinetic energy Ecm) in the direction 
cm with respect
to the beam direction. The total population that is going to
decay is P(Z , N , Ei ) and the fraction of this population mov-
ing with the velocity vcm in the direction 
cm is given by
Prec(Z , N , Ei , Ecm,
cm). We can determine the total emit-
ted flux for a given emission energy and a given emission
angle in the CM frame. In practice, we rather decay from
a initial bin to a residual bin in a given angular bin in the
CM frame. If recoil effects are neglected we directly derive
from such a decay an energy bin [ECM

low , ECM
up ] and an angu-

lar bin [
CM
low ,
CM

up ] in which the total flux �CM
ej is emitted.

Accounting for recoil effects requires an intermediate step
to share the available energy �E (difference between the
energy bins of the initial nucleus and final nucleus) among
the ejectile with massmej and the residual nucleus with mass
MR .

To do this, we use the classical relation

−→v L AB
ej = −→v cm + −→v CM

ej , (59)
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which connects the LAB velocity −→v L AB
ej of the ejectile with

its velocity −→v CM
ej in the CM frame and the CM frame velocity

−→v cm . We need to connect −→v CM
ej with �E .

This can be done upon writing

�E = 1

2
mej (

−→v CM
ej )2 + 1

2
MR(−→v CM

R )2, (60)

where −→v CM
R is the residual nucleus velocity in the CM frame,

and using the relation

mej
−→v CM

ej + mR
−→v CM

R = −→
0 . (61)

Combining (60) and (61) yields

vCM
ej =

√
2

MR

mej (mej + MR)
�E, (62)

which reduces to the classical relation

vCM
ej =

√
2�E

mej
, (63)

if recoil effects are neglected (i.e. in the limit MR → +∞).
Once this connection is established, Eq. (59) is used to

determine the velocity and angle of both the emitted light
particle and the residual nucleus by simple projections on
the LAB axis.

Hence, given a decay situation in the CM frame, we can
reconstruct both the energy and angle of emission in the
LAB frame. We now have to determine the link between
the double-differential decay characteristics in both frames.
The solution is well known (see Ref. [12] for instance) and
consists of using a Jacobian which accounts for the modifica-
tion of an elementary solid angle d	 in the CM frame when
going into the LAB frame. However, in TALYS we have to
employ another method because we do not generally calcu-
late decays for well defined energies and angles but rather for
a given energy bin and angular bin. Moreover, since we do
not account for the azimuthal angle, we may also encounter
some problems when calculating recoil for secondary emis-
sion. Indeed, only the first binary process has the azimuthal
symmetry with respect to the beam direction.

The recoil treatment in TALYS
We here detail the way the double-differential spectra are
calculated by TALYS in the LAB frame from those obtained
in the CM frame. We consider the flux �(i, j) emitted in the
CM frame in an energy-angular bin (i, j). Since �(i, j) is
connected with the double differential cross section xs(i, j)
by

�(i, j) = xs(i, j)�E(i)�cos
( j), (64)

the four grid points defining the coordinates of the bin in the
CM frame form a rectangle in a energy-cosine grid. Coupling
the CM motion (kinetic energy and angle) with these four CM
bin coordinates enables one to determine four corresponding
points in the LAB frame. However, the surface defined by
these LAB coordinates will be different from a rectangle and
each limiting grid points will be located in different outgo-
ing energy-angle bins. The CM flux of a single bin must
thus be distributed over several bins when going to the LAB
frame.

The approximation made, to be able (i) to calculate the
area covered in the LAB frame and (ii) the way this global
area is distributed over the bins it partially covers, consists
in neglecting the deformation of the area reached in the
LAB frame which is therefore assumed to be a trapezoid.
In other words, we make the assumption that a triangle in
the CM frame is transformed into a triangle when going in
the LAB frame. This is helpful since the area of a trian-
gle is given by a simple analytic expression as function of
the coordinates of the summits of the triangle. Therefore,
we divide the starting energy-cosine rectangular CM bins
into two triangles to determine the two triangles obtained
in the LAB frame. With such a method, the whole problem
can be solved and the decay calculated in the CM frame
can be transformed to the LAB frame without any further
approximations.

However, in practice, coupling the angular direction (in the
LAB) of the nucleus that decays with the ejectile emission
angle in the CM frame, while neglecting the azimuthal angle,
gives double differential ejectile spectra in the LAB which are
generally not correct. In fact, we believe that it is better not to
account for the angular distribution of the decaying nucleus
unless both 
 and φ are explicitly treated. Fortunately, the
final angular distribution of the recoiling nucleus is seldom
of interest.

Method of average velocity
As mentioned above, we do not loop over the angular distri-
bution of the decaying nucleus. This is equivalent to replac-
ing the array Prec(Z , N , Ei , Er ,
r ) by Prec(Z , N , Ei , Er ).
Then, we only have to keep track of the velocities of the
nucleus that is going to decay, i.e. we have to loop over the
Er bins to reconstruct both the ejectile and residual nuclei
spectra. Another approximation that we have implemented
as an option, consists of using an average velocity before
this reconstruction, a method first applied by Chadwick et
al. [13,14]. This approach avoids the loop over the Er bins
altogether and reduces the calculation time. However, for
high energies, this might be too crude an approximation.

Figure 8 gives an indication of the difference between
this average energy approximation and the exact calculation.
Apparently, properly including the energy bins of the recoil-
ing nucleus Er in the calculation leads to smearing out of var-
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Fig. 8 Example of the difference between exact and approximative
recoil treatment in TALYS

ious contributions to the final recoil spectrum. By default, we
always apply the exact approach, although in cases of high
incident energies the computation time may get significant.

Approximative recoil correction for binary ejectile spectra
it is also possible to avoid a full recoil calculation, and
merely correct the outgoing particle spectra for the recoil
of the nucleus. In that case the following method is
available.

The assumptions are made that (i) only binary emission
takes place, and that (ii) emission only occurs under 0o.
Hence, this approximation is basically expected to be valid
for angle-integrated spectra only. The CM to LAB conver-
sion of the ejectile spectra takes under these conditions the
following simple form:

Elab
ej = MR

MC
�E + mej Mp

M2
C

Ep

+2

√
mej MRMp

M3
C

Ep �E, (65)

in which Elab
ej is the LAB ejectile energy. This correction is

applied to the full ejectile spectrum including the multiple
emission contributions. This approximation is rather crude,
but saves a lot of computer time. Since the high-energy tail
originates completely from binary emission, this tail is cor-
rectly converted to the LAB system. Furthermore, the cor-
rection is small at low energies, which has the largest contri-
butions from multiple emission.

3 Optical model

The optical model is often regarded as the most essential
ingredient of nuclear reaction modeling for energies up to
a few hundreds of MeV. The central assumption underlying
the optical model is that the complicated interaction between
an incident particle and a nucleus can be represented by
a complex mean-field potential, which divides the reaction
flux into a part covering shape elastic scattering and a part
describing all competing non-elastic channels. Solving the
Schrödinger equation numerically with this optical model
potential (OMP) yields quantities which are used throughout
TALYS for its reaction calculations, such as

• the basic observables: the total, shape elastic and reaction
cross sections,

• the elastic angular distribution and polarisation,
• for low energies, the s, p-wave strength functions and the

potential scattering radius R′,
• transmission coefficients used for compound nucleus

decay,
• distorted wave functions that are used for direct inelastic

reactions, yielding cross sections and angular distribu-
tions, and for transitions to the continuum that describe
statistical or collective multi-step direct reactions,

• inverse reaction cross sections for the pre-equilibrium
model.

The essential value of a good optical model is that it can
reliably predict these quantities for a wide range of energies
and nuclides, while its parameters may be determined by
the available experimental data for the basic reaction observ-
ables.

All optical model calculations are performed by the
coupled-channels code ECIS-06 [5], which is used as a sub-
routine in TALYS.

3.1 Spherical OMP: neutrons and protons

The default OMP used in TALYS are the local and global
parameterisations of Koning and Delaroche [15], often
abbreviated as KD03. The phenomenological OMP for
nucleon-nucleus scattering, U , is defined as:

U(r, E) = −VV (r, E) − iWV (r, E) − iWD(r, E)

+VSO(r, E).l.σ + iWSO(r, E).l.σ + VC (r),

(66)

where VV,SO and WV,D,SO are the real and imaginary com-
ponents of the volume-central (V ), surface-central (D) and
spin-orbit (SO) potentials, respectively. E is the LAB energy
of the incident particle in MeV and r the radial coordinate. All
components are separated in energy-dependent well depths,
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VV ,WV ,WD, VSO , andWSO , and energy-independent radial
parts f , namely

VV (r, E) = VV (E) f (r, RV , aV ),

WV (r, E) = WV (E) f (r, RV , aV ),

WD(r, E) = −4aDWD(E)
d

dr
f (r, RD, aD),

VSO(r, E) = VSO(E)

(
�

mπc

)2 1

r

d

dr
f (r, RSO , aSO),

WSO(r, E) = WSO(E)

(
�

mπc

)2 1

r

d

dr
f (r, RSO , aSO).

(67)

The form factor f (r, Ri , ai ) is a Woods-Saxon shape

f (r, Ri , ai ) = (1 + exp[(r − Ri )/ai ])−1 , (68)

where the geometry parameters are the radius Ri = ri A1/3,
with A being the atomic mass number, and the diffuseness
parameters ai . For charged projectiles, the Coulomb term
VC , as usual, is given by that of a uniformly charged sphere

VC (r) = Zze2

2RC

(
3 − r2

R2
C

)
, for r ≤ RC

= Zze2

r
, for r ≥ RC , (69)

with Z(z) the charge of the target (projectile), and RC =
rC A1/3 the Coulomb radius.

The functional forms for the potential depths depend on
(E − E f ), where E f , the Fermi energy, is defined as the
energy halfway between the last occupied and the first unoc-
cupied shell of the nucleus,

En
f = −1

2
[Sn(Z , N ) + Sn(Z , N + 1)],

E p
f = −1

2
[Sp(Z , N ) + Sp(Z + 1, N )], (70)

with Sn (Sp) the neutron (proton) separation energy for a
nucleus with proton number Z and neutron number N .

The KD03 OMP parameterisation for either incident neu-
trons or protons is

VV (E) = v1[1 − v2(E − E f ) + v3(E − E f )
2

−v4(E − E f )
3]

WV (E) = w1
(E − E f )

2

(E − E f )2 + (w2)2

rV = constant

aV = constant

WD(E) = d1
(E − E f )

2

(E − E f )2 + (d3)2 exp[−d2(E − E f )]
rD = constant

aD = constant

VSO(E) = vso1 exp[−vso2(E − E f )]
WSO(E) = wso1

(E − E f )
2

(E − E f )2 + (wso2)2

rSO = constant

aSO = constant

rC = constant, (71)

where E f = En
f for incident neutrons and E f = E p

f for inci-
dent protons. This representation is valid for incident energies
from 1 keV up to 200 MeV. Note that VV and WV share the
same geometry parameters rV and aV , and likewise for the
spin-orbit terms. This effectively reduces the number of free
parameters.

In general, all parameters (vi , wi , di , vso,i , wso,i ) appear-
ing in Eq. (71) differ from nucleus to nucleus. When enough
experimental scattering data of a certain nucleus is available,
a so-called local OMP can be constructed. TALYS retrieves
all the parameters of these local OMPs automatically from the
nuclear structure and model parameter database, which con-
tains the same information as the various tables of Ref. [15]. If
a local OMP parameterisation is not available in the database,
the built-in global optical models using parameters taken as
functionals of Z and A are automatically used. A flag exists
to overrule the local OMP by the global OMP.

The spherical optical model described above provides the
transmission coefficients, DWBA cross sections, total and
elastic cross sections, etc. mentioned in the beginning of this
section. For deformed nuclides, strongly coupled collective
levels need to be included, as explained later.

3.1.1 Dispersive OMP: neutrons

The theory of the nuclear optical model can be reformulated
in terms of dispersion relations that connect the real and imag-
inary parts of the optical potential, and TALYS contains dis-
persive spherical neutron OMP parameterizations for about
70 nuclides (unpublished) as the default if it is available for
the target nuclide. These dispersion relations are a natural
result of the causality principle that a scattered wave cannot
be emitted before the arrival of the incident wave. The dis-
persion component stems directly from the absorptive part
of the potential,

�V(r, E) = P
π

∫ ∞

−∞
W(r, E ′)
E ′ − E

dE ′, (72)

where P denotes the principal value, see e.g. Ref. [16–18].
The total real central potential can be written as the sum
of a Hartree-Fock term VHF (r, E) and the total dispersion
potential �V(r, E)

V(r, E) = VHF (r, E) + �V(r, E). (73)
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Since W(r, E) has a volume and a surface component, the
dispersive addition is,

�V(r, E) = �VV (r, E) + �VD(r, E)

= �VV (E) f (r, RV , aV )

−4aD�VD(E)
d

dr
f (r, RD, aD), (74)

where the volume dispersion term is given by

�VV (E) = P
π

∫ ∞

−∞
WV (E ′)
E ′ − E

dE ′, (75)

and the surface dispersion term is given by

�VD(E) = P
π

∫ ∞

−∞
WD(E ′)
E ′ − E

dE ′. (76)

Hence, the real volume well depth of Eq. (67) becomes

VV (E) = VHF (E) + �VV (E), (77)

and the real surface well depth is

VD(E) = �VD(E). (78)

In general, Eqs. (75)–(76) cannot be solved analytically.
However, under certain plausible conditions, analytical solu-
tions exist. Under the assumption that the imaginary potential
is symmetric with respect to the Fermi energy EF ,

W (EF − E) = W (EF + E), (79)

where W denotes either the volume or surface term, we can
rewrite the dispersion relation as,

�V (E) = 2

π
(E − EF )

P
∫ ∞

EF

W (E ′)
(E ′ − EF )2 − (E − EF )2 dE

′, (80)

from which it easily follows that �V (E) is skew-symmetric
around EF ,

�V (E + EF ) = −�V (E − EF ), (81)

and hence �V (EF ) = 0. This can then be used to rewrite
Eq. (72) as

�V (E) = �V (E) − �V (EF )

= P
π

∫ ∞

−∞
W (E ′)

(
1

E ′ − E
− 1

E ′ − EF

)
dE ′

= E − EF

π

∫ ∞

−∞
W (E ′)

(E ′ − E)(E ′ − EF )
dE ′. (82)

For the Hartree-Fock term we adopt the usual form forVV (E)

given in Eq. (71). The dispersion integrals for the functions

for absorption can be calculated analytically and are included
as options in ECIS-06. This makes the use of a dispersive
optical model parameterization completely equivalent to that
of a non-dispersive OMP: the dispersive contributions are
calculated automatically once the OMP parameters are given.
Upon comparison with a non-dispersive parameterization,
we find that v1 is rather different, as expected, see Refs. [19,
20], and that rV , aV , v2, v3, w1 and w2 are slightly different.

3.1.2 Semi-microscopic JLMB OMP

Besides the above-described phenomenological OMP, it
is also possible to perform TALYS calculations with the
semi-microscopic nucleon-nucleus spherical OMP derived
in Refs. [21–24] from the Brückner–Hartree–Fock approxi-
mation using a Reid’s hard core nucleon–nucleon interaction.
More specifically, the OMP for finite nuclei is obtained by
folding the OMP in nuclear matter with the target radial mat-
ter density on the basis of the local density approximation.
This so-called Jeukenne–Lejeune–Mahaux (JLM) potential
has been updated by Bauge et al. [25,26] through an empiri-
cal renormalization of the energy dependence of the potential
depth in order to reproduce scattering and reaction observ-
ables for spherical and quasi-spherical nuclei between 40Ca
and 209Bi in a large energy range from the keV region up to
200 MeV. Several prescriptions for the local density approx-
imation were also tested [25] to provide the best overall
description of elastic scattering and reaction measurements.
The corresponding JLMB energy-dependent parameteriza-
tion of the nucleon-nucleus depths is Lane consistent (i.e.
isospin symmetric) and is characterized by an enhancement
of the isovector components with respect to the original JLM
approach that is needed in order to account simultaneously
for (p, p) and (n, n) elastic scattering as well as (p, n)I AS
quasi-elastic scattering to the isobaric analog states. The
potential reads

U (E) = λV (E)
[
V0(Ẽ) ± λV 1(E)αV1(Ẽ)

]

+iλW (E)
[
W0(Ẽ) ± λW1(E)αW1(Ẽ)

]
, (83)

where α = (ρn − ρp)/ρ is the density asymmetry and
ρ = ρn + ρp is the total nuclear density of neutrons plus
protons. E is the incident projectile energy and Ẽ = E −VC

is the incident energy shifted by the Coulomb potential VC

for incoming protons only. The energy-dependent param-
eters λV , λW , λV 1 and λW1 are the real isoscalar, imagi-
nary isoscalar, real isovector, and imaginary isovector poten-
tial depth normalization factors, respectively. The energy-
dependent expressions for λV , λV 1, λW , and λW1 can be
found in Ref. [26] and are illustrated in Fig. 9. In particular,
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Fig. 9 Energy-dependent parameters a λV , b λW , c λV 1, and d λW1 of
the JLMB OMP included in TALYS. The hatched zones represent the
20–50 MeV range of maximum confidence [26]. For the λW1 parameter,
2 variants (Case 1–3) from Ref. [27] are also made available

the λW1 phenomenological expression reads

λW1(E) =
[

1.1 + ω1

[
1 +

(
e

E−40
50.9

)4
]−1

]

×
[

1 − 0.065 e
−
(
E−40

13

)2
]

×
[

1 − 0.083 e
−
(
E−200

80

)2
]

, (84)

with the energy E expressed in MeV. In Eq. (84), ω1 charac-
terizes the low-energy amplitude for which the value of 0.44
was estimated in Ref. [26].
The resulting JLMB potential and its extension to
deformed and unstable nuclei has been widely tested [26,28–
31]. As stated in Ref. [26], in the 20 to 50 MeV range, the
uncertainties related to λV , λV 1, λW , and λW1 are estimated
to be 1.5%, 10%, 10%, and 10%, respectively. Outside this
energy range, uncertainties are estimated to be 1.5 times
larger. In the present version of TALYS, only the spheri-
cal JLMB OMP is included and feeds the ECIS-06 routine to
compute observables by solving the Schrödinger equation for
the interaction of the projectile. All JLMB OMP parameters
can be altered via adjustable parameters.

However, while most of the JLMB renormalization factors
are rather well constrained by experimental data, this is not
the case for the isovector λW1 contribution to the imaginary
part of the potential at low energies. In the JLMB approach,
the major constraint imposed on the OMP isovector compo-
nent comes from the quasi-elastic (p, n) scattering data as
well as the angle-integrated quasi-elastic (p, n) cross sec-
tions to the isobaric analog states at energies above some
20 MeV. For lower energies, the λW1 factor was extrapolated
from the confident region around 20 MeV to a constant value

of approximately 1.5 (see in particular Fig. 1 of Ref. [26]).
Due to the lack of scattering data in the keV region, the low-
energy extrapolation of the λW1 factor remains essentially
unconstrained. This drawback was cured by an adjustment
on experimental s- and p-wave neutron strength function data
between 1 and 100 keV [27]. To reproduce the isospin depen-
dence found in such data and to study the impact on cross
sections, three cases corresponding to three modified renor-
malizations of the JLMB imaginary potential were proposed
and included in TALYS, see also Fig. 9,

• Case 1 corresponds to a modified value of λW1 adopt-
ing for the parameter ω1 the energy dependence ω1 =
1.1 exp(−0.4E1/4) and therefore a λW1 increase by 30%
at 100 keV,

• Case 2 assumes ω1 = 1.25 exp(−0.2E1/2), i.e. a λW1

about 50% larger than the JLMB value at 100 keV,
• Case 3 corresponds to the same λW1 as in Case 2, but with

a λW value, affecting both the isoscalar and isovector
parts of the imaginary potential, see Eq. (83) twice larger
than the JLMB value for energies below 1 MeV.

The resulting modified JLMB* potential has a drastic impact
on the radiative neutron capture cross sections of exotic
neutron-rich nuclei for which the isovector component
becomes important, see Eq.( 83). At large neutron excesses,
the imaginary component is indeed reduced, lowering the
neutron absorption channel, and consequently the radiative
neutron capture cross section and astrophysical rates [27].

3.1.3 Extension to 1 GeV

To be able to predict the total, elastic and non-elastic cross
sections up to 1 GeV, the OMP described above has been
extended by Koning et al. [32]. It is emphasized here that this
was just done to test at which energy the validity of TALYS in
predicting other (residual) cross sections would fail. We are
well aware of the fact that the usual Schrödinger picture of the
OMP is valid up to about 180 MeV, and should then be taken
over by a Dirac approach. Nevertheless, a functional form
was constructed which leaves all KD03 parameter values
below a joining energy EJ , at or around 200 MeV, unaltered
while smoothly extending the energy dependence above EJ .
This was only applied to the real, VV , and imaginary, WV ,
volume parts of the potential. For that, the KD03 OMP for
neutrons below EJ reads [15],

VV (E) = vn1 [1 − vn2 (E − En
f ) + vn3 (E − En

f )
2

−vn4 (E − En
f )

3]

WV (E) = wn
1

(E − En
f )

2

(E − En
f )

2 + (wn
2 )2 ,

(85)
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where En
f is the Fermi energy. For VV , we assume that the

exponential decrease should continue beyond EJ . After all,
the KD03 form of Eq. (85) for VV is just a Taylor expan-
sion of the exponential function, in which we gave ourselves
the freedom to alter the individual coefficients v1, etc. Also,
following studies like those of Typel et al. [33] and Chiba et
al. [34], we assume that it converges to a negative value V∞ at
high incident energies. Hence, the form chosen for E > EJ

is

VV (E) = V∞ + b. exp(−c(E − En
f )). (86)

We determine the new parameters b and c by calculating
the value at E = En

f , giving

b = VV (En
f ) − V∞. (87)

Hence,

VV (E) = V∞ + (VV (En
f ) − V∞) exp(−c(E − En

f )). (88)

Next, c can be determined by requiring that the high-energy
potential is equal to that of the low energy expression Eq. (85)
at the joining energy:

VV (EJ )=V∞+(VV (En
f )−V∞) exp(−c(EJ − En

f )), (89)

giving

c = − 1

(EJ − En
f )

log

(
VV (EJ ) − V∞
VV (En

f ) − V∞

)
. (90)

For WV it is expected that at high energies new absorption
channels, such as pion production, emerge and that WV will
show another smooth increase as function of energy. Hence,
the form of WV for E > EJ is

WV (E) = wn
3

(E − En
f )

4

(E − En
f )

4 + (wn
4 )4 + d, (91)

where we find that a power of 4, instead of the usual 2, gives
a better description of experimental data. Also here, a param-
eter d was added to ensure a value exactly equal to KD03 at
EJ , i.e. at E = EJ we have

d = WV (EJ ) − wn
3

(EJ − En
f )

4

(EJ − En
f )

4 + (wn
4 )4 (92)

In sum, we have the following extension of the KD03 OMP
for E > EJ :

VV (E) = V∞ + (VV (En
f ) − V∞)

× exp

(
E − En

f

EJ − En
f
. log(

VV (EJ ) − V∞
VV (En

f ) − V∞
)

)

WV (E) = WV (EJ ) − wn
3

(EJ − En
f )

4

(EJ − En
f )

4 + (wn
4 )4

+wn
3

(E − En
f )

4

(E − En
f )

4 + (wn
4 )4 , (93)

which joins smoothly with the KD03 expression of Eq. (85)
for E < EJ . The following, preliminary, values were
obtained from a fit to neutron total and proton non-elastic
cross sections up to 1 GeV:

EJ = 200.

V∞ = −30.

wn
3 = 25. − 0.0417A

wn
4 = 250. (94)

All parameters can be adjusted with keywords to provide the
best fit for individual nuclides. In Eq. (93), VV (E f ), VV (EJ )

and WV (EJ ) are obtained from Eq. (85). The above exten-
sion, and parameters, also hold for incident protons.

3.2 Deformed OMP: neutrons

By default, TALYS uses the global optical model by Capote
et al. [35] for actinides. These parameters are directly retriev-
able from the RIPL database. For rotational non-fissile
nuclides, if no specific potential is specified through one of
the various input methods, we take our local or global spher-
ical potential and subtract 15% from the imaginary surface
potential parameter d1, if rotational or vibrational levels are
included in the coupling scheme. Again, TALYS provides
ample adjustment possibilities to tailor the OMP parameters
to available experimental data.

3.3 Spherical OMP: complex particles

As a baseline model, for deuterons, tritons, Helium-3 and
alpha particles, we use a simplification of the folding
approach of Watanabe [36], see also Madland [37]. We take
the KD03 OMPs described in the previous section, either
local or global, as the basis for these complex particle poten-
tials. However, as this approach has only been tested to a lim-
ited extent with mixed results, in TALYS these OMPs may be
overruled by other OMPs, often in restricted energy ranges,
which have been published in the past. Below we describe the
particular functional form for the potentials from the folding
approach for each particle, but also mention other choices
for the OMP. Indeed, for deuterons and alpha particles, the
default OMP is not the folding potential.
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3.3.1 Deuterons

For deuterons, the real central potential depth at incident
energy E is

V d
V (E) = V n

V (E/2) + V p
V (E/2), (95)

and similarly for WV and WD . For the spin-orbit potential
depth we have

V d
SO(E) = (V n

SO(E) + V p
SO(E))/2, (96)

and similarly for WSO . For the radius and diffuseness param-
eters of the real central potential we have

rdV = (rnV + r pV )/2,

adV = (anV + a p
V )/2, (97)

and similarly for the geometry parameters of the other poten-
tials.

We are well aware of the fact that others have constructed
specific potentials for deuterons that probably outperform the
Watanabe-type potential described here (a systematic study
still needs to be done for complex particle potentials). There-
fore, we have also added the deuteron potentials of Daehnick
et al. [38], Bojowald et al. [39], Han et al. [40], and An et
al. [41] as options. The potential of Han et al. is currently
the default in TALYS, awaiting an independent comparison
of all global OMPs with all available experimental data.

3.3.2 Tritons

For tritons, the real central potential depth at incident energy
E is

V t
V (E) = 2V n

V (E/3) + V p
V (E/3), (98)

and similarly for WV and WD . For the spin-orbit potential
depth we have

V t
SO(E) = (V n

SO(E) + V p
SO(E))/6, (99)

and similarly for WSO . For the radius and diffuseness param-
eters of the real central potential we have

r tV = (2rnV + r pV )/3,

atV = (2anV + a p
V )/3, (100)

and similarly for the geometry parameters of the other poten-
tials.

3.3.3 Helium-3

For Helium-3, the real central potential depth at incident
energy E is

V h
V (E) = V n

V (E/3) + 2V p
V (E/3), (101)

and similarly for WV and WD . For the spin-orbit potential
depth we have

V h
SO(E) = (V n

SO(E) + V p
SO(E))/6, (102)

and similarly for WSO . For the radius and diffuseness param-
eters of the real central potential we have

rhV = (rnV + 2r pV )/3,

ahV = (anV + 2a p
V )/3, (103)

and similarly for the geometry parameters of the other poten-
tials.

3.3.4 Alpha particles

For α-particles, within the folding approach [36], the real
central potential depth at incident energy E is given by

V α
V (E) = 2V n

V (E/4) + 2V p
V (E/4), (104)

and similarly for WV and WD . No spin-orbit potential is
included, so that the depth

V α
SO(E) = Wα

SO(E) = 0. (105)

For the radius and diffuseness parameter of the real central
potential we have

rα
V = (rnV + r pV )/2,

aα
V = (anV + a p

V )/2, (106)

and similarly for the geometry parameters of the other poten-
tials.

Additional local or global α-nucleus optical potentials are
available and have been included in TALYS. They have been
essentially derived from fits to elastic α-nucleus scattering
data at energies above E � 80 MeV or, in some cases,
to (n, α) cross sections at lower energies. These concern in
particular the Wood-Saxon-type optical potential of McFad-
den and Satchler [42], Nolte et al. [43], or Avrigeanu et
al. [44]. However, the imaginary component is known to be
strongly energy dependent at energies below the Coulomb
barrier. For this reason, available α-particle elastic-scattering
and reaction cross sections around the Coulomb barrier on
medium- and heavy-mass nuclei were used to improve pre-
vious global optical potentials, essentially fitted at higher
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energies [45,46]. The Avrigeanu et al. Woods-Saxon-type
model from 2014 designed for targets with 45 ≤ A ≤ 209
mass number is the TALYS default potential.

In contrast to the phenomenological approach, the real
component of the potential of Dimitrou et al. [45] is based
on the double folding model obtained from a realistic
nucleon-nucleon interaction. From this, three different types
of energy-dependent imaginary potentials have been con-
structed from the assumption of volume or surface absorp-
tion, or from the adoption of the dispersion relations that link
the real and imaginary parts of the potential see Sect. 3.1.1).
The three corresponding optical potentials have been con-
strained in order to reproduce at best scattering and reac-
tion data at energies below typically E � 20 MeV and are
included in TALYS.

3.4 OMP continuity and parameter adjustment

The original KD03 OMP has been designed to cover the
entire 0–200 MeV range. We are well aware of the fact that
other OMPs, often designed for more restricted energy or
nuclide ranges, may be superior for particular cases. Impor-
tant examples are deformed OMPs for actinides, and the
above mentioned deuteron and alpha OMPs. Since TALYS
is designed to produce credible results for its entire energy
and nuclide domain, we need to ensure a smooth transition
between an OMP for a restricted energy range to an OMP for
the entire energy range. Since we always have the KD03 or
KD03-based folding potentials as a baseline, we have built
in an interpolation scheme for any alternative OMP and the
KD03 OMP. In practice, we join all 18 OMP parameters
smoothly from the alternative OMP and KD03, using a suffi-
ciently large energy interval in which the interpolation takes
place. In general, we set two energies, EA, up to which the
alternative OMP (alt) is completely adopted and EB , after
which the KD03 OMP is completely adopted. Then the OMP
parameters at any energy become

VV (E) = R.V alt(E) + (1 − R).VKD03(E)

rV (E) = R.r alt
V (E) + (1 − R).rKD03

V (E)

... (107)

where

R = 1 for E < EA,

R = 1 − E − EA

EB − EA
for EA ≤ E ≤ EB,

R = 0 for E > EB . (108)

The above mechanism is for example used for an extension
of the alpha OMP of Avrigeanu which is known to perform
well up to 25 MeV, and for that OMP we set EA = 25 MeV
and EB = 50 MeV, which is a large enough energy range to
ensure a smooth transition between both OMPs.

All optical model parameters can be altered via adjustable
parameters with which the standard values can be multiplied.
Also local energy-dependent adjustment of the geometry is
possible to fit data. Such adjustment is already implicit in the
dispersive OMPs that we use, and therefore theoretically jus-
tified, although an ad-hoc arbitrary energy-dependent form of
e.g. the radius and diffuseness parameters in practice means
one uses TALYS as a very complicated fitting function for
the sake of reproducing experimental data. Hence, this is only
applied as a last resort.

4 Direct reactions

Various models for direct reactions are included in the
program: DWBA for (near-)spherical nuclides, coupled-
channels for deformed nuclides, the weak-coupling model
for odd nuclei, and also a giant resonance contribution in the
continuum. In all cases, TALYS drives the ECIS-06 code to
perform the calculations. The results are presented as discrete
state cross sections and angular distributions, or as contribu-
tions to the continuum.

4.1 Distorted Wave Born Approximation

The DWBA is only valid for small deformations. Until the
emergence of the more general coupled-channels formalism,
it was the common method to describe inelastic scattering, for
both weakly and strongly coupled levels. Nowadays, we see
DWBA as a first order vibrational model for near-spherical
nuclides, with only a single iteration to be performed for the
coupled-channels solution. (See, however Satchler [47] for
the exact difference between this so-called distorted wave
method and DWBA). The interaction between the projectile
and the target nucleus is modeled by the derivative of the
OMP for elastic scattering times a strength parameter. The
latter, the deformation parameter βλ, is then often used to
vary the overall magnitude of the cross section, which is
proportional to β2

λ .
In TALYS, we use DWBA

(a) if a deformed OMP and a coupling scheme is not avail-
able. This applies for the spherical OMPs mentioned
in the previous section, which are all based on elas-
tic scattering observables only. Hence, if we have not
constructed a coupled-channels potential, TALYS will
automatically use tabulated or systematical deformation
parameters for DWBA calculations.

(b) if a deformed OMP is used for the first excited states
only. For the levels that do not belong to that basic cou-
pling scheme, e.g. for the many states at somewhat higher
excitation energy, we use DWBA with (very) small defor-
mation parameters.
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4.2 Deformed nuclei: Coupled channels

The formalism outlined for the spherical OMP (Sect. 3) and
DWBA (Sect. 4.1) works theoretically for nuclides which
are spherical and in practice for nuclides which are not
too strongly deformed. In general, however, the more gen-
eral coupled-channels method should be invoked to describe
simultaneously the elastic scattering channel and the low-
lying states which are, due to their collective nature, strongly
excited by inelastic scattering. These collective excitations
can be described as the result of static or dynamic defor-
mations, which cause the homogeneous neutron-proton fluid
to rotate or vibrate. The associated deformation parameters
can be predicted from a (semi-)microscopic model or can be
derived from an analysis of the experimental angular distri-
butions.

We already discussed the OMPs which are required to
describe reactions on deformed nuclides. These OMPs need
to be combined with a particular coupling scheme. The
coupled-channels formalism for scattering and reaction stud-
ies is well known and will not be described here. For a detailed
presentation, we refer to Tamura [48]. We will only state the
main aspects here to put the formalism into practice. The
analyses of Delaroche et al. [49] and Olsson et al. [50] have
been used as guidance, as these papers explain clearly how
to translate collective effects of various nuclides into ECIS
calculations. In general various different channels, usually
the ground state and several inelastic states, are included in
a coupling scheme while the associated coupled equations
are solved. In ECIS-06, this is done in a so-called sequential
iterative approach by Raynal [5]. Besides Ref. [5], Carlson’s
lecture [51] is also recommended for more insight in the use
of the ECIS code.

Various collective models for deformed nuclei exist. Note
that the spherical optical model of Eq. (67) is described
in terms of the nuclear radius Ri = ri A1/3. For deformed
nuclei, this expression is generalized to include collective
motions. Various models have been implemented in ECIS-
06, which enables us to cover many nuclides of interest.
We mention here that this does not exhaust all the possi-
ble coupled-channels models that currently exist. For exam-
ple, the soft-rotor model as implemented in the OPTMAN
code [52], which has been successfully applied to describe
various deformed nuclides and especially actinides, is not
covered by ECIS-06 and therefore not available here (as long
as we do not implement the OPTMAN code as an option in
TALYS). Hence, we will only describe the ones that can be
invoked by TALYS. The collective models are automatically
applied upon reading the deformation parameter database
and coupling scheme, see Sect. 10.

4.2.1 Symmetric rotational model

In the symmetric rotational model, the radii of the different
terms of the OMP are expressed as

Ri = ri A
1/3

⎡

⎣1 +
∑

λ=2,4,....

βλY
0
λ (	)

⎤

⎦ , (109)

where the βλ’s are permanent, static deformation parameters,
and the Y functions are spherical harmonics. The quadrupole
deformation β2 plays a leading role in the interaction pro-
cess. Higher order deformations βλ (with λ = 4, 6, ...) are
systematically smaller in magnitude than β2. The inclusion
of β4 and β6 deformations in coupled-channels calculations
produces changes in the predicted observables, but in gen-
eral, only β2 and β4 are important in describing inelastic
scattering to the first few levels in a rotational band. For even-
even nuclides like 184W and 232Th, the symmetric rotational
model provides a good description of the lowest 0+, 2+, 4+,
6+, 8+, … rotational band. The nuclear model and parameter
database of TALYS specifies whether a rotational model can
be used for a particular nucleus, together with the included
coupled levels and deformation parameters. Either a defor-
mation parameter βλ or a deformation length δλ = βλri A1/3

may be given. The latter one is generally recommended since
it should not depend on incident energy (while ri may, in
some optical models, depend on energy). We take δλ equal
for the three OMP components VV , WV and WD and take
the spin-orbit potential undeformed. The same holds for the
vibrational and other collective models.

4.2.2 Harmonic vibrational model

A vibrational nucleus possesses a spherically symmetric
ground state. Its excited states undergo shape oscillations
about the spherical equilibrium shape. In the harmonic vibra-
tional model, the radii of the different terms of the OMP are
expressed as

Ri = ri A
1/3

⎡

⎣1 +
∑

λμ

αλμY
μ
λ (	)

⎤

⎦ , (110)

where the αλμ operators can be related to the coupling
strengths βλ, describing the vibration amplitude with multi-
polarity λ. Expanding the OMP to first or second order with
this radius gives the OMP expressions for the excitation of
one-phonon (first order vibrational model) and two-phonon
(second order vibrational model) states [5]. For vibrational
nuclei, the minimum number of states to couple is two.
For even-even nuclei, we generally use the (0+, 2+) cou-
pling, where the 2+ level is a one-quadrupole phonon exci-
tation. The level scheme of a vibrational nucleus (e.g. 110Pd)
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often consists of a one-phonon state (2+) followed by a
(0+, 2+, 4+) triplet of two-phonon states. When this occurs,
all levels are included in the coupling scheme with the associ-
ated deformation length δ2 (or deformation parameter β2). If
the 3− and 5− states are strongly collective excitations, that
is when β3 and β5 are larger than 0.1, these levels may also be
included in the coupling scheme. An example is 120Sn [53],
where the low lying (0+, 2+, 3−, 4+, 5−) states can all be
included as one-phonon states in a single coupling scheme.

4.2.3 Vibration-rotational model

For certain nuclides, the level scheme consists not only of
one or more rotational bands, but also of one or more vibra-
tional bands that can be included in the coupling scheme. An
example is 238U, where many vibrational bands can be cou-
pled [54,55]. Depending on the number of levels included,
the calculations can be time-consuming.

4.2.4 Asymmetric rotational model

In the asymmetric rotational model, in addition to the
spheroidal equilibrium deformation, the nucleus can oscillate
such that ellipsoidal shapes are produced. In this model the
nucleus has rotational bands built on the statically deformed
ground state and on the γ -vibrational state. The radius is now
angular dependent,

Ri (
) = ri A
1/3[1 + β2 cos γY 0

2 (	)

+
√

1

2
β2 sin γ (Y 2

2 (	) + Y−2
2 (	)) + β4Y

0
4 (	)], (111)

where we restrict ourselves to a few terms. The deformation
parameters β2, β4 and γ need to be specified. 24Mg is an
example of a nucleus that can be analyzed with the asym-
metric rotational model. Mixing between bands is not yet
automated as an option in TALYS.

4.3 Odd nuclei: Weak coupling

Direct inelastic scattering off odd-A nuclei can be described
by the weak-coupling model [56], which assumes that a
valence particle or hole interacts only weakly with a collec-
tive core excitation. Hence the model implies that the nucleon
inelastic scattering by the odd-A nucleus is very similar to
that by the even core alone, i.e. the angular distributions have
a similar shape. Let L be the spin of the even core state, and J0

and J the spin of the ground and excited states, respectively,
of the odd-A nucleus, resulting from the angular momentum
coupling. Then, the spins J of the multiplet states in the odd-
A nucleus range from | L − J0 | to (L + J0). If the strength
of the inelastic scattering is characterized by the square of
the deformation parameters β2

L ,J , then the sum of all β2
L ,J

or σ(E) for the transitions in the odd-A nucleus should be
equal to the value β2

L or σ(E) for the single transition in the
even core nucleus:

∑

J

β2
L ,J = β2

L ,
∑

J

σJ0→J = σ0→L , (112)

where the symbol 0 → L indicates a transition between the
ground state to the excited state with spin L in the even core
nucleus. The deformation parameters β2

L ,J are now given by

β2
L ,J = 2J + 1

(2J0 + 1)(2L + 1)
β2
L . (113)

In practice, the DWBA cross sections are calculated for the
real mass of the target nucleus and at the exact excitation
energies of the odd-A states, but for the even-core spin L and
with deformation parameters βL ,J .

We stress that our weak-coupling model is not full-proof.
First of all, there are always two choices for the even-even
core. The default used in TALYS is to use the even-even core
obtained by subtracting a nucleon, but the other choice, to
obtain the even-even core by adding a nucleon, may some-
times be more appropriate. The next uncertainty is the choice
of levels in the odd-A core. We select the levels that are the
closest to the excitation energy of the even-spin state of the
even-even core.

4.4 Giant resonances

The high-energy part of the continuum spectra are gener-
ally described by pre-equilibrium models. These models are
essentially of a single-particle nature. Upon inspection of
continuum spectra, some structure in the high-energy tail
is observed that cannot be accounted for by the smooth
background of the single-particle pre-equilibrium model. For
example, many 14 MeV inelastic neutron spectra show a little
hump at excitation energies around 6–10 MeV. This struc-
ture is due to collective excitations of the nucleus that are
known as giant resonances [57,58]. We use a macroscopic,
phenomenological model to describe giant resonances in the
inelastic channel. For each multipolarity, an energy-weighted
sum rule (EWSR) S� applies,

S� =
∑

i

E�,iβ
2
�,i = 57.5A−5/3l(2l + 1) MeV, (114)

where E�,i is the excitation energy of the i-th state with mul-
tipolarity �. The summation includes all the low-lying col-
lective states, for each �, that have already been included in
the coupled-channels or DWBA formalism. The EWSR thus
determines the remaining collective strength that is spread
over the continuum. Our treatment is phenomenological in
the sense that we perform a DWBA calculation with ECIS-06
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for each giant resonance state and spread the cross section
over the continuum with a Gaussian distribution of width
�Gauss = 0.42��, where the �� for each multipolarity are
given below. The central excitation energy for these states
and the spreading width is different for each multipolarity
and has been empirically determined. For the giant monopole
resonance (GMR) EWSR we have

S0 = 23A−5/3 MeV, (115)

with excitation energy and width

E0,GMR = 18.7 − 0.025A MeV,

�GMR = 3 MeV. (116)

The EWSR for the giant quadrupole resonance (GQR) is

S2 = 575A−5/3 MeV, (117)

with

E0,GQR = 65A−1/3 MeV,

�GQR = 85A−2/3 MeV. (118)

The EWSR for the giant octupole resonance is

S3 = 1208A−5/3 MeV, (119)

which has a low-energy (LEOR) and a high-energy (HEOR)
component. Following Kalbach [58], we assume

S3,LEOR = 0.3S3, S3,HEOR = 0.7S3, (120)

with excitation energy and width

E0,LEOR = 31A−1/3 MeV,

�LEOR = 5 MeV, (121)

and

E0,HEOR = 115A−1/3 MeV,

�HEOR = 9.3 − A/48 MeV, (122)

respectively.
The contribution from giant resonances is automatically

included in the total inelastic cross section. The effect is most
noticeable in the single- and double-differential energy spec-
tra.

5 Compound nucleus reactions

The term compound nucleus reaction is often used for two
different mechanisms: (i) the process of the capture of the
projectile in the target nucleus to form a compound nucleus,

which subsequently emits a particle or gamma, (ii) the multi-
ple emission process of highly excited residual nuclei formed
after the binary reaction. The latter, which is known as multi-
ple compound emission, will be explained in Sect. 8. In either
case, the basic description is given by the Hauser-Feshbach
model [59]. We first treat the binary compound nucleus reac-
tion that plays a role at low incident energy. It differs from
the multiple compound emission at two important points: (a)
the presence of width fluctuation corrections (WFC) and (b)
non-isotropic, though still symmetric, angular distributions.

5.1 Binary compound cross section and angular distribution

In the compound nucleus picture, the projectile and the target
nucleus form a compound nucleus with a total energy Etot

and a range of values for the total spin J and parity �. The
following energy, angular momentum and parity conserva-
tion laws need to be obeyed,

Ea + Ex + Sa = Ea′ + Ex ′ + Sa′ = Etot

s + I + l = s′ + I ′ + l ′ = J

π0�0(−1)l = π f � f (−1)l
′ = �. (123)

The Hauser-Feshbach formula for the binary cross section is
given by

σ
comp
αα′ = Dcomp π

k2

lmax+I+s∑

J=mod(I+s,1)

1∑

�=−1

2J + 1

(2I + 1)(2s + 1)

×
J+I∑

j=|J−I |

j+s∑

l=| j−s|

J+I ′∑

j ′=|J−I ′|

j ′+s′∑

l ′=| j ′−s′|
δπ (α)δπ (α′)

×
T J

αl j (Ea)
〈
T J

α′l ′ j ′(Ea′)
〉

∑
α′′,l ′′, j ′′ δπ (α′′)

〈
T J

α′′l ′′ j ′′(Ea′′)
〉W J

αl jα′l ′ j ′ ,

(124)

where all the symbols are defined in Table 1. Note that
the formula automatically applies to (isomeric) target states,
which is made explicit by the target excitation energy Ex

in Eq. (123). In order to let Eq. (124) represent the general
case, we have denoted the outgoing transmission coefficient

by
〈
T J

α′l ′ j ′
〉
. For this, two cases can be distinguished. If the

excitation energy Ex ′ , that is implicit in the definition of
channel α′, corresponds to a discrete state of the final nucleus,
then we simply have

〈
T J

α′l ′ j ′(Ea′)
〉
= T J

α′l ′ j ′(Ea′), (125)

and E ′
a′ is exactly determined by Eq. (123). For α′ channels

in which Ex ′ is in the continuum, we have an effective trans-
mission coefficient for an excitation energy bin with width
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Table 1 Description of the symbols entering Eq. (124)

Ea Projectile energy

s Spin of the projectile

π0 Parity of the projectile

l Orbital angular momentum of the projectile

j Total angular momentum of the projectile

δπ (α) 1, if (−1)lπ0�0 = � and 0 otherwise

α Channel designation of the initial system

of projectile and target nucleus:

α = {a, s, Ea, Ex , I,�0}, where a is the projectile type

Ex Excitation energy of the target nucleus (usually zero)

lmax Maximum l-value for projectile,

determined by OMP

Sa Separation energy

Ea′ Ejectile energy

s′ Spin of the ejectile

π f Parity of the ejectile

l ′ Orbital angular momentum of the ejectile

j ′ Total angular momentum of the ejectile

δπ (α′) 1, if (−1)l
′
π f � f = � and 0 otherwise

α′ Channel designation of the final system of ejectile

and residual nucleus: α′ = {a′, s′, Ea′ , Ex ′ , I ′,� f },
where a′ is the ejectile type

Ex ′ Excitation energy of the residual nucleus

I Spin of the target nucleus

�0 Parity of the target

I ′ Spin of the residual nucleus

� f Parity of the residual nucleus

� Parity of the compound system

J Total angular momentum of the compound system

Dcomp Depletion factor to account for direct and

Pre-equilibrium effects

k Wave number of relative motion

T Transmission coefficient

W WFC factor

�Ex ′ ,

〈
T J

α′l ′ j ′(Ea′)
〉
=
∫ Ex ′+ 1

2 �Ex ′

Ex ′− 1
2 �Ex ′

dEx ′′ρ(Ex ′′ , J,�)

×T J
α′l ′ j ′(Ea′), (126)

where ρ is the level density, see Sect. 11, and T is evaluated
at an emission energy Ea′ that corresponds to the middle
of the excitation energy bin, i.e. Ea′ = Etot − Ex ′ − Sa′ .
Hence, both transitions to discrete states and transitions to
the whole accessible continuum are covered by the sum over
α′ in Eq. (124). The normalization factor Dcomp is

Dcomp = [σreac − σ disc,direct − σ preeq]/σreac. (127)

This indicates that in the current version of TALYS we
assume that direct and compound contributions can be added
separately. This formula for Dcomp is only applied for weakly
coupled channels that deplete the flux, such as contribu-
tions from DWBA or pre-equilibrium reactions. In the case
of coupled-channels calculations for the discrete collective
states, the transmission coefficients of Eq. (124) are auto-
matically reduced to account for direct effects and TALYS
only subtracts the direct cross section for the weakly coupled
levels (DWBA) and the pre-equilibrium component, i.e. if

σ disc,direct = σ disc,cc + σ disc,DWBA, (128)

then

Dcomp = [σreac − σ disc,DWBA − σ preeq]/σreac. (129)

The compound nucleus formula for the angular distribu-
tion is given by

dσ
comp
αα′ (θ)

d	
=
∑

L

Ccomp
L PL(cos 
), (130)

where PL are Legendre polynomials. The Legendre coeffi-
cients Ccomp

L are given by

Ccomp
L = Dcomp π

k2

∑

J,�

2J + 1

(2I + 1)(2s + 1)

×
J+I∑

j=|J−I |

j+s∑

l=| j−s|

J+I ′∑

j ′=|J−I ′|

j ′+s′∑

l ′=| j ′−s′|
×δπ (α)δπ (α′)

×
T J

αl j (Ea)
〈
T J

α′l ′ j ′(Ea′)
〉

∑
α′′,l ′′, j ′′ δπ (α′′)

〈
T J

α′′l ′′ j ′′(Ea′′)
〉

×W J
αl jα′l ′ j ′ A

J
Il j I ′l ′ j ′;L , (131)

where the Blatt-Biedenharn factor A is given by [60]

AJ
Il j I ′l ′ j ′;L = (−1)I

′−s′−I+s

4π
(2J + 1)(2 j + 1)

×(2l + 1)(2 j ′ + 1)(2l ′ + 1) (ll00 | L0)

×W(J j J j; I L)W( j jll; Ls) (l ′l ′00 | L0
)

×W(J j ′ J j ′; I ′L)W( j ′ j ′l ′l ′; Ls′), (132)

where ( | ) are Clebsch-Gordan coefficients and W are
Racah coefficients.

Formulae (124) and (130–132) show that the WFC factors
and the angular distribution factors depend on all the angular
momentum quantum numbers involved, and thus have to be
re-evaluated each time inside all the summations. We gener-
ally need these formulae for relatively low incident energy,
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where the WFC has a significant impact and where the com-
pound nucleus cross section to each individual discrete state
is large enough to make its angular distribution of interest.
For projectile energies above several MeV (we generally take
the neutron separation energy for safety), the width fluctua-
tions have disappeared, meaning that W J

αl jα′l ′ j ′ = 1 for all
channels. Then for the angle-integrated compound cross sec-
tion, instead of performing the full calculation, Eq. (124) can
be decoupled into two parts that represent the incoming and
outgoing reaction flux, respectively. It simplifies to

σ
comp
αα′ =

lmax+I+s∑

J=mod(I+s,1)

1∑

�=−1

σCF
J� (Etot )

×�α′(Etot , J,� −→ Ex ′ , I ′,� f )

�tot (Etot , J,�)
, (133)

where σCF
J� is the compound formation cross section per spin

and parity:

σCF
J� (Etot ) = Dcomp π

k2

2J + 1

(2I + 1)(2s + 1)

×
J+I∑

j=|J−I |

j+s∑

l=| j−s|
T J

αl j (Ea)δπ (α), (134)

which itself obeys

lmax+I+s∑

J=mod(I+s,1)

1∑

�=−1

σCF
J� (Etot ) = Dcompσreac. (135)

The partial decay widths are

�α′(Etot , J,� −→ Ex ′ , I ′,� f ) = 1

2πρ(Etot , J,�)

×
J+I ′∑

j ′=|J−I ′|

j ′+s′∑

l ′=| j ′−s′|
δπ (α′)

〈
T J

α′l ′ j ′(E
′
a′)
〉
, (136)

and the total decay width is

�tot (Etot , J,�) =
∑

α′′
�α′′(Etot , J,� −→ Ex ′ , I ′′,� f ),

(137)

where we sum over all possible states in the residual nuclides
through the sum over α′′. Note that the term with the
compound nucleus level density, 2πρ, is present in both
Eqs. (136) and (137) and therefore does not need to be calcu-
lated in practice for Eq. (133). A formula similar to Eq. (133)
is used for multiple emission, see Sect. 8.

In sum, we use Eqs. (124) and (131) if either width fluctu-
ations or compound angular distributions are to be calculated
and the more time-efficient Eq. (133) if they are both of no
interest.

5.2 Width fluctuation correction factor

The WFC factor W accounts for the correlations that exist
between the incident and outgoing waves. From a qualitative
point of view, these correlations enhance the elastic channel
and accordingly decrease the other open channels. We are
aware that a more complete description of the WFC mech-
anism requires inclusion of the Engelbrecht-Weidenmüller
transformation which includes direct-compound reaction
interference, see Refs. [61,62]. This is under construction.
Above a few MeV of projectile energy, when many compet-
ing channels are open, the WFC factor can be neglected and
the simple Hauser-Feshbach model is adequate to describe
the compound nucleus decay. To explain the WFC factors,
we now switch to a more compact notation in which we leave
out J and define a = {α, l, j} and b = {α′, l ′, j ′}. With such
a notation the compound nucleus cross section can be written
in the compact form

σab = π

k2
a

TaTb∑
c Tc

Wab, (138)

for each combination of a and b. In general, the WFC
factor may be calculated using three different expressions,
which have all been implemented in TALYS: The Hofmann-
Richert-Tepel-Weidenmüller (HRTW) model [63–65], the
Moldauer model [66,67], and the model using the Gaussian
Orthogonal Ensemble (GOE) of Hamiltonian matrices [68].
A comparison between the three models is given by Hilaire
et al. [69].

For each expression, flux conservation implies that

Ta =
∑

b

TaTb∑
c Tc

Wab. (139)

This equation can be used to check the numerical accuracy
of the WFC calculation.

5.2.1 The HRTW method

The simplest approach is the HRTW method. It is based on
the assumption that the main effect of the correlation between
incident and outgoing waves is in the elastic channel. In that
case, it is convenient to express the compound nucleus cross
section (138) as

σab = π

k2

VaVb∑
c Vc

[1 + δab(Wa − 1)] , (140)

where theVi ’s are effective transmission coefficients that take
into account the correlations.
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This expression means that only the elastic channel
enhancement is described since for a = b, Eq. (140) becomes

σaa = π

k2
a

V 2
a∑
c Vc

Wa, (141)

while for a 	= b,

σab = π

k2
a

VaVb∑
c Vc

. (142)

An expression for the Vi values can be determined from the
flux conservation condition

∑

b

σab = π

k2
a
Ta, (143)

which yields using Eq. (140)

Ta = Va + (Wa − 1)
V 2
a∑
c Vc

, (144)

or

Va = Ta

1 + (Wa−1)Va∑
c Vc

. (145)

The only required information is thus the expression for Wa ,
which can be derived from an analysis using random matrix
calculations. In TALYS, the expression of Ref. [65] is used.
The result for Va is then obtained after iterating Eq. (145)
several times, starting from the initial value

Va(i = 0) = Ta

1 + (Wa − 1)
Ta∑
c Tc

, (146)

and calculating Va(i + 1) using

Va(i + 1) = Ta

1 + (Wa − 1)
Va(i)∑
c Vc(i)

, (147)

until Va(i + 1) ≈ Va(i). In a calculation, a few tens of iter-
ations are generally required to reach a stable result.

For each J and �, expressions (145)–(147) only need to
be evaluated once. The WFC factor can then be derived from
Eqs. (138) and (140),

Wab = VaVb∑
c Vc

[1 + δab(Wa − 1)]

∑
c Tc

TaTb
. (148)

5.2.2 Moldauer expression

This is the default option for the WFC in TALYS. Moldauer’s
expression for Wab is based on the assumption that a χ2 law
with ν degrees of freedom applies for the partial widths �,
which can be calculated from a Porter-Thomas distribution.
These are associated with transmission coefficients as

T = 2π 〈�〉
D

, (149)

provided 〈�〉 << D, where D is the mean level spacing. The
WFC factor Wab reads

Wab =
(

1 + 2δab

νa

)

×
∫ +∞

0

∏

c

(
1 + 2Tc x

νc
∑

i Ti

)−(δac+δbc+νc/2)

dx,

(150)

Moldauer has parameterised ν using Monte Carlo calcula-
tions, giving

νa = 1.78 +
(
T 1.212
a − 0.78

)
exp

(
−0.228

∑

c

Tc

)
.

(151)

Also, alternative parameterizations for νa are included in
TALYS, notably that of Ernebjerg and Herman [70] and
Kawano and Talou [71]. The integral in Eq. (150) is eval-
uated numerically. For this, the Gauss-Laguerre method is
used and we find that 40 integration points are enough to
reach convergence, the criterion being the flux conservation
of Eq. (139).

Equation (150) involves a product over all possible open
channels. When the number of channels is large, the prod-
uct calculation drastically increases the time of computation,
forcing us to consider another method. Many open channels
are considered for capture reactions and reactions to the con-
tinuum.

A. Capture reactions
If the projectile is captured by the target nucleus, the com-
pound nucleus is formed with an excitation energy at least
equal to the projectile separation energy in the compound sys-
tem. Since the γ transmission coefficient calculation involves
all the possible states to which a photon can be emitted from
the initial compound nucleus state, the number of radiative
open channels is almost infinite, but each has a very small
transmission coefficient. Following Ref. [72], the product
over the radiative channels in Eq. (150) can be transformed
as

∏

c∈γ

(
1 + 2Tc x

νc
∑

i Ti

)−νc/2
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≈ lim
νγ →+∞

(
1 + 2Tγ x

ν̄γ

∑
i Ti

)−ν̄γ /2

= exp

(
−T ef f

γ x∑
i Ti

)
, (152)

where T ef f
γ is given by the procedure sketched in Sect. 12.

The derivation is based on the hypothesis that all the indi-
vidual Tγ are almost identical to 0. Therefore, to calculate
Wab when b denotes the gamma channel, we set Tb = 0 in
Eqs. (150) and use Eqs. (152) to calculate the product for γ

channels.

B. Continuum reactions
For high excitation energies, it is impossible to describe all
the open channels individually. It is then necessary to intro-
duce energy bins to discretize the continuum of levels and
define continuum (or effective) transmission coefficients as

Tef f (U ) =
∫ Emax

Emin

ρ(ε)T (ε)dε, (153)

where U is generally taken as the middle of the interval
[Emin, Emax ] and ρ is the density of levels under consid-
eration. This effective transmission coefficient corresponds
to an effective number of channels Nef f (U ), given by

Nef f (U ) =
∫ Emax

Emin

ρ(ε)dε. (154)

Calculating the product term in Eq. (150) is tedious, unless
one assumes that the energy variation of T (ε) is smooth
enough to warrant that each of the Nef f (U ) channels has
the same average transmission coefficient

Tmean(U ) = Tef f (U )

Nef f (U )
. (155)

Then, the product over the channels c belonging to such a
continuum bin in the Moldauer integral Eq. (150) can be
replaced by a single term, i.e.

∏

c

(
1 + 2Tc

νc
∑

i Ti
x

)−νc/2

≈
(

1 + 2Tmean(U )

νmean
∑

i Ti
x

)−Nef f (U )νmean/2

, (156)

where

νmean = 1.78 +
(
T 1.212
mean − 0.78

)
exp

(
−0.228

∑

c

Tc

)
.

(157)

C. Fission reactions
The fission reaction is treated as one global channel, regard-
less of the nature of the fission fragments that result from
fission. In Sect. 13, it is explained how the global fission
transmission coefficient is calculated. It is however impor-
tant to state here that the fission transmission coefficient is
generally greater than 1 since it results from a summation
over several fission paths and can therefore be defined as

T f is(U ) =
∫ Emax

Emin

ρ f is(ε)T f (ε)dε. (158)

Of course, 0 ≤ T f (ε) ≤ 1, but one cannot assume that T f

is constant over the whole integration energy range as in the
case of continuum reactions. To bypass this problem, instead
of using a global fission transmission coefficient, we have
grouped the various components of Eq. (158) according to
their values. Instead of dealing with a global fission trans-
mission coefficient, we use N different global transmission
coefficients (where N is an adjustable parameter) such that

T f is(U ) =
N∑

i=0

T f is(i,U ), (159)

where

T f is(i,U ) =
∫ Emax

Emin

ρ f is(ε)T f (ε)δi,Ndε, (160)

and δi,N = 1 if i/N ≤ T f (ε) ≤ (i + 1)/N and 0 otherwise.
In this case one can define, as for continuum reactions, an

effective number of channels N f is(i,U ), and use N average
fission transmission coefficients defined by

T f ismean(i) = T f is(i,U )

N f is(i,U )
. (161)

If N is large enough, these N average coefficients can be
used for the WFC calculation without making a too crude
approximation.

5.2.3 The GOE triple integral

The two previously described methods to obtain Wab are
readily obtained since both are relatively simple to imple-
ment. However, in each case, a semi-empirical parameteri-
sation is used. The GOE formulation avoids such a param-
eterisation, in which sense it is a more general expression.
We refer to the numerical method employed to compute this
complicated triple integral to Hilaire et al. [69]. An impor-
tant conclusion from that paper is that for most cases, the
Moldauer expression gives a very good approximation to the
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exact GOE result. This is important since a GOE calculation
is very time consuming.

5.3 Thermal and resonance energy range

The introduction of this paper states that TALYS is meant for
the analysis of data up to 200 MeV. To be more precise, we
should state that the physics implemented in TALYS starts
to be applicable after a few keV, or more accurately, above
the resolved resonance range. The energy where the unre-
solved resonance starts varies from nucleus to nucleus and
is related to the average resonance spacing D0 or, equiva-
lently, the level density at the binding energy. Generally, the
starting energy region is higher for light nuclides than for
heavy nuclides. Only beyond this energy, the optical and sta-
tistical models implemented in TALYS are expected to yield
reasonable results, at least for the non-fluctuating cross sec-
tions. The lower energies are the domain of R-matrix theory,
which describes the individual resonances. Nevertheless, it
would be useful to have a first-order estimate of the non-
threshold reactions, not only for the obvious neutron capture
channel, but also for the exothermal (n, p), (n, α) and fis-
sion channels. The fact that a nuclear model calculation in
TALYS is only performed down to about a few keV should
not prevent us to give at least an estimate of the 1/v-like and
resonance behaviour of the excitation function down to 10−5

eV (the lower energy limit in ENDF-6 nuclear data libraries).
TALYS contains databases for data in the low-energy range:

• evaluated thermal neutron cross sections from the TARES
database [73],

• evaluated neutron resonance parameters from the TARES
database [73],

• average neutron s-wave resonance spacings, D0, from the
RIPL database [9].

One can now proceed in two ways.

Simple method: Linear interpolation
The simple method consists of using tabulated thermal cross
section and D0 values. First, we decide on the lower energy of
validity of a TALYS nuclear model calculation EL . Some-
what arbitrarily, we set as default EL = D0, where D0 is
taken from the evaluated database or, if not available, derived
from the level density. EL can also be entered as input. Next,
we determine the neutron capture cross section at the ther-
mal energy Eth = 0.0253 eV, either from the experimental
database or, if not available, from the systematic relation [74]

σn,γ (Eth) = 1.5 × 10−3a(Sn − �)3.5 mb, (162)

with a the level density parameter at the neutron separation
energy Sn and � the pairing energy in MeV. We assign a
1/v, i.e. 1/

√
E , dependence to the cross section from 10−5

eV to an upper limit E1/v which we set, again arbitrarily, at
E1/v = 0.2EL . The 1/v line obviously crosses σn,γ (Eth) at
the thermal energy Eth . The points at E1/v and EL are con-
nected by a straight line. The resulting capture cross section is
illustrated in Fig. 11. In reality, the region between E1/v and
EL is filled with resolved resonances, which is why we also
implemented in TALYS a more physical method which has
been available for several years now, as shortly discussed
below. For other reactions with positive Q-values, such as
(n, p) and (n, α), only a few experimental values at thermal
energy are available and a systematic formula as for (n, γ ) is
hard to construct. If thermal cross sections are available for
these reactions, the same method as for the radiative capture
is followed. If not, we assume, e.g. in the (n, p) case that the
ratio between the gamma decay width and the proton decay
width is constant for incident energies up to EL . Hence, we
determine the ratio Rp = σn,p/σn,γ at EL from the TALYS
calculation, and since we know the thermal (n, γ ) value we
can produce the (n, p) excitation function down to 10−5 eV
by multiplying the capture cross section by Rp. A similar
procedure is applied to all other non-threshold reactions.

High-Fidelity Resonance method: resonance reconstruc-
tion
For the TENDL project [11], a complete set of resonance
parameters for all nuclides is considered, either from avail-
able compilations [75,76] or from the various nuclear data
libraries around the world. This leads to a recommended set
of resonance parameters which is used to create the low-
energy part of the database. All this is provided in the TARES
code [73]. TARES is not a resonance (analysis) code but
rather collects and analyses resonance data, produces uncer-
tainty and covariance data and produces data in pointwise
form as e.g. a total cross section. To provide low-energy cross
section data for all resonance channels we have integrated
into TALYS three codes from the PREPRO-package [77],
namely RECENT, SIGMA1 and GROUPIE, to reproduce
the pointwise cross sections from the resonance parameters
(RECENT), to broaden it in case of a desired temperature by
the user (SIGMA1) and to group pointwise data to get a more
compact groupwise representation (GROUPIE). The result-
ing reconstructed cross sections in the resonance range are
then merged with the TALYS nuclear model result at higher
energies. An example is given in Fig. 10 for resonance param-
eters available from experiment for 122Te(n,γ ). As advocated
in Ref. [78], the average resonance parameters as predicted
by TALYS can be used to generate statistical resonances.
These average parameters are then derived from theoretical
level densities and photon strength functions which are used
to estimate strength functions and average radiative widths.
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Fig. 10 Reconstruction of cross section data in the resonance range
and transition into the unresolved range for 122Te(n,γ ). A pointwise
calculation at a temperature of T = 293.15 K is shown

Fig. 11 Reconstruction of cross section data in the resonance range
and transition into the unresolved range for 99Y(n,γ ) for a temperature
T = 293.15 K, for the High-Fidelity Resonance method, compared
with the simple method of linear interpolation

An example is given in Fig. 11 for the neutron-rich nucleus
99Y for which no experimental data is available. Again, the
difference with Fig. 11 is obvious: the fact that resonances
have not been measured does not mean that they do not exist.
It is therefore seen as a reasonable option to generate them on
the basis of TALYS parameters from the statistical reaction
range. The individual energies and widths may not be cor-
rect, but on average they follow well-established theoretical
statistical estimates. In Ref. [78], such a transition from the
resolved resonance regime to the unresolved range is applied
to exotic neutron-rich nuclides within this so-called High-
Fidelity Resonance framework and shown to have important
implications, especially for astrophysical applications.

6 Pre-equilibrium reactions

It is now well known that the separation of nuclear reac-
tion mechanisms into direct and compound is too simplis-

Fig. 12 Impact of pre-equilibrium mechanism on description of (p,n)
cross section. The experimental data are obtained from the EXFOR
database [80]

tic. As Fig. 3 shows, the cross section as predicted by the
pure compound process is too small with respect to mea-
sured continuum spectra, and the direct processes described
in the previous section only excite the discrete levels at the
highest outgoing energies. Furthermore, the measured angu-
lar distributions in the region between direct and compound
are anisotropic, see e.g. Ref. [79], indicating the existence of
a memory-preserving, direct-like reaction process. A third
important indicator of the pre-equilibrium mechanism is the
impact on excitation functions. If pre-equilibrium reactions
would not exist, the compound nucleus would evaporate more
particles before decaying to the ground state with gamma
emission. Pre-equilibrium emission takes away the energy in
the binary reaction process, which is confirmed by Fig. 12.
The high-energy part of the spectrum of Fig. 3 is consistent
with the excitation function above 15 MeV of Fig. 12. Instead
of rapidly decreasing to zero, the excitation function has a tail
towards high incident energies as the nucleus can no longer
emit further particles.

It is now well understood that, as an intermediate between
the two extremes, there exists a reaction mechanism that
embodies both direct- and compound-like features. These
reactions are referred to as pre-equilibrium, pre-compound
or, when discussed in a quantum-mechanical context, multi-
step processes. Pre-equilibrium emission takes place after
the first stage of the reaction but long before statistical equi-
librium of the compound nucleus is attained. It is imagined
that the incident particle step-by-step creates more complex
states in the compound system and gradually loses its mem-
ory of the initial energy and direction. Pre-equilibrium pro-
cesses cover a sizable part of the reaction cross section for
incident energies between 10 and (at least) 200 MeV. Pre-
equilibrium reactions have been modeled both classically
and quantum-mechanically and both options are included in
TALYS.
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6.1 Two-component exciton model

In the exciton model [81] (see also Refs. [82,83] for extensive
reviews), the nuclear state is characterized at any moment
during the reaction by the total energy Etot and the total
number of particles above and holes below the Fermi sur-
face. Particles (p) and holes (h) are indiscriminately referred
to as excitons. Furthermore, it is assumed that all possible
ways of sharing the excitation energy between different p-h
configurations with the same exciton number n = p+h have
equal a-priori probability. To keep track of the evolution of
the scattering process, one merely traces the temporal devel-
opment of the exciton number, which changes in time as a
result of intranuclear two-body collisions. The basic start-
ing point of the exciton model is a time-dependent master
equation, which describes the probability of transitions to
more and less complex p-h states as well as transitions to
the continuum, leading to emission. Upon integration over
time, the energy-averaged emission spectrum is obtained.
These assumptions makes the exciton model amenable for
practical calculations. The price to be paid however is the
introduction of a free parameter, namely the average matrix
element of the residual two-body interaction, occurring in the
transition rates between two exciton states. When this matrix
element is properly parameterized, a very powerful model is
obtained.

Qualitatively, the equilibration process of the excited
nucleus is imagined to proceed as follows, see Fig. 13.
After entering the target nucleus, the incident particle col-
lides with one of the nucleons of the Fermi sea, with depth
EF . The formed state with n = 3 (2p1h), in the case of a
nucleon-induced reaction, is the first that is subject to parti-
cle emission, confirming the picture of the exciton model as a
compound-like model rather than a direct-like model. Subse-
quent interactions result in changes in the number of excitons,
characterized by �n = +2 (a new p-h pair) or �n = −2
(annihilation of a p-h pair) or �n = 0 (creation of a differ-
ent configuration with the same exciton number). In the first
stage of the process, corresponding to low exciton numbers,
the �n = +2 transitions are predominant. Apart from transi-
tions to more complex or less complex exciton states, at any
stage there is a non-zero probability that a particle is emitted.
Should this happen at an early stage, it is intuitively clear that
the emitted particle retains some “memory” of the incident
energy and direction: the hypothesis of a fully equilibrated
compound nucleus is not valid. This phase is called the pre-
equilibrium phase, and it is responsible for the experimen-
tally observed high-energy tails and forward-peaked angular
distributions. If emission does not occur at an early stage,
the system eventually reaches a (quasi-) equilibrium. The
equilibrium situation, corresponding to high exciton num-
bers, is established after a large number of interactions, i.e.
after a long lapse of time, and the system has “forgotten”

Fig. 13 Reaction flow in exciton model

about the initial state. Accordingly, this stage may be called
the compound or evaporation stage. Hence, in principle the
exciton model enables to compute the emission cross sections
in a unified way, without introducing adjustments between
equilibrium and pre-equilibrium contributions. However, in
practical cases it turns out that it is simpler and even more
accurate to distinguish between a pre-equilibrium and an
equilibrium phase and to perform the latter with the usual
Hauser-Feshbach formalism, as described in Sect. 5. This is
the approach followed in TALYS.

Two versions of the exciton model are implemented in
TALYS: The default is the two-component model in which
the neutron or proton types of particles and holes are followed
throughout the reaction, and that will be described here.
For the simpler, and more generally known, one-component
model we refer to Ref. [81].

In the following reaction equations, we use a notation in
which pπ (pν) is the proton (neutron) particle number and hπ

(hν) the proton (neutron) hole number. From this, we define
the proton exciton number nπ = pπ + hπ and the neutron
exciton number nν = pν + hν . Then, we can construct the
charge-independent particle number p = pπ + pν , the hole
number h = hπ + hν and the exciton number n = nπ + nν .

The temporal development of the system can be described
by a master equation, describing the gain and loss terms for
a particular class of exciton states [81]. Integrating the mas-
ter equation over time up to the equilibration time yields
the mean lifetime of the exciton state τ that can be used to
calculate the differential cross section [84]. The primary pre-
equilibrium differential cross section for the emission of a
particle k with emission energy Ek can then be expressed in
terms of τ , the composite-nucleus formation cross section
σCF, and an emission rate Wk ,

dσ
preeq
k

dEk
= σCF

pmax
π∑

pπ=p0
π

pmax
ν∑

pν=p0
ν

Wk(pπ , hπ , pν, hν, Ek)

×τ(pπ , hπ , pν, hν)P(pπ , hπ , pν, hν), (163)

where the factor P represents the part of the pre-equilibrium
population that has survived emission from the previous
states and now passes through the (pπ , hπ , pν, hν) con-
figurations, averaged over time. Expressions for all quanti-
ties appearing in this expression will be briefly summarized
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below. The initial proton and neutron particle numbers are
p0
π = Z p, and p0

ν = Np, respectively with Z p (Np) the pro-
ton (neutron) number of the projectile. For any exciton state
in the reaction process, hπ = pπ − p0

π and hν = pν − p0
ν ,

so that for primary pre-equilibrium emission the initial hole
numbers are h0

π = h0
ν = 0. For e.g. a neutron-induced reac-

tion, the initial exciton number is given by n0 = n0
ν = 1

(0pπ 0hπ 1pν0hν), but only pre-equilibrium gamma emission
can occur from this state, while nucleon emission from this
state is essentially elastic scattering and this is already cov-
ered by the optical model. Particle emission only occurs from
n = 3 (2p1h) and higher exciton states. We use a hardwired
value of pmax

π = pmax
ν = 6 as the upper limit of the summa-

tion [81], and in addition the never-come-back approxima-
tion, i.e. throughout the cascade one neglects the interactions
that decrease the exciton number, although the adopted solu-
tion of Eq. (163) includes transitions that convert a proton
p-h pair into a neutron pair and vice versa. The maximum
values pmax

π and pmax
ν thus entail an automatic separation of

the pre-equilibrium population and the compound nucleus
population. The latter is then handled by the more adequate
Hauser-Feshbach mechanism. We now discuss the various
ingredients of Eq. (163).

A. Reaction cross sections
The basic feeding term for pre-equilibrium emission is the
composite formation cross section σCF, which is given by

σCF = σreac − σdirect, (164)

where the reaction cross section σreac is directly obtained
from the optical model and σdirect is the sum of the cross
sections for direct reactions to discrete states σ disc,direct as
defined in Eq. (18), and for giant resonances, see Sect. 4.4.

B. Emission rates and p-h state densities
The emission rate Wk has been derived by Cline and
Blann [85] from the principle of microreversibility, and can
easily be generalized to a two-component version as shown
by Dobeš and Běták [86]. The emission rate for an ejectile k
with relative mass μk and spin sk is

Wk(pπ , hπ , pν, hν, Ek) = 2sk + 1

π2�3 μk Ekσk,inv(Ek)

×ω(pπ − Zk, hπ , pν − Nk, hν, E tot − Ek)

ω(pπ , hπ , pν, hν, E tot)
, (165)

where σk,inv(Ek) is the inverse reaction cross section, again
calculated with the optical model, Zk (Nk) is the charge (neu-
tron) number of the ejectile and E tot is the total energy of the
composite system.

For the p-h state density ω(pπ , hπ , pν, hν, Ex ) we use
the expression of Běták and Dobeš [86,87]. Their formula is
based on the assumption of equidistant level spacing and is
corrected for the effect of the Pauli exclusion principle and

for the finite depth of the potential well. The two-component
p-h state density is

ω(pπ , hπ , pν, hν, Ex ) = gnπ
π gnν

ν

pπ !hπ !pν !hν !(n − 1)!
×(U − A(pπ , hπ , pν, hν))

n−1 f (p, h,U, V ), (166)

where gπ and gν are the single-particle state densities, A
the Pauli correction, f the finite well function, and U =
Ex − Pp,h with Pp,h the pairing correction [88]. We refer to
Ref. [81] for the expressions for Pp,h and A(pπ , hπ , pν, hν).
For the single-particle state densities we take

gπ = Z/15, gν = N/15, (167)

which is, through the relationship g = 6a/π2, in line with the
values for our total level density parameter a, see Eq. (227),
and also provides a globally better description of spectra than
g = A/13, used in several older exciton model parameteri-
zations.

The finite well function f (p, h, Ex , V ) accounts for the
fact that a hole cannot have an energy below that of the bottom
of the potential well depth V . It is given by

f (p, h, Ex , V ) = 1 +
h∑

i=1

(−1)i
(
h
i

)[
Ex − iV

Ex

]n−1

×
(Ex − iV ), (168)

where 
 is the unit step function. Note that f is different
from 1 only for excitation energies greater than V . In the
original version of Běták and Dobeš [87], V is given by
the depth E f of the Fermi well. This was generalized by
Kalbach [58,89] to obtain an effective method to include
surface effects in the first stage of the interaction, leading
to a harder pre-equilibrium spectrum. For the first stage the
maximum depth of the hole should be significantly reduced,
since in the surface region the potential is shallower than
in the interior. This automatically leaves more energy to be
adopted by the excited particle, yielding more emission at the
highest outgoing energies. We use the following functional
form for V in terms of the projectile energy Ep and the mass
A,

V = 22 + 16
E4
p

E4
p + (450/A1/3)4 MeV for

h = 1 and incident protons,

V = 12 + 26
E4
p

E4
p + (245/A1/3)4 MeV for

h = 1 and incident neutrons,

V = E f = 38 MeV for h > 1, (169)

see Ref. [81] for a further justification of this parameterisa-
tion.
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C. Lifetimes
The lifetime τ of exciton state (pπ , hπ , pν, hν) in Eq. (163)
is defined as the inverse sum of the total emission rate and
the various internal transition rates,

τ(pπ , hπ , pν, hν) = [λ+
π (pπ , hπ , pν, hν)

+λ+
ν (pπ , hπ , pν, hν) + λ0

πν(pπ , hπ , pν, hν)

+λ0
νπ (pπ , hπ , pν, hν) + W (pπ , hπ , pν, hν)]−1, (170)

where λ+
π (λ+

ν ) is the internal transition rate for proton (neu-
tron) p-h pair creation, λ0

πν (λ0
νπ ) is the rate for the conversion

of a proton (neutron) p-h pair into a neutron (proton) p-h pair,
and λ−

π (λ−
ν ) is the rate for p-h annihilation. The total emis-

sion rate W is the integral of Eq. (165) over all outgoing
energies, summed over all outgoing particles,

W (pπ , hπ , pν, hν) =
∑

k=γ,n,p,d,t,h,α∫
dEkWk(pπ , hπ , pν, hν, Ek).

(171)

Expressions for the internal transition rates λ and the pre-
equilibrium population P in Eq. (163) are rather extensive
and are given in Ref. [81].

D. Internal transition rates
The transition rates λ+ (λ0) for the creation (conversion) of a
p-h pair are expressed in terms of a collision probability per
unit time, which contains the main parameter that drives the
pre-equilibrium strength.

We distinguish between two options for the collision prob-
abilities. The best known is to express them in terms of an
effective squared matrix element M2, as used in many exci-
ton model analyses. This matrix element thus represents an
effective residual interaction, whereby all individual residual
interactions taking place inside the nucleus can be cast into
an average form for the squared matrix element to which one
assigns a global energy dependence.

The average residual interaction inside the nucleus is not
necessarily the same for like and unlike nucleons, and there-
fore the two-component exciton model contains 4 differ-
ent matrix elements. They all relate to the following semi-
empirical expression which has been shown to work for inci-
dent energies up to 200 MeV [81]:

M2 = C1Ap

A3

⎡

⎣7.48C2 + 4.62 × 105

( E tot

n.Ap
+ 10.7C3)3

⎤

⎦ . (172)

where Etot is the total energy of the system and C1,C2

and C3 are adjustable constants that are all equal to 1 by
default, and Ap is the mass number of the projectile, which
allows generalization for complex-particle reactions. Equa-
tion (172) is slightly different (10%) from the expression

given in Ref. [81] to allow for better fits of excitation func-
tions.

We also emphasize that the above parameterization has
been fine-tuned to experimental particle emission spectra as
these form the most exclusive type on information to con-
strain the pre-equilibrium models. This does not necessarily
give the optimal solution for cross section excitation func-
tions and recently more attempts have been made to establish
new trends for M2 on the basis of excitation functions [90].

Instead of modeling the intranuclear transition rate by an
average squared matrix element, one may also relate the tran-
sition rate to an effective imaginary optical potential [81]
related to nucleon-nucleon collisions in nuclear matter:

W eff
i (E) = Comp Wi (E). (173)

We use as best overall parameter Comp = 0.55. Apart from
Comp, this constitutes a parameter-free model. When exper-
imental data from the EXFOR database [80] become pro-
grammatically available, an interesting future study is to see
which of the two options for the transition rates gives the best
trend and whether our parameterizations can be improved.

6.2 Photon exciton model

For pre-equilibrium photon emission, we have implemented
the model of Akkermans and Gruppelaar [91]. This model
gives a simple but powerful simulation of the direct and semi-
direct capture process within the framework of the exciton
model. Analogous to the particle emission rates, the contin-
uum γ -ray emission rates may be derived from the principle
of detailed balance or microscopic reversibility, assuming
that only E1-transitions contribute. This yields for the two-
component emission rate

Wγ

(
pπ , hπ , pν, hν, Eγ

) = E2
γ

π2�3c2

× σγ,abs(Eγ )

ω(pπ , hπ , pν, hν, Etot )

1

g(n − 2) + g2Eγ

×
(
g2Eγ

1

2

[
ω(pπ − 1, hπ − 1, pν, hν, Ex − Eγ )

+ω
(
pπ , hπ , pν − 1, hν − 1, Ex − Eγ

)]

+gnω(pπ , hπ , pν, hν, Ex − Eγ )

gn + g2Eγ

)
, (174)

where g is the single-particle state density, n the exciton
number andσγ,abs(Eγ ) is the photon absorption cross section
of Eq. (294). The initial p-h configuration is n0 = 1 (1p0h)
for photon emission. For “direct” γ -ray emission in nucleon-
induced reactions only the second term between brackets
(n = 1) contributes. The “semi-direct” γ -ray emission (n =
3) consists of both terms.
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The emission rate (174) is included in Eq. (163), so that the
pre-equilibrium photon cross section automatically emerges.

6.3 Pre-equilibrium spin distribution

Since the exciton model described above does not provide a
spin distribution for the residual states after pre-equilibrium
emission, a model needs to be adopted that provides the spin
population in the continuum after binary reactions and further
pre-equilibrium stages. TALYS provides two options for this.
The default is to adopt the compound nucleus spin distribu-
tion (described in Sect. 5) also for the excited states resulting
from pre-equilibrium emission. Another option that has been
quite often used in the past is to assign a spin distribution to
the p-h state density. For that, we adopt the usual decom-
position of the state density into a J -dependent part and an
energy-dependent part,

ρ(pπ , hπ , pν, hν, J, Ex ) = (2J + 1)Rn(J )

×ω(pπ , hπ , pν, hν, Ex ).

(175)

The function Rn(J ) represents the spin distribution of the
states in the continuum. It is given by

Rn(J ) = 2J + 1

π1/2n3/2σ 3 exp

[
− (J + 1

2 )2

nσ 2

]
. (176)

where the spin cut-off parameter σ is given by Ref. [92],

σ 2 = CpnA
2
3 , (177)

where A is the mass number of the nucleus and by default
Cp = 0.24. In practice, with this option the residual states
formed by pre-equilibrium reactions would be multiplied by
Rn a posteriori. The default in TALYS is still to use the
compound nucleus spin distribution. There has been quite
some debate about the correct spin distributions for pre-
equilibrium reactions, see e.g. Ref. [83] and updated versions
of Eq. (175) will be reserved for future pre-equilibrium mod-
els which consistently take the spin into account throughout
the entire formalism. There are several indications that the
spin-distribution should be narrower than the one prescribed
by Eq.( 177), and as an example Ref. [93] provides a discus-
sion of this issue for 238U(n, n′γ ) reactions.

6.4 Continuum stripping, pick-up, break-up and knock-out
reactions

For pre-equilibrium reactions involving deuterons, tritons,
Helium-3 and alpha particles, a contribution from the exci-
ton model is automatically calculated with the formalism
of the previous subsections. It is however well known that

for nuclear reactions involving composite projectiles and
ejectiles, mechanisms like stripping, pick-up, break-up and
knock-out play an important role and these direct-like reac-
tions are not covered by the exciton model. Therefore,
Kalbach [94,95] developed a phenomenological contribution
for these mechanisms, which we have included in TALYS. In
total, the pre-equilibrium cross section for these reactions is
given by the sum of an exciton model (EM), nucleon transfer
(NT), knock-out (KO) and break-up (BU) contribution:

dσ
preeq
k

dEk
= dσ EM

k

dEk
+ dσ NT

k

dEk
+ dσ KO

k

dEk
+ dσ BU

k

dEk
, (178)

where the contribution from the exciton model was outlined
in the previous subsection.

6.4.1 Transfer reactions

The general differential cross section formula for a nucleon
transfer reaction of the type A(a, b)B is

dσ NT
a,b

dEb
= 2sb + 1

2sa + 1

Ab

Aa

Ebσb,inv(Eb)

Aa
K

(
Aa

Ea + Va

)2n

×
(
Ca

AB

)n

Na

(
2ZA

AA

)2(Za+2)hπ+2pν

×ωNT (pπ , hπ , pν, hν,U ), (179)

where

Ca = 5500 for incident neutrons,

= 3800 for incident charged particles,

Na = 1

80Ea
for pickup,

= 1

580
√
Ea

for stripping,

= 1

1160
√
Ea

for exchange. (180)

K is an enhancement factor taking into account the fact that
d, t and 3-He are loosely bound:

K = 12 for (N , α),

= 12 − 11
Ea − 20

Ea
for (α, N ) and Ea > 20,

= 1 otherwise, (181)

where N stands for either neutron or proton. The well depth
Va is set at

Va = 12.5Aa MeV, (182)

and represents the average potential drop seen by the projec-
tile between infinity and the Fermi level. The possible degrees
of freedom for the reaction are all included in the residual
state density ωNT (pπ , hπ , pν, hν,U ). Since we do not use

123



Eur. Phys. J. A           (2023) 59:131 Page 39 of 85   131 

this model to describe exchange reactions in inelastic scatter-
ing, there is no need to sum the various terms of Eq. (179) over
pπ , as in Ref. [94]. The exciton numbers are automatically
determined by the transfer reaction, i.e. n =| Aa − Ab |,
nπ = hπ =| Za − Zb |, nν = hν =| Na − Nb |,
pπ = pν = 0. The accessible state density that is directly
determined by the reaction is ω(pπ , hπ , pν, hν,U ), given
by Eq. (166). The total residual state density however also
takes into account more complex configurations that can be
excited by the transfer reaction. It is given by

ωNT (pπ , hπ , pν, hν,U ) =
3∑

i=0

3−i∑

j=0

(XNT )i+ j

×ω(pπ + i, hπ + i, pν + j, hν + j,U )

+
pπ∑

i=0

hπ∑

j=0

pν∑

k=0

hν∑

l=0




(
i + j + k + l − 1

2

)

×ω(pπ − i, hπ − j, pν − k, hν − l,U ). (183)

The first term allows that up to three p-h pairs can be excited in
a transfer reaction. The factor XNT represents the probability
for exciting such a pair and is given by

XNT = 7
√
Ea/Aa

V1A2
A

(p2
ν + p2

π + h2
ν + 1.5h2

π ). (184)

For neutrons and protons we adopt for V1 the value given by
Eq. (169), for deuterons and tritons we take V1=17 MeV, and
for Helium-3 and alpha particles we take V1=25 MeV. The
finite well depth correction for Eq. (183) are made using a
well depth of

V = V1

(
2Z

A

)
if nπ = 0

= V1 otherwise. (185)

The second term of Eq. (183) allows for transfer of nucleons
at the Fermi level. Here, the Heaviside function 
 is merely
used to avoid double counting of ω(pπ , hπ , pν, hν,U ).

6.4.2 Knockout reactions

For (nucleon,α) reactions a knockout contribution is added.
The general differential cross section formula for a knockout
reaction of the type A(a, b)B is

dσ KO
a,b

dEb
= σa,inv(Ea)

14
(2sb + 1)AbEbσb,inv(Eb)

× Pbgagb [U − AKO(pa, hb)]∑
c=a,b(2sc + 1)Ac 〈σc〉

× 1

(Emax + 2Bcoul,c)(Emax − Bcoul,c)2gag2
b/6gc

(186)

where Pb is the probability of exciting a b-type p-h pair, Emax

is the maximum emission energy, and Bcoul,c is the Coulomb
barrier for a particle c. The average inverse cross section 〈σc〉
is given by

〈σc〉 =
∫ Emax

Bcoul,c
dEσc(E). (187)

For the knockout model, the single-particle state density
parameters for the cluster degrees of freedom g represent
the number of cluster states per unit energy. The relevant
values are given by

gn = N/13, gp = Z/13, gα = A/208 MeV. (188)

The Pauli correction factor AKO is given by

AKO(pa, hb) = 1

2g2
a

− 1

2g2
b

. (189)

The probabilities for exciting the various p-h pairs are

Pn = NA − φZA

AA − 2φZA + φZA/2

Pp = ZA − φZA

AA − 2φZA + φZA/2

Pα = φZA/2

AA − 2φZA + φZA/2
. (190)

The factors φ are a kind of pre-formation parameters [94].
The following values are adopted

NA ≤ 116 : φ = 0.08

116 ≤ NA < 126 : φ = 0.02 + 0.06(126 − NA)/10

126 ≤ NA < 129 : φ = 0.02 + 0.06(NA − 126)/3

129 ≤ NA : φ = 0.08. (191)

6.4.3 Break-up reactions

For reactions induced by complex particles, break-up may
play an important role. This holds especially for the weakly
bound deuteron. Break-up is here defined as having a projec-
tile fragment emerged from the reaction in a relatively nar-
row peak centered close to the beam velocity and strongly
directed toward forward angles. For break-up reactions, the
model by Kalbach [95] has been included. This leads to an
extra contribution for all complex-particle induced reactions
and in particular for the (d, n) and (d, p) channels.

The basic parameters for this empirical model for a pro-
jectile a and ejectile b are the centroid energy of the breakup
peak given by

E0 = Ab

Aa
(Einc − Ca) + Cb, (192)

123



  131 Page 40 of 85 Eur. Phys. J. A           (2023) 59:131 

where Aa,b is the mass number and Ca,b the Coulomb bar-
rier of the particles involved. Expressions for these terms
are given in Ref. [95]. The break-up peak is assumed to be
described by a Gaussian,

P(Einc) = 1

w
√

2π
exp

(
− (Einc − E0)

2

2w2

)
, (193)

where the expression for w can be found in Ref. [95].
An alternative option for the break-up component in

TALYS is the model by Avrigeanu et al. [96]. For that model
however, contributions of explicit direct break-up reactions
need to be added by other codes, to give the total (d, p) cross
section.

6.5 Angular distribution systematics

A sound pre-equilibrium theory should, besides the angle-
integrated spectra, also describe the smooth forward peaked
angular distributions in the continuum. To do so, the multi-
step direct reaction model has been included in TALYS, but
only as a global collective-like method. Semi-classical mod-
els, such as the exciton model, have always had some prob-
lems to describe angular distributions, essentially because
it is based on a compound-like concept instead of a direct
one [97]. A powerful phenomenological method is given
by Kalbach [79]. It is based on experimental information
only and the insight that in general, a pre-equilibrium pro-
cess consists of a forward peaked part (multi-step direct) and
an isotropic part (multi-step compound), and that the angu-
lar distributions are fairly structureless and all look alike.
The corresponding formula for the double-differential cross
section for a projectile a and an ejectile b is

d2σa,xb

dEbd	
= 1

4π

[
dσ preeq

dEb
+ dσ comp

dEb

]
a

sinh(a)

×[cosh(a cos 
) + fMSD(Eb) sinh(a cos 
)],
(194)

where Ea and Eb are the incident and the outgoing energy,
respectively, and dσ preeq

dEb
and dσ comp

dEb
are the angle-integrated

pre-equilibrium and compound spectra, respectively, and
fMSD is the so-called multi-step direct or pre-equilibrium
ratio:

fMSD(Eb) = dσ preeq

dEb
/

[
dσ preeq

dEb
+ dσ comp

dEb

]
, (195)

which thus increases from practically 0 at very low emission
energy to 1 at the highest emission energies. Hence, once the
angle-integrated spectra are known, the parameter a deter-
mines the angular distribution. We refer to Ref. [79] for the
expression for a.

Since we calculate the pre-equilibrium and compound
cross sections explicitly, and actually only store fMSD in
data libraries, Eq. (194) can be reduced to a formula for the
double-differential pre-equilibrium cross section

d2σ
preeq
a,xb

dEbd	
= 1

4π

dσ preeq

dEb

a

sinh(a)
exp(a cos 
), (196)

to which the isotropic compound angular distribution can be
added. In sum, given the angle-integrated spectrum dσ preeq

dEb
by

some physics model, the double-differential cross section is
returned quite simply and reasonably accurate by Eq. (196).

7 Direct capture

At relatively low energies, the reaction model described in
the present sections makes the fundamental assumption that
the capture process takes place with the intermediate for-
mation of a compound nucleus in thermodynamic equilib-
rium. The energy of the incident particle is then shared more
or less uniformly by all the nucleons before releasing the
energy by particle emission or γ -de-excitation. The forma-
tion of a compound nucleus is usually justified by assum-
ing that the nuclear level density in the compound system at
the projectile incident energy is large enough to ensure an
average statistical continuum superposition of available res-
onances [98]. However, when the number of available states
in the compound system is relatively small, the validity of
the Hauser-Feshbach predictions has to be questioned, the
neutron capture process being possibly dominated by direct
electromagnetic transitions to a bound final state rather than
through a compound intermediary. The direct capture (DC)
proceeds via the excitation of only a few degrees of free-
dom on much shorter time scales reflecting the time taken by
the projectile to traverse the target. For the DC process, the
mean free path of the incident particle is comparable with
the size of the nucleus and the particle ejection occurs pref-
erentially at forward angles. It has become clear, however,
that the DC process is important, and often dominating at
the very low energies of astrophysical interest, especially for
light or exotic nuclei systems for which few, or even no res-
onant states are available [99–103]. This should be also the
case for medium-mass or heavy neutron rich nuclei.

The DC cross section is not calculated by default at the
present time, since (i) its ingredients (mainly the excited spec-
trum and spectroscopic factors) remain difficult to determine
on theoretical grounds, (ii) most of the HF/pre-equilibirium
ingredients have been tuned without including the DC con-
tribution (even if small), and (iii) the model has not been
widely tested, especially for charged-particle-induced reac-
tions or for a large range of energies.
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A TALYS calculation of the DC cross sections is done
within the potential model, following the method described in
Ref. [102]. This model is employed to study the neutron DC
reaction describing the transition from the initial scattering
state A+n directly to the final nucleus B with accompanying
γ -ray emission. The allowed electric dipole (E1), electric
quadrupole (E2) and magnetic dipole (M1) transitions to
the ground state as well as all possible excited states in the
final nucleus are taken into account.

In the case of neutron capture, the DC cross section for
A(n, γ )B can be expressed as [104]

σ DC (E) =
Ex
B∑

f =0

S f σ
dis
f (E)

+
∫ Sn

Ex
B

∑

J f ,π f

ρ(E f , J f , π f )〈S f 〉σ cont
f dE f .

(197)

Below the level x at energy Ex
B , the sum runs over all the

available discrete final states in the residual nucleus B, which
are usually experimental levels if available. S f is the spec-
troscopic factor describing the overlap between the antisym-
metrized wave function of the initial system A + n and the
final state Bx . Above Ex

B , the summation is replaced by a con-
tinuous integration over a spin- and parity-dependent nuclear
level density ρ(E f , S f , π f ) and the spectroscopic factor by
an average quantity 〈S f 〉 that can be energy-dependent. In the
TALYS structure database, experimental information on dis-
crete levels are included, whenever available (see Sect. 10).
Similarly, experimental information on spectroscopic fac-
tors extracted from (d, p) reactions has been extracted from
Nuclear Data Sheets journals for about 4270 nuclear levels
in 146 different nuclei [105]. When not available experimen-
tally, the level density and spectroscopic factors included in
Eq. (197) are taken from either

1. the spin- and parity-dependent one-particle one-hole neu-
tron excitations deduced from the combinatorial nuclear
level density [106] with an average spectroscopic factor
〈S f 〉 = 1.0; or

2. total one-particle one-hole neutron excitations deduced
from the combinatorial nuclear level density [106] with
an average spectroscopic factor 〈S f 〉 = 1.0; or

3. the spin- and parity-dependent combinatorial nuclear
level density from Ref. [106] with a simple energy-
dependent prescription 〈S f (E f )〉 = 0.1+0.33 exp(−0.8E)

(where E f is the excitation energy in MeV) based on
shell-model results [107].

In all cases, the ground state contribution in Eq. (197) is cal-
culated with S f = 0.347 for even-even targets, a value deduced
from the compilation of all the known spectroscopic fac-

tors [105], and with S f =1 for odd-A targets. These values of
S f were shown to minimize deviations between theory and
experiment in nuclei close to the valley of β-stability where
the three models yield similar results [102,107].

The potential model calculates the transition matrix ele-
ments between the initial and the final states by sandwiching
the electromagnetic operators in the long wave-length limit. It
is usually enough to consider the E1, E2 and M1 transitions
which is the TALYS case. The complete set of equations used
to calculate the matrix elements of the electromagnetic opera-
tors can be found in Ref. [102]. The radial wave functions are
obtained from the solution of the 2-body Schrödinger equa-
tion with a central potential, the same as the one used for the
Hauser-Feshbach and pre-equilibrium channels. It should be
emphasized that TALYS treats the three (compound nucleus,
pre-equilibrium, and direct) capture mechanisms coherently,
i.e they are obtained on the basis of the same nuclear ingredi-
ents, such as the optical potential and nuclear level densities.
In this framework, the three components are calculated on
the same footing and represent partial fluxes of the same
total reaction cross section.

8 Multiple emission

At incident energies above approximately the neutron sep-
aration energy, the residual nuclides formed after the first
binary reaction are populated with enough excitation energy
to enable further decay by particle emission or fission. This
is called multiple emission and leads to e.g. (n, 2n) and
more complex reaction channels (see Fig. 5). We distinguish
between two mechanisms: multiple compound (Hauser-
Feshbach) decay, which becomes important as soon as the
incident energy is higher than the neutron separation energy
and multiple pre-equilibrium decay, which becomes impor-
tant above 30–40 MeV of incident energy.

8.1 Multiple Hauser–Feshbach decay

This is the conventional way, and for incident energies up to
several tens of MeV sufficient, to treat multiple emission. It
is assumed that direct, pre-equilibrium, and compound pro-
cesses can take place in the binary reaction and that secondary
and further particles are emitted by compound emission.

After the binary reaction, the residual nucleus may be left
in an excited discrete state i ′ or an excited state within a
continuum bin i ′ which is characterized by excitation energy
Ex (i ′), spin I ′ and parity �′. The population of this state or
set of states is given by a probability distribution for Hauser-
Feshbach decay PHF that is completely determined by the
binary reaction mechanism. For a binary neutron-induced
reaction to a discrete state i ′, i.e. when Ex (i ′), I ′ and �′
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have unique values, the residual population is given by

PHF(Z ′, N ′, Ex (i
′), I ′,�′)

= σ i ′
n,k′(Etot , I,� → Ex (i

′), I ′,�′), (198)

where the non-elastic reaction cross section for a discrete
state σ i ′

n,k′ was defined in Sect. 2.3.2 and where the ejec-
tile k′ connects the initial compound nucleus (ZC , NC ) and
the residual nucleus (Z ′, N ′). For binary reactions to the
continuum, the residual population of states characterised
by (I ′,�′) per Ex (i ′) bin is given by the sum of a pre-
equilibrium and a compound contribution

PHF(Z ′, N ′, Ex (i
′), I ′,�′)

=
∫

dEk′
dσ comp,cont

dEk′
(Etot , I,� → Ex (i

′), I ′,�′)

+Ppre(Z ′, N ′, pmax
π + 1, hmax

π + 1,

pmax
ν + 1, hmax

ν + 1, Ex (i
′)), (199)

where the integration range over dEk′ corresponds exactly
with the bin width of E

′
x (i

′) and Ppre denotes the population
entering the compound stage after primary pre-equilibrium
emission. The expression for Ppre will be given in Eq. (203)
of the next subsection. Once the first generation of residual
nuclides/states has been filled, the picture can be generalized
to tertiary and higher order multiple emission.

In general, the population PHF before decay of a level i ′ or
a set of states (I ′,�′, Ex (i ′)) in bin i ′ of a nucleus (Z ′, N ′)
in the reaction chain is proportional to the feeding, through
the ejectiles k′, from all possible mother bins i with an energy
Ex (i) in the (Z , N ) nuclides, i.e.

PHF(Z ′, N ′, Ex (i
′), I ′,�′)

=
∑

I,�

∑

k′

∑

i

[PHF(Z , N , Ex (i), I,�)

+Ppre(Z , N , pmax
π + 1, hmax

π + 1,

pmax
ν + 1, hmax

ν + 1, Ex (i))]
×�k′(Ex (i), I,� → Ex (i ′), I ′,�′)

�tot (Ex (i), I,�)
. (200)

The appearance of the indices pmax
π indicates that only the

reaction population that has not been emitted via the (multi-
ple) pre-equilibrium mechanism propagates to the multiple
compound stage. Similar to Eq. (136) the decay widths are
given by

�k′(Ex (i), I,� −→ Ex (i
′), I ′,�′)

= 1

2πρ(Ex (i), I,�)

×
J+I ′∑

j ′=|J−I ′|

j ′+s′∑

l ′=| j ′−s′|
δπ (α′)

〈
T J

α′l ′ j ′(E
′
a′)
〉
. (201)

Again, the term 2πρ (compound nucleus level density) of the
decay width Eq. (201) falls out of the multiple emission equa-

tion Eq. (200) and therefore does not need to be calculated
in practice. The total decay width is

�tot (Ex (i), I,�) =
∑

k′′

J+lmax∑

I ′′=mod(J+s,1)

1∑

�′′=−1
∑

i ′′
�k′′(Ex (i), I,� −→ Ex (i

′′), I ′′,�′′). (202)

In sum, the differences between binary and multiple com-
pound emission are that width fluctuations and angular distri-
butions do not enter the model and that the initial compound
nucleus energy Etot is replaced by an excitation energy bin
Ex of the mother nucleus. The calculational procedure, in
terms of sequences of decaying bins, was already explained
in Sect. 2.

8.2 Multiple pre-equilibrium emission

At excitation energies above typically 30–40 MeV, the com-
posite nucleus is far from equilibrated and it is obvious that
the excited nucleus should be described by more degrees of
freedom than just Ex , J and �. In general, we need to keep
track of the p-h configurations that are excited throughout the
reaction chain and thereby calculate multiple pre-equilibrium
emission up to any order. This is accomplished by treating
multiple pre-equilibrium emission within the exciton model,
which is the default option for multiple pre-equilibrium cal-
culations in TALYS. The probability that a second fast par-
ticle is emitted starts to increase around 40–50 MeV of
incident energy and above 100 MeV several fast particles
can be emitted from the non-equilibrated nucleus, similar to
the picture in high-energy intranuclear cascade models. The
exciton model approach in TALYS is one of several mech-
anisms that have been implemented in the past to handle
multiple-preequilibrium emission. In essence, it is a phase
space approach towards the well known intranuclear cascade
picture, in which first various fast partciles are knocked out
of the nucleus before the evaporation stage. Within the pree-
quilibrium picture, other approaches have been developed,
such as the Hybrid Monte Carlo Simulation (HMS) model
implemented in EMPIRE [108]. The method implemented
in TALYS can be regarded as completely deterministic.
The same argument as for primary pre-equilibrium emission
holds: multiple pre-equilibrium emission takes away so much
excitation energy that the process has a large impact on the
prediction of residual production cross sections, as illustrated
in Sect. 16. Besides the formulation in terms of the exciton
model, TALYS also contains an alternative more approxima-
tive model for multiple pre-equilibrium emission, called the
s-wave transmission coefficient method. Both approaches are
discussed below.

For multiple pre-equilibrium emission within the exci-
ton model, we introduce the pre-equilibrium population

123



Eur. Phys. J. A           (2023) 59:131 Page 43 of 85   131 

Ppre(Z , N , pπ , hπ , pν, hν, Ex (i)) which holds the amount
of the reaction population present in a (Z , N ) nucleus,
(pπ , hπ , pν, hν) exciton state and excitation energy bin
Ex (i). A special case is the pre-equilibrium population for a
particular exciton state after binary emission, which can be
written as

Ppre(Z ′, N ′, pπ − Zk′ , hπ , pν − Nk′ , hν, Ex (i
′))

= σCF(ZC , NC , E tot)

×Wk′(ZC , NC , E tot, pπ , hπ , pν, hν, Ek′)

×τ(ZC , NC , E tot, pπ , hπ , pν, hν)

×P(ZC , NC , E tot, pπ , hπ , pν, hν), (203)

where ZC (NC ) again is the compound nucleus charge (neu-
tron) number and Zk′ (Nk′ ) corresponds to the ejectile charge
(neutron) number. The residual excitation energy Ex (i ′) is
linked to the total energy E tot, the ejectile energy Ek′ , and its
separation energy S(k′) by Ex (i ′) = E tot − Ek′ − S(k′).
This Ppre represents the feeding term for secondary pre-
equilibrium emission. Note that for several p-h configura-
tions this population is equal to zero.

In general, the pre-equilibrium population can be expressed
in terms of the mother nucleus, excitation energy bins,
and p-h configurations from which it is fed. The resid-
ual population is given by a generalization of Eq. (163),
in which σCF(ZC , NC , E tot) is replaced by the popula-
tion of the p-h states left after the previous emission stage
Ppre(Z , N , p0

π , h0
π , p0

ν , h
0
ν, Ex (i)). Since several combina-

tions of emission and internal transitions may lead to the
same configuration, a summation is applied over the ejec-
tiles treated in multiple pre-equilibrium (neutrons and pro-
tons), over the (p0

π , h0
π , p0

ν , h
0
ν) configurations with which

the next step is started and over the mother excitation energy
bins:

Ppre(Z ′, N ′, p′
π , h′

π , p′
ν, h

′
ν, Ex (i

′))

=
∑

k′=n,p

pmax
π∑

p0
π=1

hmax
π∑

h0
π=1

pmax
ν∑

p0
ν=1

hmax
ν∑

h0
ν=1

∑

i

Ppre(Z , N , p0
π , h0

π , p0
ν , h

0
ν, Ex (i))

×Wk(Z , N , pπ , hπ , pν, hν, Ex (i), Ek′)

×τ(Z , N , pπ , hπ , pν, hν, Ex (i))

×P(Z , N , pπ , hπ , pν, hν, Ex (i)), (204)

where the mother and daughter quantities are related by

Z = Z ′ + Zk′ ,

N = N ′ + Nk′ ,

pπ = p′
π + Zk′ ,

hπ = h′
π ,

pν = p′
ν + Nk′ ,

hν = h′
ν,

Ex = Ex (i
′) + Ek′ + Sk′ . (205)

In the computation, we thus need to keep track of every possi-
ble (Z ′, N ′, p′

π , h′
π , p′

ν, h
′
ν, Ex (i ′)) configuration, which is

uniquely linked to a mother exciton state (Z , N , pπ , hπ , pν,

hν, Ex (i)) through the ejectile characterized by (Zk′ , Nk′ , Ek′).
The term P(Z , N , pπ , hπ , pν, hν, Ex (i)) represents the
part of the pre-equilibrium cross section that starts in
(Z , N , p0

π , h0
π , p0

ν , h
0
ν, Ex (i)) and survives emission up to a

new p-h state (Z , N , pπ , hπ , pν, hν, Ex (i)). The initial con-
dition is

P(Z , N , p0
π , h0

π , p0
ν , h

0
ν, Ex (i)) = 1. (206)

The part ofPpre that does not feed a new pre-equilibrium pop-
ulation automatically goes to the multiple Hauser-Feshbach
chain of Eq. (200).

The final expression for the multiple pre-equilibrium spec-
trum is very similar to Eq.( 163)

dσ
mpreeq
k

dEk′
=

pmax
π∑

p0
π=1

hmax
π∑

h0
π=1

pmax
ν∑

p0
ν=1

hmax
ν∑

h0
ν=1

∑

i

Ppre(Z , N , p0
π , h0

π , p0
ν , h

0
ν, Ex (i))

pmax
π∑

pπ=p0
π

hmax
π∑

hπ=h0
π

pmax
ν∑

pν=p0
ν

hmax
ν∑

hν=h0
ν

Wk(Z , N , pπ , hπ , pν, hν, Ex (i), Ek′)

×τ(Z , N , pπ , hπ , pν, hν, Ex (i))

P(Z , N , pπ , hπ , pν, hν, Ex (i)). (207)

Apart from the exciton model TALYS offers another,
slightly faster, method to determine multiple pre-equilibrium
emission by Chadwick et al. [109,110], using the s-wave
transmission coefficient. In this method, the multiple pre-
equilibrium spectrum is given by the following expression:

dσ
mpreeq
k

dEk′
=

pmax
π∑

p0
π=1

hmax
π∑

h0
π=1

pmax
ν∑

p0
ν=1

hmax
ν∑

h0
ν=1

∑

i

Ppre(Z , N , p0
π , h0

π , p0
ν , h

0
ν, Ex (i))

1

p0
π + p0

ν

×ω(Zk′ , h0
π , Nk′ , h0

ν, Ek′ + Sk′)

ω(p0
π , h0

π , p0
ν , h

0
ν, Ex (i))

×ω(p0
π − Zk′ , h0

π , p0
ν − Nk′ , h0

ν, Ex (i) − Ek′ − Sk′)

×Ts(Ek′). (208)

In this approach each residual p-h configuration created in the
primary pre-equilibrium decay may have one or more excited
particles in the continuum. Each of these excited particles
can either be emitted or captured. The emission probability
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is assumed to be well represented by the s-wave transmission
coefficient Ts(Ek′).

8.3 Initially populated target nuclei

Usually, a TALYS calculation concerns a projectile with a
certain incident energy and a target. For various applications,
it is also of prime interest to introduce the possibility to start
the decay from an initial population, i.e. an excited nucleus
with fixed excitation energy or a population distributed over
excitation energy, possibly characterized by given spin and
parity distributions as well. Interesting applications concern,
for example, the calculation of β-delayed processes starting
from an initial β-strength function or the neutron and gamma
decay from fission fragments. In the latter case, one can cal-
culate the fragment distribution from fission, e.g. as described
in Sect. 14 or from empirical methods, and assume a popu-
lation per excitation energy and spin, of the excited light and
heavy fission fragments. This distribution is given by

∑

I,�

∑

i

[PHF(Z , N , Ex (i), I,�), (209)

and is then the starting point for a TALYS calculation. The
initial population enters the Hauser-Feshbach scheme and
the compound nucleus calculation proceeds as in Eq. (200).
The emitted neutrons and photons can be recorded as well
as the path from fission fragment to fission product. All
relevant nuclear structure quantities are available since we
simulate the process by a photon-induced reaction, the only
difference being that we do not excite a single compound
nucleus energy but directly fill the continuum bins and dis-
crete levels according to our specified starting population.
Also, there is no width fluctuation correction in this case.
The initial population can be provided at two levels of detail.
A full excitation energy-spin-parity population can be given,
which is then interpolated on the internal excitation energy
scheme of TALYS. Alternatively, only the total population
per excitation energy can be given, after which the spin-
parity-dependent population is determined by multiplying
it with the spin distribution of Eq. (213). This option is the
basis for the calculation of fission neutron observables and
fission yields. There are however more applications for this
feature, such as coupling a high-energy intranuclear cascade
code with TALYS, the latter taking care of the low energy
evaporation part including all its quantum-mechanical con-
servation rules.

9 Nuclear masses and deformations

At the level of nuclear physics that is relevant to TALYS,
the mass can be considered as the most fundamental prop-

erty of the nucleus, and directly affects all the outcomes
of a nuclear reaction calculation. Separation energies and
Q-values directly depend on the masses of the involved
nuclides, and determine whether certain reactions can take
place or not. The nuclear community has invested a lot of
effort to measure, compile and evaluate experimental nuclear
masses [111] and simultaneously theoretical nuclear struc-
ture models have been developed to predict as accurately and
reliably as possible, masses and other nuclear structure prop-
erties, in particular for experimentally inaccessible nuclei.

In TALYS, we use both the real mass M in atomic
mass units (amu = 931.49386 MeV) and the mass excess
�M = (M − A) ∗ amu in MeV from the mass tables. The
latter are retrieved from tables for a more precise calculation
of separation energies. For example, the neutron separation
energy of a nucleus (Z , N ) is

Sn(Z , N ) = M(Z , N − 1) − M(Z , N ) + M(n), (210)

but we have actually implemented

Sn(Z , N ) = �M(Z , N − 1) − �M(Z , N ) + �M(n),

(211)

where �M(n) is the neutron mass excess and similarly for
the other light particles.

For reaction Q-values one needs the masses of two
nuclides. The Q-value is the difference between two sepa-
ration energies,

Q(a, b) = Sa(Z , N ) − Sb(Z , N ). (212)

If the experimental mass excess is known for only one of the
two nuclei involved, at the edge of the experimental mass
table, we take both theoretical mass excesses to calculate
the Q-value, for consistency. TALYS includes many different
theoretical models for predicting nuclear masses and basic
structure properties like deformations or matter densities. In
practice, theoretical models are only used for exotic nuclides
for which no experimental data is available. The experimen-
tal mass table contains data for 2550 nuclei. While for nuclear
technology only a band of 1000–1500 nuclides around the
valley of stability is relevant, the other exotic ones are essen-
tial for astrophysics.

9.1 Experimental nuclear masses

The most recent generally used Atomic Mass Evaluation
(AME) is the 2020 update of Ref. [111] which provides
experimental atomic masses for 2550 nuclei for TALYS. An
additional 1008 atomic masses, known as “recommended”
masses and extracted from the 2020 AME on the basis of the
smooth property of the mass surface [111] are also included
in TALYS.
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Obviously, around the valley of stability we need to use
experimentally determined masses and cannot afford to devi-
ate from this, especially if we want to reproduce experimental
reaction data and be credible when providing data for nuclear
applications.

9.2 Theoretical nuclear masses

Theoretical masses are needed outside the range where mea-
surements have been performed and sometimes exhibit a
remarkable dispersion, especially when applied in nuclear
reaction models. Despite the many mass models avail-
able [112,113], TALYS only includes a handful of those.
These mass predictions are obtained with physical models
that differ quite significantly in their essence and correspond
to the mostly used ones for applications. They all show a
relative small rms deviation σrms < 0.8 MeV with respect to
the 2457 known masses with Z , N ≥ 8 [111]. The TALYS
options include

• the mean-field Skyrme-Hartree-Fock-Bogoliubov nuclear
mass model (HFB24) based on the BSk24 Skyrme inter-
action [114] with σrms = 0.56 MeV. This is our default
model for theoretical masses,

• the mean-field Gogny-Hartree-Fock-Bogoliubov nuclear
mass model based on the D1M interaction [115] with
σrms = 0.81 MeV,

• the macroscopic-microscopic finite-range droplet model
(FRDM) [116] with σrms = 0.61 MeV,

• the 10-parameter Duflo-Zuker (DZ) mass formula [117]
with σrms = 0.61 MeV, included as a subroutine in
TALYS. This model is considered in particular if a
nuclide is even outside the mass table requested or can
be used simply as an interesting alternative.

The difference in theoretical mass estimates may have
an enormous impact on cross section calculations for exotic
nuclides. Figure 14 shows (n, γ ) cross section ratios at 100
keV for the neutron-rich Sn isotopes, for different mass
models relative to the default HFB24. Up to A = 140,
experimental or recommended masses are available from the
AME [111] and consequently differences in the cross sec-
tion calculation are only due to the different deformations
predicted by the various mass models. For A > 140 targets,
major discrepancies in the radiative neutron capture cross
sections are observed due to the different Q-values estimated
by the various mass models. Deviations by many orders of
magnitude can be obtained as soon as exotic n-rich nuclei
are concerned. Apart from the TALYS mass models, also the
WS4 model from Ref. [118] is included in the comparison.

Note that these (n, γ ) cross sections are calculated with
the HFB+combinatorial level densities, see Sect. 11 and

Fig. 14 Illustration for the Sn neutron-rich isotopes of the dispersion
obtained in the (n, γ ) cross sections calculated at En = 100 KeV
with different TALYS mass models. No direct capture contribution is
included

D1M+QRPA+0lim photon strength functions, see Sect. 12.
No direct capture contribution is included.

9.3 Deformation parameters

Deformation parameters are needed to estimate many dif-
ferent quantities in TALYS. First of all, as input to OMP
calculations for deformed nuclides, by means of the coupled-
channels (for strong deformations) or DWBA (for weak
deformations) formalism. This requires values for (at least)
β2 and for rotational nuclides also β4 and β6. In addi-
tion, deformation parameters are used to estimate nuclear
level density parameters, giant dipole parameters, as well
as moments of inertia. They are consistently taken from the
same model used for the atomic mass estimates.

9.4 Isotopic abundances

TALYS can calculate nuclear reaction data for natural ele-
ments. The isotopic abundances are taken from RIPL [9]
(which are equal to those of the Nuclear Wallet Cards from
Brookhaven National Laboratory). For a natural target ele-
ment, a TALYS calculation is performed for each stable iso-
tope, after which the results are summed up weighted by the
respective isotopic abundances.

10 Discrete levels

The discrete level scheme of a nucleus is essential for nuclear
reaction simulations, as it plays a central role in both direct
and compound nuclear reactions. The complete properties of
each discrete level play an important role in:

• coupled-channels or DWBA calculations,
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• validating of the low-energy part of the level density, and
establishing the associated level density parameters,

• estimating the Hauser-Feshbach decay in which the tran-
sition to each discrete level competes with all other open
channels,

• estimating the decay from higher to lower discrete lev-
els in residual nuclides (a) for gamma-ray intensities for
each transition, and (b) for the determination of the ratio
between isomeric and ground state production.

For the current capabilities of TALYS, the following prop-
erties for each discrete level is required: the sequence num-
ber, energy, spin, parity, half-life (especially for long-lived
isomers), number of branchings for gamma decay to lower
levels, branching ratios to lower levels, and the electron con-
version coefficients. More details about such properties and
their availability in TALYS are given below.

10.1 Completeness and property assignment

Ideally, discrete level information would all be available from
measurements, and indeed an extensive experimental dis-
crete level compilation and evaluation can be constructed
from the ENSDF [119] and NUBASE [120] databases. These
two databases are the source for the RIPL database [9] for
discrete levels, where NUBASE provides the most recent
evaluation for ground states and isomers, while ENSDF pro-
vides the entire level scheme. Unfortunately, to have partial
data about measured discrete levels is not enough for TALYS,
or any nuclear model code. The information on the level
scheme needs to be complete, i.e. for each discrete level all
aforementioned properties need to be known, so that Hauser-
Feshbach decay and gamma-ray cascade can be properly cal-
culated, and no reaction flux remains locked up in a level
that cannot decay because, for example, the corresponding
spin or branching ratios remain unknown. Therefore, where
information is missing in RIPL, it is added to the TALYS dis-
crete level files with some educated guess. Each nuclide has a
maximum level number until which all properties need to be
known, experimentally or theoretically. Beyond that level,
level densities take over for the description of the reaction
process.

For nuclides far away from the valley of stability, the dis-
crete level database has been completed with the HFB ground
state estimates for spin and parity from the mass database
of Ref. [121], so that at least the discrete level and mass
databases span the same range of nuclides.

Each discrete level has a spin and parity. Often, the mea-
sured level scheme from ENSDF is complete in terms of
levels and energies up to a certain level number, but the spin
may not be specified. All one can do then is to assign the
spin and try to maximize the likelihood that it is correct. For
that, a histogram of the measured spins of all levels up to the

level of interest with the unmeasured spin is built. Next, this
histogram is compared with a Fermi gas spin distribution,

RF (Ex , J ) = 2J + 1

2σ 2 exp

[
− (J + 1

2 )2

2σ 2

]
, (213)

where

σ 2 =
(

0.83A0.26
)2

(214)

gives a reasonable estimate [122] for the spin distribution
of discrete levels with energies up to a few MeV. The value
assigned to the level with unknown spin is that of the his-
togram bin with measured spin values which has the largest
underestimation of the theoretical spin distribution. Hence,
when there are many levels with unknown spins the final
distribution of measured plus assigned spins will approach
the theoretical one. We stress here that the likelihood that
the assigned value is wrong is large, but at least the assign-
ment procedure is based on some physical justifications and
not random. A similar procedure is followed for unknown
parities, we assign the parity which leads to a more equal
parity distribution for all levels up to that level. Obviously,
a more rigorous fundamental approach to estimate discrete
level properties based on theory e.g. on the basis of shell
model calculations, including collective states, would be wel-
come.

In addition an assignment procedure needs to be followed
for branching ratios of levels which decay to lower levels.
Omission of branching ratios for a certain level, e.g. because
they have not been measured, would mean that there is no
gamma decay from that level, locking up the reaction flux at
that level and consequently leading to an underestimate of
the cross section to the low-lying levels. To assign branching
ratios we make use of the downward photon strength function
(PSF)

←−
fX�, which will be discussed in more detail in Sect. 12.

For each initial level I, the probability of decay to a final level
F is given by electric (E) or magnetic (M) radiation, with
E1 and M1 as the strongest transitions. The gamma energy,
multipolarity and parity are given by

Eγ = E(I ) − E(F),

l = | J (I ) − J (F) |,
P ′ = (−1)P(I )P(F), (215)

leading to the transmission coefficient

TX�(Eγ , l, P ′) = 2π
←−
fX�(Eγ )E2�+1

γ , (216)
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related to the PSF
←−
fX�, as defined and discussed in Sect. 12,

and to the branching ratio Br to each final level through

Br(I → F) = TX�(Eγ , l, P ′)/
I−1∑

i=1

TX�(Eγ , l, P ′). (217)

TALYS retains the 4 largest branching ratios and normal-
izes them to 1. Finally, the electron conversion coefficient
estimates what fraction of the decay goes to electron con-
version and to the gamma-ray intensity. It is specified when
the branching ratio is experimentally known, in other cases
TALYS keeps it at the constant value of 0.001.

Fortunately, for important nuclides, detailed information
for the lowest 10–30 discrete levels is known, but there
may be exceptions. Therefore, it is absolutely essential in
such a combined experimental/theoretical database to record
exactly when discrete level properties have been assigned
using the theoretical considerations mentioned above, and
this is done in the TALYS discrete level database. This also
allows the user to have some adjustment freedom for fitting
experimental nuclear reaction data, by e.g. changing a spin
or branching ratio. Examples of level schemes with assigned
values and their explanation can be found in the TALYS man-
ual.

10.2 Coupling schemes for deformed nuclides

An important application of the discrete level scheme is
the coupling scheme for coupled-channels calculations. The
deformation of a nucleus can be characterized by the defor-
mation length δL or deformation parameter βL . In TALYS,
the type of collectivity can be spherical, vibrational, rota-
tional and asymmetric rotational, which corresponds with
the generally used options that ECIS gives for deformed
nuclides. For all stable nuclides, the coupling scheme has
been specified in a database whereby the user can choose
for more or less complexity by either including or exclud-
ing specific rotational and vibrational bands. For the rota-
tional band, the deformation parameter β2, β4 and β6 can be
given. If these β parameters are not given they are automat-
ically retrieved from the HFB mass directory, as described
in Sect. 9 on nuclear masses. In certain cases, the defor-
mation parameters have been adjusted to fit data, and then
they are added as extra information to the coupling schemes.
Also, for the first level of a vibrational band the deformation
parameter is given. The vibrational-rotational model is thus
invoked if within the rotational model also states belonging
to a vibrational band are specified. The level of complexity
of rotational or vibrational-rotational calculations can all be
specified. Weakly coupled levels are treated with DWBA.

As an example, for 40Ca, a coupled-channels calculation
with a vibrational model will automatically be invoked. Lev-

els 2 (3− at 3.737 MeV, with δ3 = 1.34), 3 (2+ at 3.904
MeV, with δ2 = 0.36), 4 (5− at 4.491 MeV, with δ5 = 0.93),
will all be coupled individually as one-phonon states. There
is also an option to enforce a spherical OMP calculation. In
that case all levels will be treated with DWBA.

The coupling schemes can become fairly complex. For
example, for 238U, the basis for the coupling scheme is a
rotational model in which 6 excited levels can be coupled
in one rotational band, while there are up to 5 vibrational
bands which can be included [54], leading to a total of 23
coupled levels. TALYS provides various options to make
such coupling schemes as simple or complex as possible.
More details about coupled-channels options using a vari-
ety of vibrational and rotational coupling schemes have been
discussed in Sect. 3.

11 Level densities

The nucleus is a quantum system in which the first low-
energy excitations from the ground state are characterized by
several discrete states with quantum numbers such as energy,
spin and parity, as described in Sect. 10. Beyond several tens
of discrete levels not all levels are experimentally observed
and one has to resort to a statistical approach to describe
the excited nucleus. Depending on the nuclide, one observes
that typically somewhere between 15 and 40 levels, the mea-
sured number of cumulative discrete levels starts to devi-
ate from the theoretical number of levels that is predicted
by a quantum-statistical approach. Several models for the
level density have been developed in the past, which range
from phenomenological analytical expressions to tabulated
level densities derived from microscopic nuclear structure
models.

The level density ρ(Ex , J,�) corresponds to the number
of nuclear levels per MeV around an excitation energy Ex ,
for a certain spin J and parity �. The total level density
ρtot(Ex ) corresponds to the total number of levels per MeV
around Ex , and is obtained by summing the level density over
spin and parity,

ρtot(Ex ) =
∑

J,�

ρ(Ex , J,�). (218)

An important constraint for a level density model is
that at an excitation energy around the neutron separation
energy Sn , it reproduces the density of observed resonances
obtained from low-energy neutron measurements. In partic-
ular, D0, the average s-wave resonance spacing at Sn , which
is obtained from the available experimental data set of s-
wave resonances [9,75], is related to the inverse of the level
density. The following equation applies,
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Fig. 15 Level density models implemented in TALYS for the stable
96Mo and the exotic 124Mo. The use of Eq. (230), enabling to adjust the
level density models for 96Mo, results in an overall agreement between
the various models while a clear difference is observed for 124Mo for
which neither experimental low-lying levels nor s-wave mean spacing
data are available

1

D0
=

J=I+ 1
2∑

J=|I− 1
2 |

ρ(Sn, J,�), (219)

where I is the spin of the target nucleus.
The other important constraint is that at low excitation

energies, the total level density reproduces the observed num-
ber of cumulative discrete levels. This means that

NU = NL +
∫ EU

EL

dExρ
tot(Ex ), (220)

where NL and its corresponding energy EL is an offset, i.e.
a low-energy level which is not expected to fall within the
statistical level density regime, and the total level density is
required to reproduce the number of levels until a certain
level NU with energy EU . Beyond NU it is expected that
experimental levels are missing.

As an illustration, the total level density obtained with
the various models implemented in TALYS are compared in
Fig. 15 for two nuclei, namely 96Mo and the exotic 124Mo.

The complete mathematical details of the various level den-
sity models in TALYS can be found in Ref. [122]. In order to
make this paper self contained, we restrict ourselves to the
formulae which have been implemented and leave out the
derivation.

11.1 Phenomenological level densities

TALYS has the option to use three phenomenological level
density models, namely the Constant Temperature Model
(CTM) [122], the Back-shifted Fermi gas Model (BFM)
[122], and the Generalized Superfluid Model (GSM) [123,
124]. Most of the phenomenological level density models
developed in the past belong to one of these three categories.
The objective of Ref. [122] was to produce consistent param-
eterizations for both the CTM and BFM based on the same
experimental data set. Both models are summarized below.

When level densities are given by analytical expressions
they are usually factorized as follows

ρ(Ex , J,�) = P(Ex , J,�)R(Ex , J )ρtot(Ex ), (221)

where P(Ex , J,�) is the parity distribution and R(Ex , J )

the spin distribution. In all phenomenological level density
models in TALYS the parity equipartition is assumed, i.e.

P(Ex , J,�) = 1

2
, (222)

while the microscopic models are parity-dependent and may
not have equal parity distributions.

11.1.1 The Fermi Gas Model

The Fermi Gas model (FGM) lies at the basis of all phe-
nomenological models and is based on the assumption that
the single-particle states which construct the excited levels
of the nucleus are equally spaced, and that collective levels
are absent. The Fermi gas level density is [125]

ρF (Ex , J,�) = 1

2

2J + 1

2
√

2πσ 3
exp

[
− (J + 1

2 )2

2σ 2

]

×
√

π

12

exp
[
2
√
aU

]

a1/4U 5/4
, (223)

where the first factor 1
2 represents the equiparity distribution

and σ 2 is the spin cut-off parameter, which represents the
width of the angular momentum distribution. The effective
excitation energy U is defined by

U = Ex − �, (224)

where the energy shift � is the pairing energy which is
included to simulate the known odd-even effects in nuclei.
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The underlying idea is that � accounts for the fact that pairs
of nucleons must be broken before each component can be
excited individually. In practice, � plays an important role as
adjustable parameter to reproduce observables, and its defi-
nition can vary depending on the level density model.

Equation (223) also contains the level density parame-
ter a, which in practice can either be extracted, through
Eq. (219), from experimental s-wave resonance spacings, if
available, or if not, from global systematics. In contempo-
rary analytical models, the a-parameter is energy-dependent
to take shell (and, in some cases, pairing) effects into account.
Equation (223) is a special case of the factorization given by
Eq. (221) with the Fermi gas spin distribution of Eq. (231).

Summing ρF (Ex , J,�) over all spins and parities yields
for the total Fermi gas level density

ρtot
F (Ex ) = 1√

2πσ

√
π

12

exp
[
2
√
aU

]

a1/4U 5/4
. (225)

These equations show that ρtot
F and ρF are determined by

three parameters, a, σ and �. The first two of these have
specific energy dependencies that will now be discussed sep-
arately, while we postpone the discussion of � to the sections
on the various specific level density models.

11.1.2 The level density parameter a

For the level density parameter a we adopt the formula of
Ignatyuk et al. [123], who argued that energy-dependent shell
effects should be effectively included in the level density
through an energy dependent expression for a. This expres-
sion takes into account the presence of shell effects at low
energy [126] and their disappearance at high energy in a phe-
nomenological manner. It reads,

a = a(Ex ) = ã

(
1 + δW

1 − exp[−γU ]
U

)
. (226)

Here, ã is the asymptotic level density value one would obtain
in the absence of any shell effects, i.e. ã = a(Ex −→ ∞) in
general, but also ã = a(Ex ) for all Ex if δW = 0. The damp-
ing parameter γ determines how rapidly a(Ex ) approaches
ã at increasing excitation energies. Finally, δW is the shell
correction energy. The absolute magnitude of δW determines
how different a(Ex ) is from ã at low energies, while the sign
of δW determines whether a(Ex ) decreases or increases as
a function of Ex .

The asymptotic value ã is given by the smooth form

ã = αA + βA2/3, (227)

where A is the mass number, while the following systematic
formula for the damping parameter is used,

γ = γ1

A
1
3

+ γ2. (228)

In Eqs. (227)–(228), α, β, γ1 and γ2 are free parameters that
have been determined to give the best global level density
description over the full range of nuclides for which experi-
mental D0 data is available [122].

The shell correction energy δW is defined as the difference
between the experimental mass of the nucleus Mexp and its
mass according to the spherical liquid-drop model MLDM,

δW = Mexp − MLDM. (229)

The experimental mass is taken from the 2020 AME [111]
and MLDM from the parameterizations available in Ref. [127]
or [122].

We note that the parameters ã, δW and γ are all adjustable.
If the level density parameter at the neutron separation energy
a(Sn) cannot be extracted from an experimental D0 value,
TALYS considers the above systematics (Eq. 227).

By default, TALYS considers the best nominal level den-
sity ρnom adjusted to the discrete level scheme and D0, when-
ever available. However, for adjustment purposes, flexibil-
ity can be achieved either by varying directly all the related
parameters or through a scaling function, i.e.

ρ(Ex , J, π) = exp(c
√
Ex − δ)ρnom(Ex − δ, J, π) (230)

where c = 0 and δ = 0 correspond to unaltered nominal level
densities. The “pairing shift” δ simply implies obtaining the
level density from the table or formula at a different energy.
The parameter c plays a role similar to that of the level den-
sity parameter a within the phenomenological models (see
Eq. 223). Adjusting c and δ together gives adjustment flexi-
bility at both low and higher energies and allows the user to
adjust level densities for cross section fitting.

11.1.3 The spin cut-off parameter

The spin cut-off parameterσ represents the width of the angu-
lar momentum distribution of the level density,

RF (Ex , J ) = 2J + 1

2σ 2 exp

[
− (J + 1

2 )2

2σ 2

]
. (231)

It is given by

σ 2 = σ 2
F (Ex ) = I0

a

ã
t, (232)
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with ã from Eq. (227) and

I0 =
2
5m0R2A

(�c)2 , (233)

where R = 1.2A1/3 is the radius, and m0 the neutron mass,
and the thermodynamic temperature t ,

t =
√
U

a
. (234)

This gives

σ 2
F (Ex ) = 0.01389

A5/3

ã

√
aU . (235)

Analogous to the level density parameter, we have to
account for low excitation energies for which Eq. (235) is
not defined (Ex ≤ �) or less appropriate. This leads to an
alternative method to determine the spin cut-off parameter,
namely from the spins of the low-lying discrete levels, see
Ref. [122]. It can be derived that

σ 2
d = 1

3
∑NU

i=NL
(2Ji + 1)

NU∑

i=NL

Ji (Ji + 1)(2Ji + 1). (236)

where Ji is the spin of discrete level i . Extracting these spins
from the discrete level file readily gives an estimate of σ 2

d . In
TALYS, σ 2

d can be used on a nucleus-by-nucleus basis, when
discrete levels are known. For cases where either Eqs. (235)
or (236) are not applicable, e.g. because there are no dis-
crete levels or U = Ex − � is negative, TALYS adopts the
systematics

σ 2
d =

(
0.83A0.26

)2
(237)

which gives a reasonable estimate for excitation energies of
the order of 1–2 MeV.

The final functional form for σ 2(Ex ) is a combination of
Eqs. (235) and (236). Defining Ed = 1

2 (EL + EU ) as the
energy in the middle of the NL − NU region, we assume
σ 2
d is constant up to this energy and can then be linearly

interpolated to the expression given by Eq. (235). We choose
the matching point to be the neutron separation energy Sn of
the nucleus under consideration, i.e.

σ 2(Ex ) = σ 2
d for 0 ≤ Ex ≤ Ed

= σ 2
d + Ex − Ed

Sn − Ed
(σ 2

F (Ex ) − σ 2
d )

for Ed ≤ Ex ≤ Sn

= σ 2
F (Ex ) for Ex ≥ Sn . (238)

11.1.4 Constant temperature model

In the CTM, as introduced by Gilbert and Cameron [128],
the excitation energy range is divided into a low energy part
from 0 MeV up to a matching energy EM , where the so-
called constant temperature law applies and a high energy
part above EM , where the Fermi gas model applies. Hence,
the total level density reads

ρtot(Ex ) = ρtot
T (Ex ), if Ex ≤ EM ,

= ρtot
F (Ex ), if Ex ≥ EM , (239)

and similarly for the level density

ρ(Ex , J,�) = 1

2
RF (Ex , J )ρtot

T (Ex ), if Ex ≤ EM ,

= ρF (Ex , J,�), if Ex ≥ EM . (240)

Note that the spin distribution of Eq. (231) is also used in
the constant temperature region, including the low-energy
behaviour for the spin cut-off parameter as expressed by
Eq. (238).

For the Fermi gas regime, TALYS uses the effective exci-
tation energy U = Ex − �CTM, where the energy shift is
given by

�CT M = χ
12√
A

, (241)

with

χ = 0, for odd − odd,

= 1, for odd − even,

= 2, for even − even. (242)

The constant temperature part of the total level density
reads

ρtot
T (Ex ) = dN (Ex )

dEx
= 1

T
exp

(
Ex − E0

T

)
, (243)

while for higher energies the total level density is given by
Eq. (225). Ref. [122] gives the details of the matching prob-
lem between the two parts and the resulting parameters for
the CTM model. When the levels NL and NU are chosen
such that ρT (Ex ) gives the best description of the observed
discrete states, the matching energy EM between the con-
stant temperature part and the Fermi gas part as well as the
parameters E0 and T can be found by an iterative procedure.

For nuclides for which no, or not enough, experimental
discrete levels are available, TALYS relies on empirical for-
mula for the temperature. For the effective model,

T = −0.22 + 9.4√
A(1 + γ δW )

, (244)
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and for the collective model to be discussed in Sect. 11.1.6

T = −0.25 + 10.2√
A(1 + γ δW )

, (245)

where γ is taken from Eq. (228). Next, we directly obtain EM

and E0 solving the matching problem, see Ref. [122]. Again,
Eqs. (244) and (245) were obtained by fitting all individ-
ual values of the nuclides for which sufficient discrete level
information exists. In a few cases, the global expression for T
leads to a value for EM which is clearly off scale. In that case,
we resort to empirical expressions for the matching energy.
For the effective model

EM = 2.33 + 253/A + �CT M , (246)

and for the collective model

EM = 2.67 + 253/A + �CT M , (247)

after which T can be obtained.

11.1.5 The Back-shifted Fermi gas Model

In the BFM [129], the pairing energy is treated as an
adjustable parameter and the Fermi gas expression is used all
the way down to zero energy. Hence the total level density
is given by Eq. (225) and the level density by Eq. (223). For
the BFM, these expressions, as well as the energy-dependent
expressions for a and σ 2, contain the effective excitation
energy U = Ex − �BFM, where the energy shift is given by

�BFM = χ
12√
A

+ δ, (248)

with

χ = −1, for odd − odd,

= 0, for odd − even,

= 1, for even − even, (249)

and δ is a free parameter adjusted on experimental data, if
available.

A problem of the original BFM, which may have ham-
pered its use as the default level density option in nuclear
model analyses, is the divergence of Eq. (223) when U goes
to zero. A solution to this problem has been provided by
Grossjean and Feldmeier [130], and has been put into a prac-
tical form by Demetriou and Goriely [131], and is adopted
in TALYS. The expression for the total BFM level density is

ρtot
BFM(Ex ) =

[
1

ρtot
F (Ex )

+ 1

ρ0(t)

]−1

, (250)

where ρ0 is given by

ρ0(t) = exp(1)

24σ

(an + ap)2

√
anap

exp(4anapt
2), (251)

where an = ap = a/2 and t is given by Eq. (234).
With the usual spin distribution, the level density reads

ρBFM(Ex , J,�) = 1

2

2J + 1

2σ 2 exp

[
− (J + 1

2 )2

2σ 2

]

× ρtot
BFM(Ex ). (252)

In sum, there are two adjustable parameters for the BFM, a
and δ.

11.1.6 Collective effects in the level density

All the previously described models do not explicitly account
for collective effects. However, it is well known that gener-
ally the first excited levels of nuclei result from coherent
excitations of the fermions it contains. The Fermi gas model
is not appropriate to describe such levels. Nevertheless, the
models presented so far can still be applied successfully in
most cases since they incorporate collectivity in the level
density in an effective way through a proper choice of the
energy-dependent level density parameters.

In some calculations, especially if the disappearance of
collective effects with excitation energy plays a role (e.g.
in the case of fission), one would like to model the collec-
tive effects in more detail. It can be shown that the collective
effects may be accounted for explicitly by introducing collec-
tive enhancement factors on top of an intrinsic level density
ρF,int(Ex , J,�). Then, the deformed Fermi gas level density
ρF,def(Ex , J,�) reads

ρF,def(Ex , J,�) = Krot(Ex )Kvib(Ex )

×ρF,int(Ex , J,�). (253)

Krot and Kvib correspond to the rotational and vibra-
tional enhancement factors, respectively. If Krot and Kvib

are explicitly accounted for, ρF,int(Ex , J,�) should now
describe purely single-particle excitations, and can be deter-
mined again by using the Fermi gas formula. Obviously, the
level density parameter a of ρF,int will be different from that
of the effective level density described before. More pre-
cisely, as illustrated in Fig. 16, the level density parameter
is much lower when collective effects are explicitly treated
than it is without an explicit treatment.

The vibrational enhancement of the level density is
approximated [9], by

Kvib = exp[δS − (δU/t)], (254)
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Fig. 16 Level density parameter required to fit D0 values at Sn as func-
tion of the mass for the BFM model with (blue squares) and without (red
squares) an explicit treatment of collective effects. The black and green
lines represent the asymptotic limit (Eq. (227) for the two situations.)

where δS and δU are changes in the entropy and excitation
energy, respectively, resulting from the vibrational modes
and t is the nuclear temperature given by Eq. (234). These
changes are described by the Bose gas relationships, i.e

δS =
∑

i

(2λi + 1)
[
(1 + ni ) ln(1 + ni ) − ni ln ni

]
,

δU =
∑

i

(2λi + 1)ωi ni , (255)

where ωi are the energies, λi the multipolarities, and ni the
occupation numbers for vibrational excitations at a given
temperature. The disappearance of collective enhancement
of the level density at high temperatures can be taken into
account by defining the occupation numbers in terms of the
equation

ni = exp(−γi/2ωi )

exp(ωi/t) − 1
, (256)

where γi are the spreading widths of the vibrational excita-
tions. This spreading of collective excitations in nuclei should
be similar to the zero-sound damping in a Fermi liquid, and
the corresponding width can be written as

γi = C(ω2
i + 4π2t2). (257)

The value ofC = 0.0075 A1/3 was obtained from the system-
atics of the neutron resonance densities of medium-weight
nuclei [132]. TALYS adopts a modified systematics [133],
which includes shell effects to estimate the phonon energies
(in MeV), namely

ω2 = 65A−5/6/(1 + 0.05δW ), (258)

for the quadrupole vibrations and

ω3 = 100A−5/6/(1 + 0.05δW ), (259)

for the octupole excitations.
An alternative estimation of the vibrational collective

enhancement factor is given by Iljinov et al. [134]

Kvib(Ex ) = exp
(

0.0555A
2
3 t

4
3

)
. (260)

A more important contribution to the collective enhance-
ment of the level density originates from rotational excita-
tions. Its effect is not only much stronger (Krot ∼ 10 − 100
whereas Kvib ∼ 3), but the form for the rotational enhance-
ment depends on the nuclear shape as well. This makes it
crucial, among others, for the description of fission cross
sections.

The expression for the rotational enhancement factor
depends on the deformation, see Capote et al. [9,135]. Basi-
cally, Krot is equal to the perpendicular spin cut-off parameter
σ 2⊥,

σ 2⊥ = I⊥t, (261)

with the rigid-body moment of inertia perpendicular to the
symmetry axis given by

I⊥ = I0

(
1 + β2

3

)
= 0.01389A5/3

(
1 + β2

3

)
, (262)

where β2 is the ground-state quadrupole deformation, which
is consistently taken from TALYS nuclear structure database.
Hence,

σ 2⊥ = 0.01389A5/3
(

1 + β2

3

)√
U

a
. (263)

For high excitation energies, it is known that the rotational
behavior vanishes. To take this into account, it is customary
to introduce a phenomenological damping function f (Ex )

which is equal to 1 in the purely deformed case and 0 in the
spherical case. The expression for the level density is then

ρ(Ex , J,�) = Krot(Ex )Kvib(Ex )ρF,int(Ex , J,�), (264)

where

Krot(Ex ) = max([σ 2⊥ − 1] f (Ex ) + 1, 1). (265)

The function f (Ex ) is taken as a Fermi function,

f (Ex ) = 1

1 + exp(
Ex−Eg.s.

col
dg.s.col

)

, (266)
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which yields the desired property of Krot going to 1 for high
excitation energy. Little is known about the parameters that
govern this damping, although attempts have been made (see
e.g. Ref. [136]). By default, the values of Eg.s.

col = 30 MeV,
dg.s.col = 5 MeV are adopted by TALYS though these param-
eters are adjustable.

Finally, these collective enhancement expressions can be
applied to the various phenomenological level density mod-
els. The CTM formalism can be extended with explicit col-
lective enhancement, i.e. the total level density reads

ρtot(Ex ) = ρtot
T (Ex ), if Ex ≤ EM ,

= Krot(Ex )Kvib(Ex )ρ
tot
F,int(Ex ),

if Ex ≥ EM , (267)

and similarly for the level density ρ(Ex , J,�). Note that the
collective enhancement is not applied to the constant tem-
perature region, since collectivity is assumed to be already
implicitly included in the discrete levels. The matching
problem is completely analogous to that described before,
although the resulting parameters EM , E0 and T will of
course be different.

The BFM can also be extended with explicit collective
enhancement, i.e.

ρtot
BFM(Ex ) = Krot(Ex )Kvib(Ex )

[
1

ρtot
F,int(Ex )

+ 1

ρ0(t)

]−1

,

(268)

and similarly for the level density ρ(Ex , J,�).
Since phenomenological level densities need to be gener-

ated from analytical expressions for the total level density,
spin distribution, collective enhancement, shell effects, etc.
they come with a large number of models and adjustable
parameters.

11.2 Microscopic level densities

Besides the phenomenological models that are used in
TALYS, there is also an option to employ more micro-
scopic approaches. All these models include detailed struc-
ture ingredients, in particular a mean-field single-particle
level scheme and associated pairing, to estimate the nuclear
level density, contrary to the analytical approaches described
before. Therefore, the shell and pairing effects are intrinsi-
cally and coherently taken into account.

Three options are available. The first one estimates the
level densities on the basis of the microscopic statistical
model [131]. The statistical calculations are performed using
the deformed Hartree-Fock-BCS (HF-BCS) predictions of
the ground-state structure properties. The microscopic model
includes a consistent treatment of the shell effects, pairing

correlations, deformation effects and collective excitations.
However, it does not account for possible deviations from a
Gaussian law for the spin distribution and keeps the assump-
tion of a parity equipartition. It predicts the experimental
neutron resonance spacings with a degree of accuracy com-
parable to that of the phenomenological back-shifted Fermi-
gas-type formulae. The microscopic level densities are renor-
malized to the existing experimental data, namely the s-wave
neutron resonance spacings and the cumulative number of
low-lying levels. Level densities for more than 8000 nuclei
from the proton drip line to the neutron drip line are avail-
able for excitation energies up to 150 MeV and for the 30
first spins.

To go beyond the limitations inherent to the statistical
model, two other models have been included in TALYS;
both are based on the combinatorial approach. The first one is
based on Skyrme-HFB calculations [106] and the second one
on temperature-dependent HFB calculations [137] using the
D1M Gogny force (Gogny-HFB). In both cases, the starting
point is the HFB single-particle level scheme upon which all
possible particle-hole excitations are counted. This intrinsic
non-collective particle-hole state density is then folded with
a vibrational state density to provide total state densities in
the nucleus intrinsic frame. The level density is then finally
obtained going from the intrinsic nucleus frame to the labo-
ratory frame. If we denote by ω(U, M, π) the state density
in the intrinsic frame, the level density is given by

ρ(U, J, π) = ω(U, M = J, π) − ω(U, M = J + 1, π),

(269)

for a spherical nucleus while, for an axially symmetric
deformed nucleus it reads

ρ(U, J, π) = 1

2

J∑

K=−J,K 	=0

ω(U − E J,K
rot , K , π)

+δ(J even) δ(π=+) ω(U − E J,0
rot , 0, π)

+δ(J odd) δ(π=−) ω(U − E J,0
rot , 0, π). (270)

with E J,K
rot = J (J + 1) − K 2

2I⊥
where I⊥ is the moment of

inertia perpendicular to the symmetry axis for a deformed
nucleus. In Eq. (270), the 1/2 factor accounts for the fact
that, for axially symmetric nuclei, states with spin projec-
tions K and −K belong to the same rotational band and the
two remaining terms account for the fact that the rotational
bands generated by 0+ states have a level sequence 0+, 2+,
4+, …while those built on a 0− band head are 1−, 3−, 5−, ….
It is worth recalling that the HFB moment of inertia is usu-
ally in good agreement with experiment and increases with
excitation energy to reach the rigid body value.
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An important aspect of the combinatorial approach stem-
ming from the different treatment of spherical and deformed
nuclei concerns the transitional region where the nuclear
deformation is small and non-zero. For such cases, in order
to avoid a sharp transition between Eq. (269) and Eq. (270),
an empirical procedure based on a simple Fermi function is
applied. Hence, the final combinatorial level density reads

ρ(U, J, π) = [1− f ]ρsph(U, J, π)+ fρdef (U, J, π). (271)

However, the f function is different in the two models. In
the Skyrme HFB case, it depends on the excitation energy
and plays a role similar to that of Eq. (266), i.e. enables
to account for the vanishing of deformation with excitation
energy. In the temperature-dependent HFB approach, since
the disappearance of deformation is accounted for by the
temperature dependence of the single-particle levels, the f
function only depends on the deformation.

The default, and in our opinion currently the most robust,
option is the Skyrme-HFB model. For both models, level
densities for more than 8500 nuclei are made available in
tabular format, for excitation energies up to 200 MeV and
for spin values up to J = 49. Since these tabulated micro-
scopic combinatorial level densities have not been adjusted
to experimental data, we add adjustment flexibility through
Eq. (230). For microscopic models in particular, Eq. (230)
allows to tune the nuclear level densities to experimental data
from low-lying levels at low-energy and s-wave resonance
spacings at energies in the vicinity of the neutron separation
energy. The c and δ parameters of Eq. (230) have been sys-
tematically adjusted on experimental and made available in
TALYS structure database. They guarantee the user to make
use of nuclear level densities in agreement with data.

For the microscopic level density models, tables for level
densities on top of the fission barriers are also available
in the TALYS structure database, as discussed in Sect. 13.
For nuclides outside the tabulated microscopic database, the
default CTM level densities are used.

12 Photon strength functions and transmission
coefficients

PSF are important for the description of any transition involv-
ing gamma rays in nuclear reactions [138,139]. The best
known reaction channels which are governed by the PSF are
the (n, γ ) and (γ, n) reaction channels, but the PSF can be
regarded as an important universal entity in reaction model-
ing since gamma rays in general may accompany emission of
any other particle, and gamma transitions occur for both the
continuum and discrete levels. And as discussed in Sect. 10,
PSF are also used to estimate branching ratios between exper-

imental discrete levels, when this information is not available
experimentally.

Before we describe the PSF models implemented in
TALYS, we first give the basic relations which establish their
parameters, constraints and use in reaction models.

The transmission of a gamma ray at an energy Eγ is
described by the PSF fX�(Eγ ). Here X denotes either elec-
tric (E) or magnetic (M) radiation; and � is the radiation
multipolarity. In general, dipole (� = 1) radiation domi-
nates over radiation of higher multipolarity for a given Eγ ,
i.e. fE1(Eγ ) >> fE2(Eγ ). Also E transitions are gener-
ally stronger than M transitions for a given multipolarity, i.e.
fE1(Eγ ) > fM1(Eγ ), though this might not be true at all
energies.

One distinguishes between

• upward PSF
−→
fX�(Eγ ), related to the cross section for

gamma absorption such as for (γ, n) reactions
• downward PSF

←−
fX�(Eγ ), related to the average width

of the gamma decay and thus of particular interest in
radiative capture.

The essential relation between the total photoabsorption
cross section and the upward PSF is

σ(γ,abs)(Eγ ) =
∑

X�

σX�(Eγ ), (272)

where,

−→
fX�(Eγ ) = KX�

σX�(Eγ )

E2�−1
γ

, (273)

and

KX� = 1

(2� + 1)π2�2c2 . (274)

Eq. (273) means that the PSF can be extracted from the pho-
toabsorption cross section σX� summed over all spins and
parities. In practice, with other components being negligi-
ble near the peak of the PSF, this means that

−→
fE1 is directly

determined by the (γ, n) cross section in the region of the
giant dipole resonance (GDR).

The downward PSF is related to the deexcitation of
the nucleus. Like the particle transmission coefficients that
emerge from the optical model, photon transmission coeffi-
cients enter the Hauser-Feshbach model for the determination
of the competition between photon emission and emission of
other particles. The relation between the photon transmission
coefficient and downward PSF is given by

TX�(Eγ ) = 2π
←−
fX�(Eγ )E2�+1

γ . (275)
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The average radiation width 〈�γ 〉, for which experimental
data are available, is obtained by integrating the gamma-ray
transmission coefficients over the density of final states that
may be reached in the first step of the gamma-ray cascade.
This leads to the essential relation for the downward PSF,

2π〈�γ 〉
D0

=
∑

J,�,X�

J+�∑

I ′=|J−�|

∑

�′

∫ Sn

0
dEγ

TX�(Eγ )ρ(Sn − Eγ , I ′,�′)F(X,�′, �),
(276)

where D0 is the average resonance spacing derived from
the level density ρ. The J,� sum runs over the compound
nucleus states with spin J and parity � that can be formed
with s-wave incident particles, and I ′,�′ denote the spin
and parity of the final states. The multipole selection rules
are F(E,�′, �) = 1 if � = �′(−1)�, F(M,�′, �) = 1 if
� = �′(−1)�+1, and 0 otherwise. The integral over dEγ

includes a summation over discrete states.
At the same time,

←−
fX�(Eγ ), and thus TX�(Eγ ), is directly

linked to the (n, γ ) cross section just above the resonance
range, before the opening of the inelastic channel. Since the
transmission coefficient for neutrons is much larger than that
of photons, Tn >> Tγ , the Hauser-Feshbach formula for this
energy range can be stated in a compact way,

σ(n, γ ) = TnTγ

Tn + Tγ

≈ Tγ . (277)

Both 〈�γ 〉 and Maxwellian-averaged (n, γ ) cross sections
(MACS) around 30 keV, have been experimentally deter-
mined for more than 200 nuclides, and are therefore impor-
tant observables to constrain the PSF model and its parame-
ters though both also depend on the nuclear level densities.
Ideally, one and the same set of PSF parameters should pre-
dict both observables with the same accuracy. However, it
was concluded that there may be up to a ∼ 20 % difference
between the two predictions on a global scale [139,140].

Most of the PSF studies, be it experimental or theoretical,
make the assumption that the average electromagnetic decay
process (i.e. the photo-deexcitation) can be directly related
to the inverse photoexcitation, i.e. fX� = ←−

fX� = −→
fX�, and

essentially depends only on the energy of the emitted γ -ray,
and not on the absolute excitation energy of the initial or
final states, or the specific nuclear properties (such as the
spin and parity) of the nuclear states involved. This assump-
tion is known as the Brink hypothesis [141] that has played a
key role in the description of the photo-deexcitation process,
especially in reaction theory. While the Brink hypothesis is
well established in the GDR energy region, at low energies,
in particular below the neutron threshold, its validity is still
open to debate and is under both theoretical as well as exper-
imental investigation. For example, studies within the Fermi

liquid theory [142] have found that photo-deexcitation PSF is
a function of the excitation energy of the final state, which in
turn depends on the excitation energy of the initial state and
the γ -ray energy Eγ . In contrast, the photo-excitation process
only depends on the γ -ray energy. Experimentally, the Brink
hypothesis was investigated and shown to be valid to a good
approximation, for γ -ray transitions between states in the
quasicontinuum region below the particle separation energy,
from a variety of experiments [143,144], though photon scat-
tering (γ ,γ ′) technique have found indications that the Brink
hypothesis is at least partially violated below the neutron sep-
aration energy (see e.g. Refs. [145–147]). In TALYS, depend-
ing on the PSF model adopted, a temperature dependence
may be included, hence the deexcitation PSF may differ from
the photo-excitation one. The PSF can also be fine-tuned by
using directly experimental information, as compiled in the
reference IAEA PSF database [139].

Various phenomenological and microscopic models for
the PSF are implemented in TALYS. We describe them all
below. Figures 17 and 18 illustrate their description of the
E1 and M1 modes, respectively, for the stable 96Mo isotope,
together with available experimental data, while Figs. 19, 20
compare their predictions for the exotic neutron-rich N = 82
Mo isotope 124Mo. The 96Mo GDR region is relatively well
reproduced by all models, since all of them have been tuned
in a way or another in this energy region through a local or
global adjustment on photoabsorption data for stable nuclei.
However, in the low-energy GDR tail and to some extent
above the GDR, significant differences can be observed lead-
ing inevitably to different predictions of radiative capture
cross sections. In the case of 124Mo, major differences are
found even in the GDR region. For the M1 component, only
a few global models are available. Four of them, as imple-
mented in TALYS, are illustrated in Figs. 18 and 20.

We need to stress that two models are more specifically
recommended. They concern the phenomenological model,
the Simplified Modified Lorentzian (SMLO) model [148,
149], and the microscopic QRPA model based on the D1M
Gogny interaction (hereafter D1M+QRPA). Both models
were developed and validated against experimental data dur-
ing an IAEA coordinated research project on PSFs [139] and
photonuclear cross sections [150]. They are regarded, by us
at least, as the two best options for PSF, from a consistent
physics point of view. Note that both models include the E1
and M1 PSFs and a phenomenological account of the low-
energy enhancement (the so-called upbend), as discussed in
Sect. 12.3.1. After the description of the various PSF models,
we will outline in Sect. 12.4 how a proper normalization of
PSF’s to experimental data can be achieved.

123



  131 Page 56 of 85 Eur. Phys. J. A           (2023) 59:131 

Fig. 17 Comparison between the 8 E1 PSFs for 96Mo, as included in
TALYS. Note that the E1 non-zero limit at zero energy (see Sect. 12.3.1)
is included in the models prescribing it, see text for more details. The
predictions are compared with existing data, as compiled in the 2019
IAEA PSF database [151], stemming from nuclear resonance fluores-
cence (NRF), Oslo method, photoabsorption data, average resonance
capture (ARC) or (p, p′) scattering data

Fig. 18 Same as Fig. 17 for the M1 PSFs of 96Mo. Note that the M1
upbend (see Sect. 12.3.1) is included in the models prescribing it

12.1 Analytical Lorentzian-type models for PSFs

The phenomenological models are generally parameterized
in terms of Lorentzian forms with giant resonance parame-
ters:

• σX�: cross section of the giant resonance at the peak
energy,

• EX�: centroid energy of the giant resonance,
• �X�: width of the giant resonance.

Note that the PSF for deformed nuclei exhibits two peaks and
consequently is described by two Lorentzian functions i.e.

fX�(Eγ ) =
2∑

i=1

f iX�(Eγ , σ i
E1, E

i
E1, �

i
E1) . (278)

Fig. 19 Same as Fig. 17 for the E1 PSFs of 124Mo

Fig. 20 Same as Fig. 18 for the M1 PSFs of 124Mo

12.1.1 Standard Lorentzian model

The first, and oldest, model is the so-called Brink-Axel
option [141,152], for which a standard Lorentzian (SLO)
form describes the GDR shape, i.e.

fX�(Eγ ) = KX�

σX�Eγ �2
X�

(E2
γ − E2

X�)
2 + E2

γ �2
X�

. (279)

The standard Lorentzian option is usually used for all multi-
poles higher than 1 (� > 1).

12.1.2 Generalized Lorentzian model

For E1 radiation, an option which has been used as a default
for many years in TALYS is the Generalized Lorentzian
(GLO) form of Kopecky and Uhl [153,154],

fE1(Eγ , T ) = KE1

[
Eγ �̃E1(Eγ , T )

(E2
γ − E2

E1)
2 + E2

γ �̃E1,T (Eγ )2

+0.7�E14π2T 2

E5
E1

]
σE1�E1, (280)
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where the energy-dependent and temperature-dependent
damping width �̃(Eγ , T ) is given by

�̃E1(Eγ , T ) = �E1
E2

γ + 4π2T 2

E2
E1

, (281)

and T the nuclear temperature given by

T =
√

En + Sn − � − Eγ

a(Sn)
, (282)

where Sn is the neutron separation energy, En the incident
neutron energy, � the pairing correction and a the level den-
sity parameter at Sn (see Sect. 11). Note that in the GLO
model, a non-zero limit of the E1 deexcitation (i.e. T > 0)
PSF at Eγ → 0 is ensured through the second term of
Eq. (280).

12.1.3 Hybrid model

The hybrid model [155] is a variant of the GLO model which
includes a energy- and temperature-dependent width but also
a low-energy (i.e. below Sn) behaviour inspired from the
Fermi liquid theory [142] and reads

fE1(Eγ , T ) = KE1σE1�E1[
Eγ �̃E1(Eγ , T )

(E2
γ − E2

E1)
2 + E2

γ �E1�̃E1(Eγ , T )

]

(283)

with the energy- and temperature-dependent width

�̃E1(Eγ , T ) = 0.7 �E1
E2

γ + 4π2T 2

Eγ EE1
. (284)

Note that in the hybrid model (like in the GLO model), a non-
zero limit of the E1 deexcitation PSF at Eγ → 0 is found
through the above temperature dependence.

12.1.4 Parameters for the SLO, GLO and hybrid models

For E1-transitions, GDR parameters for various individual
nuclides have been extracted from photoabsorption data [9,
148]. These are stored in the nuclear structure database
of TALYS. If not available experimentally, the resonance
parameters for any X� transition can be taken from global
systematic formulae [9]. More precisely,

• For E1 transitions for which no nuclide-specific data
exist, we use

σE1 = 1.2 × 120N Z/(Aπ�E1) mb,

EE1 = 31.2A−1/3 + 20.6A−1/6 MeV,

�E1 = 0.026E1.91
E1 MeV. (285)

• for E2 transitions,

σE2 = 0.00014Z2EE2/(A
1/3�E2) mb,

EE2 = 63.A−1/3 MeV,

�E2 = 6.11 − 0.012A MeV, (286)

• for multipole electric radiation higher than E2

σE� = 8.10−4σE(�−1),

EE� = EE(�−1),

�E� = �E(�−1), (287)

• for M1 transitions within the SLO approach

fM1 = 1.58 10−9A0.47 at 7 MeV,

EM1 = 41.A−1/3 MeV,

�M1 = 4 MeV, (288)

where Eq. (279) thus needs to be applied at 7 MeV
to obtain the σM1 value. Similarly, within the GLO
model [153], the same centroid and width are consid-
ered, but the strength of the M1 channel is estimated
with respect to the E1 channel at 7 MeV through the
expression fM1 = fE1/(0.0588 A0.878).

• for multipole magnetic radiation higher than M1, we use

σM� = 8.10−4σM(�−1),

EM� = EM(�−1),

�M� = �M(�−1). (289)

12.1.5 SMLO model

The SMLO model was developed to provide an improved
estimate of the E1 and M1 PSFs [148,149] for all nuclei
with 8 ≤ Z ≤ 124. It is the default phenomenological PSF
model in TALYS. Details on the E1 PSF formulation and
systematics can be found in Refs. [148,149] and will not be
repeated here. Concerning the M1, the SMLO model adopts
simple SLO expressions for both the low-energy scissors (sc)
mode and the spin-flip (sf) components, i.e.

−−→
fM1(εγ ) = 1

3π2h̄2c2
σsc

εγ �2
sc

(ε2
γ − E2

sc)
2 + ε2

γ �2
sc

+ 1

3π2h̄2c2
σs f

εγ �2
s f

(ε2
γ − E2

s f )
2 + ε2

γ �2
s f

(290)

where σi = fi Ei is the peak cross section, Ei the energy at
the peak and �i the width at half maximum for both the spin-
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flip (i = s f ) or the scissors mode (i = sc). The following
parameters for both M1 modes, i.e. for

• the spin-flip resonance: σs f = 0.03A5/6 mb, Es f =
18A−1/6 MeV and �s f = 4 MeV;

• the scissors mode: σsc = 10−2|β2|A9/10 mb, Esc = 5 ×
A−1/10 MeV and �sc = 1.5 MeV;

where the spin-flip and the scissors mode components
are tuned on experimental (average resonance capture and
nuclear resonance fluorescence) data and inspired both from
axially deformed QRPA and shell-model calculations [149].

Such expressions present the advantage of being easily
tuned on experimental data, but also adjustable to reproduce
measured cross sections. The prescription applied to the pho-
toabsorption strength has been extended to the determination
of the deexcitation PSF by adding a temperature dependence
to the E1 GDR width and an M1 upbend at the lowest ener-
gies (see Sect. 12.3.1). Both E1 and M1 SMLO PSFs have
been adjusted on a large number of experimental data, as
described in Ref. [139].

12.2 Microscopic models for PSFs

Various microscopic options for the E1 PSF have been
included in TALYS. They are all based on the relativistic or
non-relativistic mean-field plus QRPA approach. Only one of
these models, the so-called D1M+QRPA model [140], also
provides the M1 PSF. The models provide the PSF as a func-
tion of the photon energy Eγ and possibly as a function of
the temperature, or equivalently the excitation energy, of the
final state. In all cases, the PSFs are stored as tables in TALYS
structure database and, as discussed in Sect. 12.4, all these
tabulated values can be adjusted for fitting purposes.

12.2.1 Skyrme-Hartree-Fock plus QRPA model

One of the models corresponds to the spherical Hartree-Fock-
BCS plus QRPA model of Ref. [156] based on the SLy4 inter-
action where a folding procedure is applied to the QRPA
strength distribution to take the damping of the collective
motion into account. Deformation effects are included phe-
nomenologically. This model was shown to lead to E1 PSF
in fair agreement with the experimental data, such as pho-
toreaction data and PSFs extracted from resolved-resonance
and thermal-capture measurements at low energies (typically
between 4 and 8 MeV).

The above-mentioned model was improved in Ref. [157]
where a spherical Hartree-Fock-Bogoliubov (HFB) model
plus QRPA calculation was performed on the basis of the
BSk7 interaction. In addition, a temperature-dependent cor-
rection factor was introduced in the folding procedure to
take the collision of quasiparticles into account. Energy-

and temperature-dependent tables are provided in this case.
No large-scale M1 PSFs has been derived yet within these
approaches.

12.2.2 Relativistic Mean Field plus QRPA model

E1 PSF tables from the large-scale temperature-dependent
RMF plus QRPA calculation of Ref. [158] are included in
TALYS structure database. Calculations are based on the
point coupling PCF1 force. While the coupling to the single-
particle continuum is taken into account in an explicit and
self-consistent way, additional corrections like the coupling
to complex configurations and the temperature and defor-
mation effects are included in a phenomenological way to
account for a complete description of the nuclear dynamical
problem.

12.2.3 Gogny-Hartree-Fock-Bogoliubov plus QRPA model

Large-scale calculations of the E1 and M1 absorption PSF
were also obtained in the framework of the axially symmetric
deformed HFB plus QRPA model based on the finite-range
D1M Gogny force [140] and are included in TALYS. This so-
called D1M+QRPA photoabsorption strength has been com-
plemented with a phenomenological low-energy contribution
inspired from shell-model results and existing experimental
data to describe the deexcitation PSF (see Sect. 12.3.1 for the
expression of the corresponding M1 upbend). The resulting
D1M+QRPA+0lim PSF has been extensively compared and
tested against experimental data directly or indirectly related
to PSF [139].

12.3 Additional dipole contribution

12.3.1 The low-energy enhancement

When considering the deexcitation strength function, devi-
ations from the photoabsorption strength can be expected,
especially for γ -ray energies approaching the zero limit.
When a temperature dependence is included in the E1 PSF
(e.g. in the GLO, SMLO, Hybrid or T -dependent mean-field
plus QRPA models), such a low-energy feature is included.
However, other models may need to be complemented by
a non-zero limit. In the specific case of the D1M+QRPA
approach, an additional E1 low-energy contribution to the
deexcitation PSF has been proposed, so that the PSF reads

←−
fE1(Eγ ) =

−−−−→
f QRPA
E1 (Eγ ) + f0U/[1 + e(Eγ −ε0)] (291)

where
−−−−→
f QRPA
E1 is the D1M+QRPA E1 strength at the photon

energy Eγ ,U is the excitation energy of the initial de-exciting
state and f0 = 10−10 MeV−4, ε0 = 3 MeV [139,140].
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The SMLO or D1M+QRPA M1 PSF is also comple-
mented by an additional low-energy enhancement. In par-
ticular, shell-model calculations [159–161] predict an expo-
nential increase of the M1 deexcitation strength function at
decreasing energies approaching zero. This so-called upbend
of the strength function, also observed experimentally [162,
163], has therefore been assumed to be of M1 nature, though
no experimental evidence exists for the moment. Therefore,
when dealing with the deexcitation M1 strength function, a
low-energy enhancement, inferred from shell-model calcula-
tions [160,161,164], the analysis of experimental multi-step
cascade spectra [165] and Oslo measurements [162,163],
should be added to the photoabsorption expression, leading
to

←−−
fM1(Eγ ) = −−→

fM1(Eγ ) + C exp(−ηEγ ), (292)

where η = 0.8 MeV−1 and for the SMLO model C = 3.5 ×
10−8 exp(−6β2) MeV−3 while for the D1M+QRPA model
C = 1 × 10−8 MeV−3 for all nuclei with A ≥ 105 and
C = 3 × 10−8 exp(−4β2) MeV−3 for lighter nuclei (see
Ref. [139] for more details).

The low-energy M1 upbend can give a significant con-
tribution to the (n, γ ) cross section. Generally the M1 con-
tribution is much lower than E1 near the peak of the GDR,
but at the lowest gamma energies may become comparable
to that of E1. The impact on low-energy neutron capture is
then given by Eq. (276) and similarly by the Hauser-Feshbach
formula.

12.3.2 Pygmy resonances

In addition to the E1 contribution described above, a pygmy
resonance of a given multipolarity X� can be included by
adding to the adopted PSF an additional component of the
SLO form (Eq. 279). Despite such an option, by default, no
pygmy resonance is included in cross section calculation and
TALYS does not provide any global systematics for such a
contribution. More information on the pygmy resonance can
be found in Ref. [166,167].

12.4 Adjustment of the PSF

Regardless of the PSF model adopted, it is quite likely that
an optimal fit to e.g. σ(n, γ ), MACS or 〈�γ 〉 can only
be obtained with some adjustment of the PSF. The sim-
ple Lorentzian models like SLO or GLO have ready-to-use
parameters for that, but this is not the case for tabulated PSFs
coming from SMLO or QRPA calculations. It is however
straightforward to bring all PSF models to the same practical
level. If we denote the original, analytical or tabulated, PSF
as fX�(Eγ ) then we can add adjustment flexibility through

Fig. 21 Illustration of the possible adjustments of the E1 D1M+QRPA
PSF offered by TALYS in the case of 96Mo. The original D1M+QRPA
PSF is given by the black solid line; a modification of the PSF through
the f table (by a factor 0.9), wtable (by a factor 0.9), and E table (by
1 MeV)(see Eq. 293) are shown by the blue, red and green solid lines,
respectively. Experimental data are taken from the 2019 IAEA PSF
database [151]. See text for more details

scaling parameters to obtain the final PSF as follows,

f final
X� (Eγ ) = f table fX�(E

c
X� + wtable(Eγ − Ec

X�) + E table)

(293)

where by default f table = 1, E table = 0, wtable = 1, i.e.
unaltered values from the original table or analytical function,
and Ec

X� is the centroid energy at the middle of the PSF which
can be numerically determined. Here, f table scales the entire
PSF up or down, E table allows to shift in energy the entire PSF
and wtable can be used to increase or reduce the width of the
giant resonance. The most effective adjustment parameter for
(n, γ ) cross sections is wtable. It leaves the PSF practically
untouched near its peak while it has a significant effect below
Sn . In addition, since the majority of adjusted values of wtable

needed to fit (n, γ ) lies within 15% of 1, the resulting PSF
is usually not in disagreement with measurements for PSF’s
near Sn .

Figure 21 shows the wtable values for PSF’s adjusted to the
experimental (n, γ ) cross section around 30 keV using the
D1M+QRPA+0lim PSF and the HFB+combinatorial level
density model. Note that the adjustment flexibility of the (less
physical) phenomenological models is somewhat higher,
since in addition one may adjust the parameters for a possi-
ble second peak as well. Microscopic PSFs certainly predict
such double peaks, but we have to accept the relative position
of the two peaks as they come from the calculated tables.

TALYS also allows an automatic adjustment of the PSF
to the experimental [9] or systematic [168] value of the
average radiative width 〈�γ 〉 as given by Eq. (276). The
〈�γ 〉 values are, when available, read from TALYS nuclear
structure database. This effect is similar to the adjustment
of the above-mentioned f table parameter. However, such an
approach should be followed with care since the low-energy
(n, γ ) cross section is essentially sensitive to the low-energy
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tail of the PSF below Sn . A too large adjustment of f table may
destroy the agreement of the PSF fitted to (γ ,n)-based data
near the GDR peak. Artificially increasing or decreasing the
PSF amplitude may affect the (n, γ ) at higher energies.

An example is provided for 101Mo in Fig. 22 where the
GLO strength gives 〈�γ 〉GLO = 0.015 eV, i.e. a factor of 6
lower than the experimental value 〈�γ 〉exp = 0.09±0.01 eV
[9]. As seen in Fig. 22b, such a low dipole strength leads to a
neutron capture cross section a factor of about 4–5 lower than
experimental data. Multiplying artificially the overall E1
strength by a factor f table = 〈�γ 〉exp/〈�γ 〉GLO = 6 provides,
however, a cross section in good agreement at low energies
with experimental data. Such a renormalization has become
a default procedure in most of the reaction codes. In contrast,
the D1M+QRPA+0lim PSF gives an average radiative width
of 0.082 eV in agreement with experiments and therefore
does not need to be renormalized. It is seen in Fig. 22a to be
relatively close to the renormalized GLO strength at low ener-
gies, hence giving rise to relatively similar cross section for
keV neutrons. However, at neutron energies above 1 MeV,
significant deviations between the cross sections obtained
with the renormalized GLO and D1M+QRPA+0lim strengths
can be observed since both strengths differ now in the energy
region of relevance, i.e. in the GDR region. The long-standing
problem between the compatibility of the predicted radia-
tive width and experimental capture and photoabsorption
data is largely solved with the present D1M+QRPA+0lim
model where both the average radiative width and neutron
capture cross sections are consistently estimated and glob-
ally in agreement with experimental data, including photoab-
sorption and photo-deexcitation data [139,140]. Such a con-
clusion holds regardless of the nuclear level density model
adopted.

12.4.1 Photoabsorption cross section

TALYS requires an estimate of the photoabsorption cross sec-
tions to estimate photonuclear reactions and pre-equilibrium
gamma-ray emission. Obviously, for low energies this can
be directly related to the above-discussed PSF. However, at
higher energies, typically above 20 MeV, the dipole strength
may be dominated by the non-resonant process in the pre-
equilibrium mode, the so-called quasi-deuteron component
[169]. A general expression for the photoabsorption cross
section reads

σabs(Eγ ) = σGDR(Eγ ) + σQD(Eγ ). (294)

where the quasi-deuteron component σQD is given by

σQD(Eγ ) = L
N Z

A
σd(Eγ ) f (Eγ ). (295)

Fig. 22 a E1 + M1 PSF of 101Mo calculated with the GLO model
[9,153] (solid blue line), with the GLO after renormalizing the E1 PSF
by a factor of f table = 6 (dotted line) and with D1M+QRPA+0lim
(solid red line). b 100Mo(n, γ )101Mo cross sections calculated with
the GLO (solid blue line), renormalized GLO (dotted line) and
D1M+QRPA+0lim (red solid line) dipole PSFs. Also shown are the
experimental data extracted from EXFOR database [80]

Here,σd(Eγ ) is the experimental deuteron photo-disintegration
cross section, parameterized as

σd(Eγ ) = 61.2
(Eγ − 2.224)3/2

E3
γ

, (296)

for Eγ > 2.224 MeV and zero otherwise. The so-called
Levinger parameter is L = 6.5 and the Pauli-blocking func-
tion is approximated by the polynomial expression

f (Eγ ) = 8.3714.10−2 − 9.8343.10−3Eγ

+4.1222.10−4E2
γ − 3.4762.10−6E3

γ

+9.3537.10−9E4
γ (297)

for 20 < Eγ < 140 MeV,

f (Eγ ) = exp(−73.3/Eγ ) (298)

for Eγ < 20 MeV, and

f (Eγ ) = exp(−24.2348/Eγ ) (299)

for Eγ > 140 MeV.
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For the Hauser–Feshbach calculations in TALYS, the
associated photon transmission coefficients are normalized
as follows,

T final
X� (Eγ ) = TX�(Eγ )

σabs(Eγ )

σabs(Eγ ) − σQD(Eγ )
. (300)

12.5 Isospin forbidden transitions

The Hauser–Feshbach formalism implicitly assumes com-
plete isospin mixing which is valid except in the region
of self-conjugate (ZCN = NCN ) compound nuclei where
isospin effects affect the dipole emission [170,171]. In par-
ticular, the isospin selection rule for dipole transitions is
T = 0, 1 with transitions 0 → 0 being forbidden. Isospin
forbidden transition has two major impacts on statistical cross
section calculations, namely the reduction of the transmission
coefficient for reactions involving self-conjugate nuclei and
the suppression of the neutron emission in proton-induced
reactions. For example, the α capture on N = Z (T = 0)
targets populates states with isospin T = 0 in the com-
pound system which, through the strong suppression of the
γ transitions in the compound nucleus, leads to a signifi-
cant reduction of the radiative α-capture cross section. In
TALYS cross section calculations, such a suppression is
treated phenomenologically, as in Ref. [172], by dividing
the total photon strength function (and thus the transmission
coefficient) by a factor of 5 for (α, γ ) reactions leading to
self-conjugate residual nuclei, by a factor of 2 for radiative
proton and neutron capture reactions proceeding into self-
conjugate nuclei, and by a factor of 1.5 for all reactions pro-
ceeding into nuclei one unit away from self-conjugate nuclei,
i.e. ZCN = NCN ± 1. Similarly, isospin mixing effects also
affect the reverse reactions, including in particular photore-
actions. These isospin forbidden transitions corrections are
accounted for both in the single and multiple particle emis-
sion channels.

13 Fission

The probability that a nucleus fissions can be estimated by
TALYS on both phenomenological and microscopic grounds.
In both cases, the modeling is based on the combination of
Bohr’s transition state hypothesis with the concept of fission
barrier penetrability. Even if the most advanced models of
fission describe the path to fission with a multidimensional
landscape whose degrees of freedom correspond to several
nuclear deformations (among which elongation and asymme-
try are believed to be the dominant ones), in actual reaction
codes, this path is reduced to a one dimensional potential
energy surface (PES) which displays at least one barrier and

Fig. 23 HFB-14 PES [173] for Cm isotopes close to the valley of
stability (top) and for neutron rich Cm isotopes (bottom)

often more (see Fig. 23). In TALYS a maximum of three
barriers can be considered.

The competition between fission, particle emission and
photo-deexcitation is treated within the Hauser-Feshbach
model, and thus requires the computation of fission trans-
mission coefficients.

13.1 Fission transmission coefficients

The calculation of fission transmission coefficients requires
several nuclear quantities depending on each barrier consid-
ered in the modeling. In order to define them, we start with
a single humped barrier.

13.1.1 Single humped barrier

The phenomenological model implemented in TALYS is
based on the Hill-Wheeler expression which gives the prob-
ability of tunneling through a barrier of height B f and width
�ω f for a compound nucleus with excitation energy Ex . The
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transmission coefficient reads

T f (Ex ) = 1

1 + exp
[
−2π

(Ex−B f )

�ω f

] . (301)

Similarly, for a transition state of excitation energy εi above
the top of this barrier, one has

T f (Ex , εi ) = 1

1 + exp
[
−2π

(Ex−B f −εi )

�ω f

] , (302)

which means that the barrier is simply shifted up by εi .
For a compound nucleus with excitation energy Ex , spin

J , and parity �, the total fission transmission coefficient is
given by the sum of the individual transmissions coefficients
for each barrier through which the nucleus may tunnel, and
thus reads in terms of the previously introduced T f (Ex , εi )

T J,�
f (Ex ) =

∑

i

T f (Ex , εi ) f (i, J,�)

+
∫ Ex

Eth

ρ(ε, J,�)T f (Ex , ε)dε. (303)

The summation runs over all discrete transition states on top
of the barrier and Eth marks the beginning of the continuum.
In this equation, f (i, J,�) = 1 if the spin and parity of the
transition state equal that of the compound nucleus and 0
otherwise. Moreover, ρ(ε, J,�) is the density of the transi-
tion states with spin J and parity � for an excitation energy
ε relative to the top of the fission barrier. The main differ-
ence with the usually employed expressions is that the upper
limit in the integration is finite. This choice enables to define
the number of fission channels by replacing T f (Ex , εi ) by 1
in Eq. (303) and to treat fission transmission coefficients as
a particle continuum transmission coefficient for the width
fluctuation calculations [69] (see also Sect. 5.2).

A microscopic alternative based on the WKB approxima-
tion [174] is also available to replace the phenomenological
Hill-Wheeler expression. In this case, the aforementioned
transmission coefficient T f can be written as

T f (Ex ) = 1

1 + exp(2K )
(304)

in terms of the momentum integrals for the hump, i.e.

K = ±
∫ b

a
[2μ(Ex − V (β)/h̄2]1/2dβ (305)

where V is the potential energy for the hump under con-
sideration, and a and b the deformations corresponding to
the intercepting points of the PES at the energy Ex . The +
sign is taken when the excitation energy is lower than the
hump and the − sign when it is higher. In the latter case,

the intercepts (a and b) are complex conjugate (b = a∗) and
the WKB approximation is valid when their imaginary parts
are small, i.e. for energies slightly higher than the hump.
The inertial mass μ is approximated by the semi-empirical
expression μ = 0.054 A5/3 MeV−1 and assumed to be inde-
pendent of the deformation parameter β. In the case of a sin-
gle parabolic barrier, V (β) = B f − 1/2μω2

f β
2, the trans-

mission coefficient is reduced to the Hill-Wheeler expres-
sion (Eq. 301). TALYS includes about 3000 one-dimensional
HFB fission paths based on the HFB-14 PES [173], as illus-
trated in Fig. 23, for which the WKB method to estimate the
fission transmission coefficients can be consistently applied.
More details on the method and its implementation can be
found in Refs. [175–177].

13.1.2 Multiple-humped barriers

As mentioned above, the fission PES often displays more
than one barrier. For double humped barriers, the generally
employed expression is based on an effective transmission
coefficient Tef f defined by

Tef f = TATB
TA + TB

, (306)

where TA and TB are the transmission coefficients for barrier
A and B respectively, calculated with Eq. (303). This expres-
sion is very similar to the Hauser-Feshbach formula meaning
that the fission penetrability through a double humped barrier
is given by the probability to tunnel through the first barrier
multiplied by the probability to tunnel through the second
one given the fact that it is possible to tunnel back through
the first one.

If a triple humped barrier needs to be considered, the
expression forTef f is a generalization of Eq. (306) [55] which
reads

Tef f = TABTC
TAB + TC

, (307)

where TAB is given by Eq. (306) and TC by Eq. (303). Con-
sequently, the expression used in TALYS reads

Tef f = TATBTC
TATB + TATC + TBTC

. (308)

For any number of barriers, the effective number of fission
channels is calculated as in the case for one barrier [69].

13.2 Fission barrier parameters

As mentioned above, when fission barriers are described
using an inverted parabola, the determination of the fis-
sion transmission coefficients depends on the number of fis-
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sion barriers whose heights and widths have to be specified.
Another important piece of information concerns the broken
symmetries for each individual barrier. For instance, when
the fission yield distribution is asymmetric, this means that
the left-right symmetry is broken at least on top of the outer
barrier. As discussed in Sect. 13.3, this information plays a
role in the definition of the nuclear level densities on top of
each individual barrier.

In TALYS several options are included for the fission bar-
rier parameters, namely:

• Experimental parameters [9] corresponding to a set of
actinide fission barrier heights and widths, for both the
inner and outer barriers, extracted from a fit to experimen-
tal neutron-induced fission cross sections. Moreover, this
compilation contains information on head band transition
states, class-II states as well as the nature of the broken
symmetries on top of each barrier.

• ETFSI parameters [178]: set of double-humped fission
barrier heights for numerous isotopes derived from the
so-called Extended Thomas-Fermi plus Strutinsky Inte-
gral calculations.

• Rotating-Finite-Range Model (RFRM) [179]: single-
humped fission barrier heights are determined within a
rotating liquid drop model, extended with finite-range
effects in the nuclear surface energy and finite surface-
diffuseness effects in the Coulomb energy.

• Rotating-Liquid-Drop Model (RLDM) [180].

In the current version of TALYS, the dependence on angu-
lar momentum of the fission barriers is discarded. If bar-
riers obtained within the liquid drop model (LDM) are
employed in the calculation, they are corrected for the dif-
ference between the ground state and fission barrier shell
correction energy:

BLDM
f (T ) = BLDM

f (0) − (δWground − δWbarrier ) ∗ g(T ).

(309)

In this expression, the function g(T ) accounts for the grad-
ual disappearance of the shell effects with increasing tem-
perature [181]. One has g(T ) = 1 for T < 1.65 MeV and
g(T ) = 5.809 exp(−1.066 T ) otherwise.

Shell corrections on top of the fission barrier are generally
unknown. They obviously play an important role for the level
density as well. Default values are adopted: for subactinides
δWbarrier = 0 MeV while for actinides δWbarrier = 2.5
MeV for the inner barrier and δWbarrier = 0.6 MeV for the
outer one [9]. Concerning the broken symmetries on top of
fission barriers, default choices are also adopted depending
on the neutron number. Inner barriers for nuclei with a num-
ber of neutron N ≤ 144 are assumed to be axial otherwise

to be triaxial. Outer barriers are generally considered as left-
right asymmetric.

13.3 Fission barrier level densities

The level density formulae given in Sect. 11 for the ground
state of the nucleus can all be applied to the fission barriers.
In general, only the ingredients entering the level density def-
inition change as compared to the ground-state case. These
changes stem from the fact that the level densities for fission
concern the transition states on top of each barrier and thus
correspond to a nuclear deformation different from that of
the ground state. Hence, shell and pairing effects, as well as
collective enhancement are different for each barrier.

In TALYS, two methods for fission level densities are pro-
grammed. The first one explicitly describes each barrier level
density with all its components, while the second one just
account for a relative rotational enhancement for the fission
barrier level density with respect to the ground state level
density.

13.3.1 Explicit treatment of collective effects

Since the fission barriers are deformed, a rotational enhance-
ment factor is used to increase the level density chosen for
each barrier. As already mentioned before, the expression for
this enhancement factor depends on the symmetries consid-
ered as broken on top of each barrier.

For axially symmetric barriers, Eq. (265) holds, replacing
however the ground state deformation entering its definition
by the barrier deformation. This concerns, by default, inner
barriers with neutron number N ≤ 144. If the axial symmetry
is broken, the rotational enhancement reads

Krot (Ex ) = Kasym
rot (Ex , β2)

= max([g(β2)σ
2⊥σ‖ − 1] f (Ex ) + 1, 1), (310)

with g(β2) =
√

π
2 (1− 2β2

3 ) and f (Ex ) is given by Eq. (266).

This occurs by default for inner barriers with N > 144.
For barriers generally considered as mass asymmetric, we

apply an extra factor of 2 to Krot.
For all fission barriers, the default parameters for the

damping function f of Eq. (266) are Ubar
f = 45 MeV,

Cbar
f = 5 MeV. The shell correction is also different: For

the inner barrier, δW = 1.5 MeV for an axially symmetric
barrier, and 2.5 MeV otherwise. For the other barriers, we
take 0.6 MeV in general. As usual, all these default choices
can be modified using appropriate keywords in the input file.

13.3.2 Effective treatment of collective effects

Despite being of a more “effective” nature than the approach
described above, this second method has been successful in
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the description of fission cross sections, see e.g. Ref. [182].
An essential aspect is that the damping of collective effects
are taken into account in a phenomenological way through
the level density parameter a. The asymptotic level density
parameter ã (Eq. 227) is damped from its effective limit ∼
A/8 to its intrinsic limit ∼ A/13 as follows

ãeff = A

13
f (Ex ) + ã(1 − f (Ex )), (311)

where

f (Ex ) = 1

1 + exp −(
Ex−Eg.s.

col
dg.s.col

)

, (312)

with the same values as mentioned below Eq. (266). Next, the
resulting a(Ex ) is used in all equations. The term “effective
limit” for the level density parameter stems from the fact that
if collective enhancements are not explicitly treated, they
are included in an effective way in the value of the level
density parameter which is then of the order of A/8 while it
is behaves rather like A/13 otherwise. This second approach
also implies that the collective enhancement to be considered
is not the one defined in Sect. 11. One has to distinguish two
situations:

1. When analytical expression are used, the collective
enhancement is defined with respect to that of the ground
state. In other words, it implies that for an axially sym-
metric barrier, the collective enhancement is a constant
value in principle close to the ratio between the ground
state moment of inertia of Eq. (262) and the moment of
inertia given by the same definition but with the fission
barrier quadrupole deformation. Since this ratio is gener-
ally close to one, no enhancement is considered by default
for axially symmetric barrier.
For triaxial barriers, an extra rotational enhancement
needs to be taken into account. Instead of Eq. (265),
this is taken as

Krot (Ex ) =
(

U

aeff

)1/4

(1 − f (Ex )) + f (Ex ), (313)

where aeff = 8aGS/13 and

f (Ex ) = 1

1 + exp(− 1
2 (Ex − 18)

. (314)

Again, this enhancement is the result of the ratio between
the rotational enhancement for an axially asymmetric
nucleus and that of axially symmetric one. There is no
vibrational enhancement in this model since it is assumed
to be accounted for with the level density parameter aGS

of the nucleus with the ground state deformation.

Concerning the shell correction, one has for all barriers
δW = 2

3 | δWground |. Finally, the spin cut-off parameter

(Eq. 238) is multiplied by
(

1 + β2
3

)
as done in Eq. (262)

for the perpendicular spin cut-off parameter.
2. When the level densities at the fission saddle points are

taken from microscopic HFB calculations (see Sect. 11.2),
the underlying idea is the same. Since the combinato-
rial method is only applied within the axially symmet-
ric approximation, to account for extra broken symme-
tries, a rotational enhancement is included by multiplying
the tabulated values by the ratio between the rotational
enhancement for the considered broken symmetry (see
above) and the one accounted for while computing the
tables.

13.4 Class II/III states

Class II (resp. III) states may be introduced when double
(resp. triple) humped barriers are considered. In the particular
situation where the excitation energy ECN of the compound
nucleus is lower than the barrier heights, fission transmis-
sion coefficients display resonant structures which are due
to the presence of nuclear excited levels in the second (class
II), or in the third (class III) well of the PES. When such
resonant structures occur, the expression for the effective fis-
sion transmission coefficient has to be modified (generally
enhanced).

The way this resonant effect is determined depends on the
number of barriers that are considered.

13.4.1 Double humped fission barrier

For two barriers, the effective fission transmission coefficient
Tef f can be re-written as

Tef f = TATB
TA + TB

× FAB(ECN ), (315)

where FAB(ECN ) is a factor whose value depends on the
energy difference between the excitation energy of the
nucleus and that of the class II state located in the well
between barrier A and B. It has been shown [183] that the
maximum value of FAB(E) reaches 4

TA+TB
and gradually

decreases over an energy interval defined as the width �I I of
the class II state with excitation energy EI I . This is accounted
for by the empirical quadratic expression

FAB(E) = 4

TA + TB
+
(
E − EI I

0.5�I I

)2

×
(

1 − 4

TA + TB

)
, (316)
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if EI I − 0.5�I I ≤ E ≤ EI I + 0.5�I I and FAB = 1 other-
wise.

Theoretically, this expression is valid for the tunneling
through a single double humped barrier whereas in realistic
situations, both TA and TB are obtained from a summation
over several transition states. One may thus have large TA
and TB values so that Eq. (316) may give FAB(E) ≤ 1.
Such a situation can only occur for high enough excitation
energies for which the individual Hill-Wheeler contributions
in Eq. (303) are large enough. However, in TALYS, we only
consider class II states with excitation energies lower than the
height of the first barrier. Consequently, the resonant effect
can only occur if the compound nucleus energy ECN is (i)
lower than the top of the first barrier and (ii) close to a reso-
nant class II state (EI I − 0.5�I I ≤ ECN ≤ EI I + 0.5�I I ).
With such requirements, the individual Hill-Wheeler terms
are clearly small, and TA + TB � 1.

13.4.2 Triple humped fission barrier

If three barriers A, B and C are considered, the situation is
more complicated. In this case, three situations can occur
depending on the positions of the class II and class III states.
Indeed the enhancement can be due either to a class II state
or to a class III state, but on top of that, a double resonant
effect can also occur if both class II and class III states have
an excitation energy close to the compound nucleus energy.
In all cases, the enhancement is first calculated for the first
and second barriers giving the transmission coefficient

T AB
ef f = TAB × FAB, (317)

with FAB given by Eq. (316) as in the previous double
humped case.

Next, the eventual coupling with a class III state with
energy EI I I of width �I I I is accounted for by generaliz-
ing Eq. (315) i.e.

T ABC
ef f = T AB

ef f TC

T AB
ef f + TC

× FABC (E), (318)

where FABC (E) is given by generalizing Eq. (316) writing

FABC (E) = 4

T AB
ef f + TC

+
(
E − EI I I

0.5�I I I

)2

×
(

1 − 4

T AB
ef f + TC

)
, (319)

if EI I I − 0.5�I I I ≤ E ≤ EI I I + 0.5�I I I and FABC = 1
otherwise. Class III states can introduce an anti-resonance
effect [55].

14 Fission yields and neutron and gamma observables

TALYS contains various models to describe the decay of
highly excited fission fragments directly after scission into
fission products, while book-keeping the associated neutron
and gamma observables such as the average neutron multi-
plicity, prompt fission neutron spectrum, etc. The first imple-
mented models in TALYS attempted to describe the complete
description of all fission yield and neutron observables, at
the expense of approximations in the calculation of neutron
and gamma evaporation from the excited fission fragments.
Examples of the use of TALYS for such fission product yield
estimates were published for the Brosa model [184]. More
recently, the advance in computer power has enabled more
physical and exact methods. One can feed TALYS with a
distribution of excited fission fragments coming from a spe-
cific projectile plus target fission event, and perform Hauser–
Feshbach decay on each of these fission fragments, after
which all fission product yields and neutron and gamma
observables become available.

14.1 Fission fragment distribution models

As a starting point for the Hauser–Feshbach calculations,
the fission fragment distributions are provided by different
microscopic or phenomenological nuclear structure mod-
els. Each fission fragment pair is described by a yield
Yff(Z , A, Ex , J,�) which implicitly contains an excitation
energy, spin and parity distribution. This excitation energy
distribution is directly connected to the total excitation energy
TXE, which is shared between the light (l) and heavy (h) frag-
ments. This specific sharing may differ per fission fragment
model. TXE is related to the total kinetic energy TKE and
can be written for a neutron-induced fission reaction leading
to two fragments only as follows,

TXE(Al , Zl; Ah, Zh) = Q f (Al , Zl; Ah, Zh)

−TKE(Al , Zl; Ah, Zl)

= [Mn(ACN , ZCN ) − Mn(Al , Zl) − Mn(Ah, Zh)] c
2

+Einc + Sn − TKE(Al , Zl; Ah, Zh), (320)

where Q f is the Q value of the fission reaction, Mn the
nuclear mass, and Einc the incident neutron energy. Cur-
rently, the TALYS database contains fission fragment dis-
tribution for three models, GEF, HF3D, and SPY for many
nuclides, as detailed below. The Yff(Z , A, Ex , J,�) yields
are given in a table format on a sufficiently dense excitation
energy grid, after which TALYS loops over all excited fission
fragments.

123



  131 Page 66 of 85 Eur. Phys. J. A           (2023) 59:131 

14.1.1 GEF model

The GEF fission model [185] is based on the statistical popu-
lation of states in the fission valley at the moment of dynam-
ical freeze-out, which is specific to each collective degree
of freedom. A macroscopic approach is utilized by deriv-
ing global fit parameters to a large set of experimental data
such as fission mass and charge yields, prompt fission neu-
trons, and gamma rays. Most parameters are fixed from inde-
pendent sources, only about 20 parameters have specifically
been adjusted. The good reproduction of measured data by
the code makes it useful for applications in nuclear technol-
ogy and complement the use of purely empirical models. The
code estimates fission barrier heights from the topographic
theorem [185] and derives fission fragment yields by utiliz-
ing the Brosa model with Gaussian fitting. It further employs
statistical mechanics and the law of entropy to share the exci-
tation energy between the fragments. The TXE partitioning
is determined according to a probability distribution that is
given by the product of the level densities of the individual
fragments.

For TALYS, Nordström et al. [186] used GEF as a fission
event generator and performed 1,000,000 random samplings
per fissioning system. With this, the average TKE and TXE
of the fission fragment pairs, as well as the mean El,h and
standard deviations Wl,h of the TXE distribution for both the
light and heavy fragments were obtained for 738 isotopes in
the 76 < Z < 107 range.

14.1.2 HF3D model

The Hauser–Feshbach fission fragment decay model (HF3D)
[187] is based on a full deterministic model to calcu-
late fission observables. The primary fission fragment yield
Y (A) and TKE are determined by fitting experimental data
with simple analytical functions. In order to generate the
charge distribution Y (A, Z), the so-called ZP model [188] is
employed, and the excitation energy division is made by the
anithothermal model to reproduce the average neutron mul-
tiplicity ν(A). For the TALYS fission fragment distribution
parameters, three data sets are provided for the compound
nuclides, 235U, 238U, and 239Pu, for which some experimen-
tal data exist. A few important details of the HF3D model are
explained below.

The fission fragment mass distribution Y (A) is made of
the sum of multiple (5 or 7) Gaussian functions.

Y (A) =
5∑

i=1

Yi√
2πσi

exp

{
− (A − Am + �i )

2

2σ 2
i

}
, (321)

where σi and �i are the Gaussian parameters, Am (=
ACN/2) is the symmetry point of the mass distribution, and
Yi is the yield component. The Yi ’s are divided into the prin-

cipal (Y1,5), the inner (Y2,4), and the central (Y3) peak curves.
Further details of the build-up of the fission fragment distri-
bution can be found in Ref. [187]. The TXE is distributed
over the light and heavy fragment using the RT parameter
which is defined as the ratio of effective temperatures in the
fission fragments,

RT = Tl
Th

=
√

El

Eh

ah(Eh)

al(El)
, (322)

where al,h(El,h) are the level density parameters at El,h .
Therefore, the energies are given by

Eh = TXE
ah

R2
T al + ah

, El = TXE
R2
T al

R2
T al + ah

. (323)

The TXE distribution G is also represented by a Gaussian,

G(Ex ) = 1√
2πWl,h

exp

{
−
(
Ex − El,h

)2

2W 2
l,h

}
, (324)

where

Wl,h = WTXE√
E2
l + E2

h

El,h, (WTXE = WTKE). (325)

14.1.3 SPY model

The SPY model [189,190] is a static and statistical scission-
point model that assumes a statistical equilibrium at scission.
This model is based on microscopic inputs, computed within
the constrained Hartree-Fock-Bogoliubov (HFB) mean-field
model using the Skyrme BSk27 nucleon-nucleon effective
interaction [191]. This interaction can predict all the 2457
experimental masses [111] with a root-mean-square devia-
tion of 0.51 MeV. The main advantage of using the HFB
model is it can describe nuclear structure properties for a
wide range of nuclei without phenomenological parameters
apart from those of the effective interaction (see Sect. 9).

In the SPY model, the scission configuration is defined
by the proton density at the scission neck of the fissioning
nucleus. The fission fragment yields are obtained by counting
the number of available states at scission for all possible
fragmentations. Currently, fission fragment distributions for
more than 800 nuclides are available in TALYS.

14.1.4 TALYS applications

Preliminary results from the Hauser-Feshbach loop over all
excited fission fragments have been reported in Ref. [192].
A complete publication with all the calculational details and
results for a wide range of nuclides and observables is under-
way, and here we merely give a small preview of some results
for 235U. While all fission fragments are evaporated, TALYS
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Fig. 24 Comparison of prompt fission neutron spectra for thermal neu-
trons on 235U calculated by TALYS using the GEF and HF3D fission
fragment distributions as a starting point, with experimental data and
the ENDF/B-VIII data library [193]. The inset shows the ratio over the
Maxwellian distribution. The experimental data are from the EXFOR
database [80]

Fig. 25 Comparison of the average neutron multiplicity as a function
of neutron incident energy for 235U calculated by TALYS using the GEF
(red solid line) and HF3D (black solid line) fission fragment distribu-
tions, with experimental data from the EXFOR database [80], and the
ENDF/B-VIII data library [193]. The GEF calculation by the original
code (blue solid line) is also shown

collects the data of all emitted particles and residual fis-
sion products. Figure 24 shows the prompt fission neutron
spectrum for thermal neutron-induced fission. It is clear that
TALYS results cannot yet match the accuracy of experiment-
based evaluation of ENDF/B-VIII [193]. This is especially
visible upon comparison with the Maxwellian ratio, which
shows a deviation at the lowest and highest energies for both
the GEF and HF3D sets of fission fragments. Figure 25 shows
the average neutron multiplicity, which shows an interest-
ing difference coming from full Hauser-Feshbach decay by
TALYS versus the built-in neutron evaporation model in GEF.
Figure 26 shows the final fission product yield.

Fig. 26 Comparison of fission product yield for thermal neutrons on
235U calculated by TALYS using the GEF (red solid line) and HF3D
(black solid line) fission fragment distributions, with the ENDF/B-
VIII [193] and JEFF−3.3 [194] data libraries. The GEF calculation
(blue dashed line) is also shown

14.2 High energies: temperature-dependent Brosa model

The description of fission fragment and product yields fol-
lows the procedure outlined in Ref. [184]. The Hauser-
Feshbach formalism gives a fission cross section per excita-
tion energy bin for each fissioning system. The fission frag-
ment masses and charges are, subsequently, determined per
given excitation energy bin Ex , in a fissioning system (FS),
characterised by (ZFS, AFS, Ex ), for which the fission cross
section exceeds some minimum value. The total fragment
mass distribution is given by a sum over all contributing bins
weighted with the corresponding fission cross sections:

σ(AFF ) =
∑

ZFS ,AFS ,Ex

σ f (ZFS, AFS, Ex )

×Y (AFF ; ZFS, AFS, Ex ), (326)

where Y (AFF ; ZFS, AFS, Ex ) is the relative yield of a fis-
sion fragment with mass AFF originating from a fissioning
system. Combining this expression with the result of a fission
fragment charge distribution calculation gives the final pro-
duction cross section of a fission fragment with mass AFF

and charge ZFF :

σprod(ZFF , AFF ) =
∑

ZFS ,AFS ,Ex

σ f (ZFS, AFS, Ex )

×Y (AFF ; ZFS, AFS, Ex )

×Y (ZFF ; AFF , ZFS, AFS, Ex ),

(327)

where Y (ZFF ; AFF , ZFS, AFS, Ex ) is the relative yield of
a fission fragment with charge ZFF given its mass AFF and
the fissioning system characterised by (ZFS, AFS, Ex ).

The fission fragment mass distribution is determined with
a revised version of the multi-modal random neck-rupture
model. The original model has been developed by Brosa et
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al. [195] to calculate properties of fission fragments at zero
temperature. However, fission calculations within TALYS
require fragment mass distributions up to higher tempera-
tures. In the version of the model of Ref. [184] the tem-
perature is added to the calculation of the potential energy
landscape of the nucleus.

15 Astrophysical reaction rates

In view of the huge amount of nuclear data needed for nuclear
astrophysics applications [196], TALYS has been and is still
used extensively in many different branches of astrophysics
(see Fig. 1). Although significant effort has been devoted
in the past decades to measuring reaction cross sections
of astrophysical interest, experimental data only covers a
minute fraction of the entire data set required for such a
nuclear physics application. Reactions of interest often con-
cern unstable or even exotic (neutron-rich, neutron-deficient,
superheavy) species for which no experimental data exist.
Some astrophysical applications, such as nucleosynthesis
also involve a large number (thousands) of unstable nuclei for
which many different properties have to be determined. The
energy range for which experimental data is available is also
restricted to the small range that can be studied by present
experimental setups. Finally, a thermonuclear reaction in an
astrophysical plasma also depends on some specific proper-
ties of this plasma, in particular its temperature. To fill the
gaps, only theoretical predictions can be used [196].

A thermodynamic equilibrium holds locally to a good
approximation inside stellar interiors. Consequently, the
energies of both the targets and projectiles, as well as their
relative energies E , obey a Maxwell-Boltzmann distribution
corresponding to the temperature T at that location (or a
black-body Planck spectrum for photons). In such conditions,
the astrophysical rate is obtained by integrating the cross sec-
tion over a Maxwell-Boltzmann distribution of energies at the
given temperature T . In addition, in hot astrophysical plas-
mas, the target nucleus exists in its ground as well as excited
states. In a thermodynamic equilibrium situation, the relative
populations of the various levels of nucleus Iμ with excita-
tion energies Eμ

x and spin Iμ obey a Maxwell-Boltzmann
distribution. The effective stellar rate per pair of particles in
the entrance channel at a temperature T , taking account of
the contributions of various target excited states, is finally
expressed in a classical notation (see Sect. 5) as

NA〈σv〉∗αα′(T ) =
( 8

πm

)1/2 NA

(kT )3/2 GI (T )

×
∫ ∞

0

∑

μ

(2Iμ + 1)

(2I 0 + 1)
σ

μ

αα′(E)

×E exp
(
− E + Eμ

x

kT

)
dE, (328)

where k is the Boltzmann constant, m the reduced mass of
the I 0 + a system, μ = 0 denotes the target ground state,
NA the Avogadro number, and

GI (T ) =
∑

μ

(2Iμ + 1)/(2I 0 + 1) exp(−Eμ
x /kT ) (329)

the T -dependent normalized partition function. In the spe-
cific case of the radiative neutron captures, the Maxwellian-
averaged reaction rate is traditionally expressed by the
Maxwellian-averaged cross section (MACS)

〈σ 〉 = 〈σv〉/vT (330)

where vT = √
2kT/m is the thermal velocity at the temper-

ature T .
Reverse reactions can also be estimated on the basis of

the reciprocity theorem [172]. In particular, the stellar pho-
todissociation rates for astrophysical applications have until
now been derived mainly from radiative capture rates by the
expression

λ∗
(γ,a)(T ) = (2I 0 + 1)(2 ja + 1)

(2I ′0 + 1)

GI (T )

GI ′(T )

×
(mkT

2π h̄2

)3/2〈σv〉∗(a,γ ) e−Qaγ /kT , (331)

where Qaγ is the Q-value of the I 0(a, γ )I ′0 capture. We note
that, in stellar conditions, the reaction rates for targets in ther-
mal equilibrium are usually believed to obey reciprocity since
the forward and reverse channels are expected to be symmet-
rical, in contrast to the situation that would be experienced
by targets in their ground state only [172]. The total stellar
photodissociation rate can also be determined directly from

λ∗
(γ,a)(T ) =

∑
μ(2Iμ + 1) λ

μ

(γ,a)(T ) exp(−Eμ
x /kT )

∑
μ(2Iμ + 1) exp(−Eμ

x /kT )
,

(332)

where the photodissociation rate λ
μ

(γ,a) of state μ with exci-

tation energy Eμ
x is given by

λ
μ

(γ,a)(T ) =
∫ ∞

0
c nγ (E, T ) σ

μ

(γ,a)(E) dE , (333)

where c is the speed of light, σμ

(γ,a)(E) is the photodisintegra-
tion cross section at energy E estimated within the above-
described reaction formalism, and nγ (E, T ) is the stellar
γ -ray distribution described by the black-body Planck spec-
trum at the given temperature T . Concerning the calculation
of Maxwellian-averaged reaction rates of astrophysical inter-
est, the TALYS code has some clear advantages over pre-
vious codes developed for astrophysical applications, such
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as MOST [197] or NON-SMOKER [198]. As detailed in
Ref. [199], these concern:

• the inclusion of the pre-equilibrium and direct capture
reaction mechanisms,

• the detailed description of the decay scheme, including
the description of γ -delayed particle emission and the
possible particle emission from all residual nuclei,

• the inclusion of multi-particle emission,
• the inclusion of detailed width fluctuation corrections [200,

201] in contrast to the approximation of [202,203] usu-
ally applied in other astrophysical codes,

• the inclusion of parity-dependent level densities,
• the inclusion of a coupled channel description for

deformed nuclei, while other astrophysical codes con-
sider spherically equivalent optical potentials for deformed
targets, and

• the inclusion of the fission channel for the compound
as well as the residual nuclei. Fission is often neglected
in astrophysical codes, and if included, insufficiently
tested on experimental data and not consistently taken
into account in the full decay scheme.

16 Illustration of TALYS calculations

All nuclear reaction models outlined in this paper are driven
by parameters. During the two decades of TALYS develop-
ment, global trends and systematic formulae for all these
parameters have been established. Hence, TALYS can be
used for entirely global calculations, being agnostic to the
experimental data from a particular nucleus, or as a fitting
code, where it is assumed that the functional forms provided
by the physics of TALYS only needs to be altered by adjusting
the nuclear model parameters to obtain a good fit to experi-
mental data. In this Section, both approaches will be demon-
strated by several examples.

16.1 Radiative neutron capture

Figure 27 shows a simple example of the flexibility offered
by level density adjustment given by Eq. (230) to tune cross
sections. In this case, both parameters c and δ of Eq. (230) are
adjusted to improve the description of the low-energy discrete
levels of 90Y (as shown in the upper panel of Fig. 27). This
results in an improved description of the 89Y capture cross
section (lower panel of Fig. 27). In this illustration, the PSF
has also been tuned on experimental radiative width once the
level density is adjusted on experimental data. The default
calculation corresponds to setting both parameters entering
Eq. (230) to zero (c = 0, δ = 0).

Sect. 12 explained how the PSF can be altered by means of
the three adjustable parameters introduced through Eq. (293),

Fig. 27 Impact of the level density adjustment (Eq. 230) on the cumu-
lative number of low-lying levels in 90Y (upper panel) and the 89Y(n, γ )
cross section (lower panel). The black symbols correspond to experi-
mental data taken from the EXFOR library [80]

as illustrated in Fig. 21. An important application of this
parameter adjustment is to obtain an optimal calculation of
(n, γ ) cross sections over the entire energy range. Figure 28
shows a calculation performed with the QRPA PSF and the
HFB plus combinatorial microscopic level densities. For this
combination of models, the wtable parameter has been opti-
mized to all nuclides for which experimental (n, γ ) cross
sections are available. The resulting values of wtable are plot-
ted in Fig. 29. This means that by only changing the width of
the PSF, leaving its absolute strength and position the same,
the (n, γ ) excitation function can be shifted in absolute value
until the best agreement with measurement is obtained. The
global value of wtable i.e. averaged over the optimized val-
ues for all nuclides is equal to 1.017, i.e. a slight increase
compared to purely microscopic tabulated values (given by
wtable = 1). For the particular case of 174Yb(n, γ ), this calcu-
lation leads to the global TALYS curve in Fig. 28. Reducing
the value of wtable to 0.90 yields the fitted TALYS curve. This
procedure has been automated for all nuclides: provided the
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Fig. 28 Adjustment of the PSF with a wtable = 0.9 parameter to repro-
duce the 174Yb(n, γ ) cross section. The global cross section calculation
corresponding to the default value wtable = 1 is shown by the solid red
line. Experimental data are taken from the EXFOR library [80]

Fig. 29 Values of the wtable parameter providing optimal fit to (n, γ )
cross sections in the fast neutron energy range as a function of target
mass number A

correct experimental data are selected (which is not an obvi-
ous task), the optimal value of wtable is readily obtained. It
should be mentioned that other experimental data need to
be simultaneously taken into account to constrain the cal-
culation. Often, the average radiative capture width, 〈�γ 〉,
and the MACS are also measured. Table 2 illustrates, for
the 174Yb(n, γ ) case, the agreement between experiment and
theoretical values obtained with the global and adjusted val-
ues of wtable. The combined picture of the three different
types of observables is often seen in nuclear data evalua-
tion: they do not all point to the same optimal nuclear model
parameter. Although the adjusted value of wtable, optimized
to differential (n, γ ) cross sections is confirmed by the com-
parison with the experimental MACS value, the 〈�γ 〉 seems
to favor the global value for wtable.

16.2 Photoneutron cross sections

Figure 30 compares TALYS prediction of photoneutron cross
sections for stable Sm isotopes with experimental data [204–

Table 2 Comparison for 174Yb(n, γ ) MACS and 175Yb 〈�γ 〉 between
experimental data and TALYS predictions obtained with the global
model or the model adjusted to (n, γ ) cross sections with wtable = 0.90,
as illustrated in Fig. 28. The C/E value gives the theoretical deviation
with respect to experiment

MACS (mb) 〈�γ 〉 (eV)

Exp. 151. ± 1.7 0.08 ± 0.02

Global 249.4 (C/E = 1.65) 0.0689 eV (C/E = 0.86)

Adjusted 172.9 (C/E = 1.14) 0.0415 eV (C/E = 0.52)

207]. TALYS calculations are obtained with the D1M+QRPA
[140] or the BSk7+QRPA [157] PSF models. Both are
PSF models that have been globally adjusted on photodata.
Improved adjustment can be obtained using TALYS capabil-
ities to modify locally the PSF, as described in Sect. 12.4.
Using the same PSF, the inverse radiative neutron capture
cross sections have been calculated and compared with exper-
imental data in Fig. 31. In this case the D1M+QRPA PSF
is used to estimate the cross section calculation. Since the
cross section also depends on the adopted level densities,
two models are considered, namely the Skyrme-HFB plus
combinatorial model [140] and the temperature-dependent
Gogny-HFB plus combinatorial [137]. Both of them are nor-
malized to the experimental s-wave resonance spacing D0

values [9] whenever available. More details can be found in
Ref. [204].

Figure 32 compares experimental and TALYS photoneu-
tron cross sections for 181Ta. It includes the total photoreac-
tion cross section [208,209] as well as the partial cross section
to the 9− 180Tam isomer only [209]. TALYS total and partial
cross sections have been estimated with the SLy4+QRPA PSF
and two level density models, namely the HFBCS plus statis-
tical [131] or the HFB plus combinatorial [106] models. The
weak partial cross section 181Ta(γ ,n)180Tam is sensitive not
only to the 181Ta E1 PSF and 180Ta – neutron optical poten-
tial (in a similar way as the total photoneutron cross section)
but also to the detailed level spectrum in 180Ta responsible for
the E1 photon cascade. In this respect, the measured partial
cross section is relatively sensitive to the spin- and parity-
dependent nuclear level density of 180Ta. More details can
be found in Ref. [209].

16.3 (n, xnγ ) cross sections

The exact exclusive reaction decay scheme outlined in Sect. 2
allows to keep track of gamma-ray intensities between dis-
crete levels, for either exclusive or residual production cross
sections. Figure 33 shows four specific 238U(n, n′γ ) cross
sections of the 238U ground state band. Such cross sec-
tions provide strong constraints on the total inelastic mod-
eling, in particular in situations where (n, n′) is hard to
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Fig. 30 Comparison between experimental [204–207] and TALYS photoneutron cross sections for Sm isotopes. The predictions are obtained with
D1M+QRPA (solid red line) [140] or the BSk7+QRPA (dashed blue line) [157] PSF models

measure. The underlying idea is that if the nuclear reac-
tion models succeed in describing individual transitions, this
gives a better confidence in the predictive power regarding
more global cross sections. In this illustration, two models
are considered for the pre-equilibrium spin distribution (see
Sect. 6.3). The red curves correspond to the usual defini-
tion of the pre-equilibrium spin cut-off factor of Eq. (177)
using Cp = 0.24. while the green curves are obtained using
Cp = 0.04, as suggested in a much detailed analysis reported
in Ref. [93]. As can be observed, the agreement, even if it
is not perfect, is much better with this latter choice. This
stems from the fact that the initial spin distribution which
precedes the pre-equilibrium process is predicted, by micro-
scopic approaches, to be peaked at lower spins than what
Eq. (177) with Cp = 0.24 prescribes. The consequence is
that high spins are less populated leading to a reduction of
the cross sections for the highest spin transitions.

16.4 Actinides and fission cross sections

A proper description of the fission channel poses one of the
largest challenges of nuclear reaction modeling. Often, one
can be satisfied if a fission calculation is descriptive, with
respect to experimental data, while being predictive is beyond
the current capabilities of nuclear theory. For TALYS, we
have considered the following interesting challenge: Can we
build a systematic evaluation approach which gives a simul-
taneous reasonable description for all actinides for which
experimental data exist, i.e. from 227Ac to 252Cf. It turns out
that this is indeed possible to some extent, of course at the
expense of using several adjustable parameters. The objective
is then to consistently use the same type of model parameters
to adjust for each fissioning nuclide. As mentioned in Sect. 3,
TALYS can include all the OMP’s from the RIPL database
and has as default the dispersive OMP of Capote et al. [35],
which gives a good description of all OMP-related observ-
ables over the whole actinide range. The other global settings
we use are a rotational band up to the 5th excited state to be
included in the coupled-channels equations, the SMLO PSF
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Fig. 31 Comparison between experimental and theoretical radiative
neutron capture cross sections for Sm isotopes. The TALYS calcu-
lation is based on the D1M+QRPA PSF [140], as shown in Fig. 30.
The hashed area corresponds to the sensitivity to the nuclear level den-

sities obtained with the HFB plus combinatorial model [106] or the
temperature-dependent HFB plus combinatorial model [137]. Experi-
mental data (black symbols) are taken from the EXFOR library [80]

Fig. 32 Comparison between experimental and theoretical photoneu-
tron cross sections for 181Ta. The open squares, diamonds and circles
correspond to the experimental total 181Ta photoreaction cross sec-
tion [208–210] while the lower full circles correspond to the partial
cross section to the 9− 180Tam isomer only [209]. The blue and red
lines correspond to TALYS predictions of the total and partial cross
sections, respectively, using the HFBCS plus statistical [131] or the
HFB plus combinatorial [106] level densities, respectively

model including an M1-upbend of which the parameters have
been adjusted first to the (n, γ ) cross sections, microscopic
HFB plus combinatorial level densities (both for the ground
state and saddle points, and HFB-based fission paths using
the WKB approach to calculate fission transmission coeffi-
cients. For the first chance fission cross section, there are 7
parameters to be adjusted, in case of two fission barriers. The
height of the fission barriers is adjusted by one global factor,
while the relative shape of the barriers is given by the HFB
fission paths. Next for the level density for each fission bar-
rier, three parameters can be adjusted, one for the absolute
value of the level density, one for the pairing, see Eq. (230),
and one for the spin distribution. Obviously, for this case, we
should not expect that the best possible evaluation for the “big
3” actinides 235,238U and 239Pu comes from this approach
(which would require a much larger number of adjustable
parameters), but eventually for several minor actinides the
current evaluation method may approach the quality of the
others. Figure 34 shows the result for the fission cross sec-
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Fig. 33 238U(n, n′γ ) cross sections for 4 transitions within the ground
state rotational band. Spin and parity of the initial and final states are
reported in each panel. Black and blue squares correspond to Ref. [93]
and Ref. [211] respectively. The red and green lines correspond to two
options for the pre-equilibrium spin distribution of the exciton model
(see text for more details)

Fig. 34 TALYS calculation for the 237Np(n, f ) reaction. Experimen-
tal data (symbols) are taken from EXFOR database [80]

tion of 237Np up to the threshold for second chance fission.
Similar quality of fits are obtained for all other actinides.
A future challenge will be to enforce consistency between
fission nuclides and first, second etc. chance fission, so that
good evaluations up to 20 MeV can be obtained with the
WKB method. For U isotopes and phenomenological mod-
els this has already been accomplished with TALYS [55].

Microscopic inputs have also been used to determine fis-
sion cross sections on a larger scale [176,177]. Figure 35
illustrates the 240Pu neutron-induced fission cross section
obtained with HFB fission path [173] and HFB plus combina-
torial level densities both in the ground state and at the fission
saddle points [106]. The default HFB barriers are relatively

Fig. 35 240Pu neutron-induced fission cross section. The green curve
corresponds to the TALYS default calculation with a microscopic HFB
fission path [173] and HFB plus combinatorial level densities both in
the ground state and at the fission saddle points [106]. The red curve is
obtained adjusting the microscopic fission barrier by a nuclide-specific
multiplication factor. The blue curve is obtained using a global normal-
ization for the fission barriers. Experimental data (symbols) are taken
from EXFOR database [80]. See Ref. [176] for details

high, so that the cross section is severely underestimated at
low energies. However, a simple overall decrease of the fis-
sion path obtained from systematics [176] can already signif-
icantly improve the agreement with data. A specific adjust-
ment of the fission path can further improve the description,
as shown in Fig. 35.

If in addition to the fission path adjustment, the nuclear
level densities at the fission saddle points are tuned, an excel-
lent fit to the cross section can be achieved, This is illustrated
in Fig. 36 where the 238U neutron-induced fission cross sec-
tion is compared to experimental data. In this case, the fit
obtained with microscopic models is found to be relatively
similar to that with more macroscopic models for the PSF,
level densities and fission paths (see Ref. [177] for more
details). However, if fission cross sections are described in
one unique coherent framework for all U isotopes, such a
high accuracy may be compromised, as shown in Fig. 36.

16.5 Astrophysical rates

Figure 37 compares the 240 experimental MACS [212] at
30 keV (assuming the target in its ground state only) for
nuclei with 20 ≤ Z ≤ 83 with the TALYS predictions
obtained with the D1M+QRPA+0lim model of the PSF [140]
and the HFB+combinatorial level density model [106]. Note
that in the TALYS calculation, the PSF is not renormalized
for reproducing the experimental average radiative width.
Only nuclei with Z ≥ 20 are considered in the comparison
to ensure the validity of the Hauser-Feshbach approach, the
cross section for lighter nuclei being affected by the direct
capture contribution and the resolved resonance range.
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Fig. 36 238U neutron-induced fission cross section. The blue curve is
obtained optimizing the parameter of macroscopic models [55] while
the red curve is a fit on the basis of microscopic models [177] regardless
of constrained stemming from neutron-induced fission cross section on
the other U isotopes. The green fit is obtained tuning the microscopic
model to reproduce, at best, all experimental data along the U chain in
one unique coherent framework [177]

Fig. 37 Ratio of the theoretical to experimental (n, γ ) MACS at kT =
30 keV as a function of the atomic mass A for all the 240 nuclei between
Ca and Bi for which experimental MACS exist [212]. The theoretical
MACS are obtained with the D1M+QRPA+0lim PSF [140] and the
HFB+combinatorial model of level densities [106]

Different nuclear inputs may lead to relatively differ-
ent predictions when dealing with exotic neutron-rich or
neutron-deficient nuclei. This is illustrated on the (n, γ )

MACS in Figs. 38–39 obtained with different PSFs, namely
the D1M+QRPA+0lim [140] and the RMF plus QRPA [158]
(see Sect. 12) or different level density models, namely the
constant-temperature [122] and the HFB+Combinatorial [106]
models (see Sect. 11). Global variations are found, in particu-
lar when varying the PSF, but also local variations, and more
specifically odd-even or shell effects are observed, in partic-
ular when changing the level densities.

16.6 Radionuclide production

A popular application of TALYS is to predict the production
of radioisotopes for medical applications. Up to now, approx-

Fig. 38 Representation in the (N , Z) plane of the ratio between the
theoretical (n, γ ) MACS at a temperature T = 109 K obtained with
two different PSF models, namely the D1M+QRPA [140] and the RMF
plus QRPA [158] (see Sect. 12). The color code gives the logarithmic
value of the ratio

Fig. 39 Representation in the (N , Z) plane of the ratio between the
theoretical (n, γ ) MACS at a temperature T = 109 K obtained with two
different level density models, namely the constant-temperature [122]
and the HFB+Combinatorial [106] models (see Sect. 11). The color
code gives the logarithmic value of the ratio

imately 600 papers have been published in which TALYS
was used to estimate cross section excitation functions, often
in combination with new cross section measurements. The
resulting excitation functions can then be combined with
the characteristics of a dedicated irradiation source, often a
reactor or a cyclotron, to estimate the final radioactive yield
as a function of the irradiation time. The majority of those
cases concern proton-induced reactions, although there are
also a significant number of TALYS analyses with photon-,
deuteron- and alpha-induced reactions.

The predictive power of TALYS for excitation functions
is determined by the quality of the optical model, the pre-
equilibrium model and its parameters, level densities and the
accuracy of the multiple emission Hauser-Feshbach model.
The combination of these models generally give a reasonable
to a good description of measured residual production cross
sections from 10 to 200 MeV.
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Figure 40 illustrates the excitation function of 123Te(p, n).
It shows the difference between a global TALYS calculation,
with all nuclear model parameters at their default values,
and a calculation with adjusted values for the most sensi-
tive parameters in the 5–20 MeV energy range for (p, n)

reactions, which are often used as a production route for
medical isotopes. The TASMAN code [11] has been used to
(a) determine the most important TALYS parameters from
sensitivity profiles and (b) to optimize these parameters in a
multi-dimensional parameter search. For the optimal result,
the following parameters take on values within 10% of their
default values:

• radius of real volume potential rV for protons, see
Eq. (71),

• radius of imaginary surface potential rD for protons, see
Eq. (71),

• radius of real volume potential rV for neutrons, see
Eq. (71),

• single-particle state density parameter for the compound
nucleus, see Eq. (167),

• single-particle state density parameter for the residual
(p, n) nucleus, see Eq. (167),

• total level density parameter for the residual (p, n)

nucleus, see Eq. (230).

which amounts to 3 OMP parameters, 2 pre-equilibrium
parameters and 1 compound nucleus parameter. It turns out
that these 6 parameters can be used to get a good (p, n) fit
for all nuclides for which experimental data exist. It is also
important to filter the experimental data set for obvious out-
liers: in the current case the data from Barrall et al. [213]
has been excluded from the optimization, while those of
Mahunka et al. [214] and Scholten et al. [215] have been
included. It is interesting to see that both the global and fit-
ted TALYS calculations, as well as the JENDL−5.0 evalua-
tion [216] follow the Mahunka et al. data in the rising part
of the excitation function, regardless of the inclusion of the
Scholten et al. data in the optimization of the fitted TALYS
results. Apparently, the nuclear model does not allow a shift
to the higher energies, regardless of its parameters. The IAEA
evaluation [217] generally comes from least-squares fitting
by means of a Pade approximation.

Similar sets of about 2 to 7 sensitive parameters can be
identified to automatically optimize other excitation func-
tions such as (n, γ ), the combination of the three correlated
channels (n, n′), (n, 2n) and (n, p), (n, α), (n, f ), (α, n) etc.
for all nuclides for which experimental data exist. Of course,
one should always remember that there are model limitations
which currently make it impossible to reproduce the required
shape of the experimental excitation functions (assuming
these represent reality), even if we allow the parameter values
to move away quite far from the default values.

Fig. 40 Excitation function of 123Te(p, n), calculated with global and
adjusted TALYS parameters compared with existing nuclear data eval-
uations, such as JENDL−5.0 [216] or IAEA [217], and experimental
data [213–215]

Trends in nuclear model parameters are also being inves-
tigated at higher energies. Fox et al. [90] measured residual
production cross sections for protons incident on spherical
nuclides and performed an analysis of the various nuclear
model parameters that play an important role in the 30–100
MeV range.

For radioisotope production with charged particles, TALYS
contains a built-in module to estimate the radioactive yields
on the basis of accelerator characteristics such as power,
energy, irradiation time, and basic production and deple-
tion equations for activation. For this, the radioactive decay
paths to the produced isotopes need to be known. Therefore,
the JEFF−3.1.1 Radioactive Decay Data File [194,218] is
included in the nuclear structure database. We give in Fig. 41
an example of the production of 99mTc via proton irradiation
of 100Mo, which is one of the production routes considered
as an alternative for production with a reactor. First, Fig. 41
gives a comparison between an optimized TALYS calcula-
tion, experimental data and a few evaluated data libraries. The
fit is obtained by optimizing the same 6 parameters as men-
tioned before, with an additional reduction of the spin cutoff
parameter of the residual level density, to obtain a good agree-
ment with the isomeric ratio. The excitation function can then
be inserted into the module for radioisotope production and
the result for a typical cyclotron set-up is given in Fig. 42.
Extending this capability to photon and neutron irradiations
(with e.g. a reactor) is under construction.

16.7 High-energy models

In the nuclear data community, energies beyond 50 MeV are
often called “intermediate” or even “high”. As the models
built in TALYS should cover incident energies up to (at least)
200 MeV a few examples for this energy range are given
below.
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Fig. 41 Comparison of the 100Mo(p,2n)99mTc excitation function
obtained with an optimized TALYS calculation with existing nuclear
data evaluations [11,193,216,217] and experimental data taken from
EXFOR library [80]

Fig. 42 Total activity of 99mTc produced by a 24 MeV proton accel-
erator of 150 μA and a 100Mo target with an energy of 10 MeV at the
back of the target, for an irradiation time of 24 h and a cooling time of
24 h

First, we argued in Sect. 8 that the multiple pre-equilibrium
process is indispensable for incident energies above 50 MeV
or so. The situation is similar to that presented in Fig. 12
for the primary pre-equilibrium process: the highly excited
nucleus contains so much energy that more than one fast
particle can be emitted from the non-equilibrated nucleus. If
this process would not exist, particle evaporation would take
place much deeper in the isotopic chain of every residual
nucleus, since the evaporating system would only lose energy
through sequential compound emission. Figure 43 shows a
TALYS prediction for high-energy protons on 209Bi with the
default calculation compared with one where multiple pre-
equilibrium emission is deactivated. The excitation function
without multiple pre-equilibrium decreases much faster since
more reaction flux can go to the lighter Bi isotopes. In general,
one observes that omitting multiple pre-equilibrium leads to
significant deviations from experiment.

Fig. 43 Excitation function for 209Bi(p,x)205Bi compared with exper-
imental data from the EXFOR database [80]. Two calculations are
shown: one default TALYS calculation, and one with the multiple pre-
equilibrium process turned off (No MPE)

Fig. 44 Subactinide fission: 205Tl(p, f ) TALYS calculation compared
with experimental data [219]

The last example is high-energy fission. This may fall
into two categories: (1) actinide fission, where the “normal”
fissioning process of actinides is simply extended to higher
energies, with multi-chance fission now coming from several
residual nuclides, (2) subactinide fission, observed in the W-
Bi range, where the fission contribution comes from multi-
chance fission of unstable residual nuclides far away from the
target nucleus. Figure 44 gives the example of 205Tl(p, f ).
For subactinides, these calculations are based on the RFRM
fission barriers [179], as described in Sect. 13.

17 TALYS in a larger system

This paper concerns the nuclear physics implemented in
TALYS and a description of the observables it can simulate.
A paper of similar size could be devoted to the impact of
the code on many important nuclear fundamental or techno-
logical applications. Instead of adding all that to the current

123



Eur. Phys. J. A           (2023) 59:131 Page 77 of 85   131 

paper, we merely mention some of the most important exam-
ples. Also the current paper does not go into detail on the
computational structure of the code.

An important aspect of TALYS is consistent and user-
friendly input and output. Versatile interfacing of data is
essential for basically all use of TALYS, from making the
simplest plot to full-scale automation in larger software sys-
tems.

There are two important satellite programs for TALYS that
have appeared many times in the literature already:

• TASMAN [11], statistical software for TALYS. The most
used function of TASMAN is the generation of prob-
ability distributions for all the outputs of TALYS such
as cross sections, spectra, angular distributions etc. and
their related first moments such as averages, variances
and covariances. It does this on the basis of Bayesian
Monte Carlo sampling of the TALYS input parameters
while looping over TALYS. Generally, after a few hun-
dred TALYS runs all converged statistical information is
available. TASMAN can also create parameter sensitivity
profiles for all cross sections, spectra etc. and it can auto-
matically fit TALYS results to experimental data through
deterministic or stochastic search methods on the model
parameters.

• TEFAL [11], for translating the results of TALYS into
ENDF-6 data libraries. TEFAL was constructed to avoid
any error-prone human interference in the creation of
nuclear data files: the whole ENDF-6 file is created at
once, on the basis of all nuclear reaction information that
we feed it with. Hence, the idea is to first run TALYS for
a projectile-target combination and a range of incident
energies, and then to obtain a ready to use nuclear data
library from the TEFAL code through processing of the
TALYS results, if needed by merging it with experimen-
tal data or data from existing data libraries. For all this, a
significant part of the ENDF-6 formats manual [10] was
implemented in TEFAL.

The combination of TALYS, TASMAN and TEFAL lies at
the basis of two important applied developments of the past
15 years: Total Monte Carlo uncertainty propagation [220]
and the TALYS Evaluation Nuclear Data Library, known as
TENDL [11].

18 Outlook

We note that various extensions are possible for the physics
included in TALYS, and some will be mentioned below.
Obviously, we cannot guarantee that these will be included
in a future release. This will depend on the required effort,
future careers of the authors, the user’s willingness to share

code updates with us, our willingness to implement them,
and in the case of significant extensions, financial input from
research programs that require nuclear data.

By now the reader should have an overview of the nuclear
reaction simulations provided by TALYS. It is always wise
to limit expectations, and warn the user that there are sev-
eral important quantities in nuclear physics and nuclear data
which TALYS cannot handle. If TALYS cannot do it, then
either we have developed other software to take care of it, or
it falls outside the scope of the physics included in TALYS,
and software by other groups should be considered. Some of
TALYS restrictions are listed below.

• The heaviest projectile or emitted particle considered is
an α-particle. Hence, TALYS is not (yet) an heavy-ion
collision code. Many of the essential mechanisms like
pre-equilibrium and compound nucleus decay are how-
ever in place. A proper OMP for heavy-ion reactions
needs to be implemented to describe the fusion cross sec-
tion, at least, while direct reaction effects for heavy ions
would probably be beyond the scope of what TALYS is
supposed to cover.

• The so-called Engelbrecht-Weidenmüller transformation
has not been implemented yet. It allows us to treat more
in-depth the interplay between elastic and inelastic chan-
nels via interfering compound and direct reactions, see
Refs. [61,62] for recent progress. An implementation for
TALYS is underway.

• Primary γ -rays from the compound nucleus directly
to discrete states or the ground state could be taken
from a combination of experimental and evaluated data
from the Evaluated Gamma-ray Activation File (EGAF)
database [221] and simulations, such as currently done
by the code Dicebox [222].

• Quantum-mechanical pre-equilibrium models could be
implemented. Concerning continuum reactions, there
exists microscopic multi-step direct software for quantum-
mechanical pre-equilibrium calculations (Multi-step
direct/Multi-step compound) [223], which still needs to
be merged with TALYS.

• Individual resonance reactions are not modeled. This
is the domain of R-matrix theory (or its more or less
approximate versions) that can be handled by codes like
SAMMY [224] or CONRAD [225]. TALYS does how-
ever reconstruct cross sections from resonance parame-
ters as provided by the TARES code [73].

• Light-nuclide physics, as implemented in R-matrix codes
is missing. TALYS is in essence a statistical model code,
and that statistics starts to break down for systems with
less than typically 20 nucleons.

• An explicit microscopic treatment of stripping and pick-
up mechanisms for e.g. (d, p) reactions is not included.
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There are a few codes, like FRESCO [226] and DEU-
RACS [227], which handle that.

• Optical potential model to handle the fission-absorption
competition far below the barrier could be imple-
mented [228].

In general, the nuclear structure database can still be
extended with more tables based on microscopic nuclear
structure calculations that have proven their capacity to repro-
duce associated observables accurately. Through a trivial
change in the TALYS code, the impact of these ingredients
on reaction calculations can immediately be tested.

TALYS is already being used with microscopic OMPs,
but only with the spherical JLMB method. An extension
to deformed JLMB has been made available, but is not yet
implemented. A few direct reaction items, such as the pre-
diction of the isobaric analogue state, are also yet to be com-
pleted.

A general analysis of all actinides simultaneously should
result in a stable, ready-to-use fission database. It is clear
that the theoretical fission models themselves are also not
yet mature, even though microscopic fission paths are now
included.

Coupling TALYS with high-energy intranuclear cascade
(INC) codes is possible, now that TALYS is able to take
a pre-defined excitation population distribution as the start-
ing point. The INC code would take care of energies above
e.g. 200 MeV, while TALYS takes over below that cut-
off energy. The well-validated pre-equilibrium and Hauser-
Feshbach approach at lower energies may then lead to more
precise simulated data (including isomer production), even
for reactions in the GeV region.

As for computational possibilities, the current day com-
puter power enables to use nuclear model codes in ways
that were previously thought impossible. Activities that have
already proven to be possible are the generation of nuclear-
model based covariances with Monte Carlo methods, auto-
matic multi-parameter fitting of all partial cross sections to
the existing experimental data, and dripline-to-dripline gen-
eration of all cross sections over the entire energy and pro-
jectile range, see e.g. the TENDL link on the TALYS web-
site (https://www.talys.eu). The applications range from fun-
damental science (e.g. astrophysics) to the production of
nuclear data libraries for existing and future nuclear tech-
nologies.

The development of TALYS has initially followed the
“first completeness, then quality” principle. This merely
means that, in our quest for completeness, we tried to divide
our effort equally among all nuclear reaction types. We think
that, with the exception of a few issues the code is indeed
complete in terms of predicted quantities. We now hope that
TALYS also qualifies for “completeness and quality”. Nev-
ertheless, it is certain that future theoretical improvements

as suggested above are needed to bring our computed results
even closer to reality.

Acknowledgements It is impossible to list all the people who have in
one way or another contributed to the current status of TALYS, so we
will refrain from that. We wish to dedicate this paper to the memory
of our friend and colleague Eric Bauge. SG is F.R.S.-FRNS research
associate. This work has been supported by the Fonds de la Recherche
Scientifique (FNRS, Belgium) and the Research Foundation Flanders
(FWO, Belgium) under the EOS Project nr O022818F and O000422.

Data Availability Statements This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: There is no addi-
tional data for this paper. All figures are in the manuscript.]

References

1. P.G. Young, E.D. Arthur, M.B. Chadwick, The GNASH nuclear
model code. Workshop on Computation and Analysis of Nuclear
Data Relevant to Nuclear Energy and Safety, edited by M.K.
Mehta and J.J. Schmidt, Feb. 10 - March 13 1992, Trieste, Italy,
622 (1993)

2. M. Blann, Recent progress and current status of pre-equilibrium
reaction theories and computer code ALICE. Workshop on Com-
putation and Analysis of Nuclear Data Relevant to Nuclear Energy
and Safety, edited by M.K. Mehta and J.J. Schmidt, Feb. 10 -
March 13 1992, Trieste, Italy, 622 (1993)

3. M. Uhl, B. Strohmaier, Computer code for particle induced acti-
vation cross sections and related quantities. IRK Vienna report
76/01 (1976)

4. M. Herman, R. Capote, B.V. Carlson, P. Oblozinsky, M. Sin, A.
Trkov, H. Wienke, V. Zerkin, EMPIRE: Nuclear reaction model
code system for data evaluation. Nucl. Data Sheets 108, 2655
(2007)

5. J. Raynal, Notes on ECIS94. CEA Saclay Report CEA-N-2772
(1994)

6. T. Kawano, CoH3: The coupled-channels and Hauser-Feshbach
code. Proceedings of the 6th International Workshop on
Compound-Nuclear Reactions and Related Topics CNR*18
(2021)

7. O. Iwamoto, N. Iwamoto, S. Kunieda, F. Minato, K. Shibata, The
CCONE code system and its application to nuclear data evaluation
for fission and other reactions. Nuclear Data Sheets 131, 259–288
(2016). https://doi.org/10.1016/j.nds.2015.12.004. Special Issue
on Nuclear Reaction Data

8. W.E. Ormand, K. Kravvaris, YAHFC: A code framework to model
nuclear reactions and estimate correlated uncertainties. LLNL-
TR-821653, Lawrence Livermore Nationa Laboratory (2021)

9. R. Capote, M. Herman, P. Oblozinsky, P.G. Young, S. Goriely, T.
Belgya, A.V. Ignatyuk, A.J. Koning, S. Hilaire, V.A. Plujko, M.
Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahori, Z. Ge, Y.
Han, S. Kailas, J. Kopecky, V.M. Maslov, G. Reffo, M. Sin, E.S.
Soukhovitskii, P. Talou, RIPL - Reference Input Parameter Library
for calculation of nuclear reactions and nuclear data evaluations.
Nucl. Data Sheets 110, 3107 (2009)

10. A. Trkov, M. Herman, D.A. Brown, ENDF-6 Formats Manual,
Data Formats and Procedures for the Evaluated Nuclear Data Files
ENDF/B-VI, ENDF/B-VII and ENDF/B-VIII. CSEWG Docu-
ment ENDF-102, Report BNL-203218-2018-INRE, SVN Com-
mit: revision 215 (2012)

11. A.J. Koning, D. Rochman, J.-C. Sublet, N. Dzysiuk, M. Fleming,
S. van der Marck, TENDL: Complete nuclear data library for

123

https://www.talys.eu
https://doi.org/10.1016/j.nds.2015.12.004


Eur. Phys. J. A           (2023) 59:131 Page 79 of 85   131 

innovative nuclear science and technology. Nucl. Data Sheets 155,
1 (2019)

12. A.M. Baldin, Kinematics of Nuclear Reactions (Oxford Univer-
sity Press, Oxford, 1961)

13. M.B. Chadwick, P.G. Young, S. Chiba, S.C. Frankle, G.M. Hale,
H.G. Hughes, A.J. Koning, R.C. Little, R.E. MacFarlane, R.E.
Prael, L.S. Waters, Cross-Section Evaluations to 150 MeV for
Accelerator-Driven Systems and Implementation in MCNPX.
Nucl. Sci. Eng.131(3), 293–328 (1999). https://doi.org/10.13182/
NSE98-48

14. M.B. Chadwick, P.G. Young, R.E. Macfarlane, A.J. Koning, High
energy nuclear data libraries for accelerator-driven technologies:
Calculational method for heavy recoils. Second International Con-
ference on Accelerator-Driven Transmutation Technologies and
Applications, Kalmar, Sweden, June 3-7 1996, 483 (1996)

15. A.J. Koning, J.P. Delaroche, Local and global nucleon optical
models from 1 keV to 200 MeV. Nucl. Phys. A 713(3), 231–310
(2003). https://doi.org/10.1016/S0375-9474(02)01321-0

16. C. Mahaux, H. Ngo, G.R. Satchler, Causality and the threshold
anomaly of the nucleus-nucleus potential. Nucl. Phys. A 449(2),
354–394 (1986). https://doi.org/10.1016/0375-9474(86)90009-6

17. C. Mahaux, R., S., Single-particle motion in nuclei. Adv. Nucl.
Phys. 20, 1–223 (1991)

18. C. Mahaux, R. Sartor, Dispersion relation approach to the
mean field and spectral functions of nucleons in 40Ca.
Nucl. Phys. A 528(2), 253–297 (1991). https://doi.org/10.1016/
0375-9474(91)90090-S

19. B. Morillon, P. Romain, Dispersive and global spherical optical
model with a local energy approximation for the scattering of
neutrons by nuclei from 1 keV to 200 MeV. Phys. Rev. C 70,
014601 (2004). https://doi.org/10.1103/PhysRevC.70.014601

20. B. Morillon, P. Romain, Bound single-particle states and scat-
tering of nucleons on spherical nuclei with a global optical
model. Phys. Rev. C 76, 044601 (2007). https://doi.org/10.1103/
PhysRevC.76.044601

21. J.P. Jeukenne, A. Lejeune, C. Mahaux, Many-body theory of
nuclear matter. Phys. Rep. 25(2), 83–174 (1976). https://doi.org/
10.1016/0370-1573(76)90017-X

22. J.-P. Jeukenne, A. Lejeune, C. Mahaux, Optical-model potential
in nuclear matter from Reid’s hard core interaction. Phys. Rev.
C 10, 1391–1401 (1974). https://doi.org/10.1103/PhysRevC.10.
1391

23. J.-P. Jeukenne, A. Lejeune, C. Mahaux, Microscopic calcula-
tion of the symmetry and Coulomb components of the complex
optical-model potential. Phys. Rev. C 15, 10–29 (1977). https://
doi.org/10.1103/PhysRevC.15.10

24. J.-P. Jeukenne, A. Lejeune, C. Mahaux, Optical-model potential
in finite nuclei from Reid’s hard core interaction. Phys. Rev. C 16,
80–96 (1977). https://doi.org/10.1103/PhysRevC.16.80

25. E. Bauge, J.P. Delaroche, M. Girod, Semimicroscopic nucleon-
nucleus spherical optical model for nuclei with A > = 40 at
energies up to 200 MeV. Phys. Rev. C 58, 1118 (1998)

26. E. Bauge, J.P. Delaroche, M. Girod, Lane-consistent, semimicro-
scopic nucleon-nucleus optical model. Phys. Rev. C 63, 024607
(2001). https://doi.org/10.1103/PhysRevC.63.024607

27. S. Goriely, J.-P. Delaroche, The isovector imaginary neutron
potential: a key ingredient for the r-process nucleosynthesis. Phys.
Lett. B 653, 178 (2007)

28. F. Maréchal, T. Suomijärvi, Y. Blumenfeld, A. Azhari, E. Bauge,
D. Bazin, J.A. Brown, P.D. Cottle, J.P. Delaroche, M. Fauerbach,
M. Girod, T. Glasmacher, S.E. Hirzebruch, J.K. Jewell, J.H. Kel-
ley, K.W. Kemper, P.F. Mantica, D.J. Morrissey, L.A. Riley, J.A.
Scarpaci, H. Scheit, M. Steiner, Proton scattering by short lived
sulfur isotopes. Phys. Rev. C 60, 034615 (1999). https://doi.org/
10.1103/PhysRevC.60.034615

29. H. Scheit, F. Maréchal, T. Glasmacher, E. Bauge, Y. Blumenfeld,
J.P. Delaroche, M. Girod, R.W. Ibbotson, K.W. Kemper, J. Libert,
B. Pritychenko, T. Suomijärvi, Proton scattering by the unstable
neutron-rich isotopes 42,44Ar. Phys. Rev. C 63, 014604 (2000).
https://doi.org/10.1103/PhysRevC.63.014604

30. E. Khan, T. Suomijärvi, Y. Blumenfeld, N.V. Giai, N. Alamanos,
F. Auger, E. Bauge, D. Beaumel, J.P. Delaroche, P. Delbourgo-
Salvador, A. Drouart, S. Fortier, N. Frascaria, A. Gilibert, M.
Girod, C. Jouanne, K.W. Kemper, A. Lagoyannis, V. Lapoux, A.
Lépine-Szily, I. Lhenry, J. Libert, F. Maréchal, J.M. Maison, A.
Mussumara, S. Ottini-Hustache, P. Piattelli, S. Pita, E.C. Pol-
laco, P. Roussel-Chomaz, D. Santonocito, J.E. Sauvestre, J.A.
Scarpacci, T. Zerguerras, Proton scattering from the unstable
nuclei 30S and 34Ar: structural evolution along the sulfur and
argon isotopic chains. Nucl. Phys A694, 103 (2001)

31. E. Bauge, J.P. Delaroche, M. Girod, G. Haouat, J. Lachkar,
Y. Patin, J. Sigaud, J. Chardine, Neutron scattering from the
155,156,157,158,160Gd isotopes: Measurements and analyses with
a deformed, semimicroscopic optical model. Phys. Rev. C 61,
034306 (2000). https://doi.org/10.1103/PhysRevC.61.034306

32. A.J. Koning, D. Rochman, S.C. van der Marck, Extension of
TALYS to 1 GeV. Nucl. Data Sheets 118, 187–190 (2014). https://
doi.org/10.1016/j.nds.2014.04.033

33. S. Typel, O. Riedl, H.H. Wolter, Elastic proton-nucleus scatter-
ing and the optical potential in a relativistic mean field model.
Nucl. Phys. A 709(1), 299–318 (2002). https://doi.org/10.1016/
S0375-9474(02)01031-X

34. S. Chiba, K. Niita, T. Fukahori, T. Maruyama, T. Maruyama, A.
Iwamoto, The isovector/isoscalar ratio of the imaginary part of
the intermediate-energy nucleon optical model potential studied
by the quantum molecular dynamics. Spec. Meet. on the nucleon
nucleus optical model up to 200 MeV, Bruyeres-le-Chatel (1996)

35. R. Capote, S. Chiba, E.S. Soukhovitskii, J.M. Quesada, E. Bauge,
A global dispersive coupled-channel optical model potential for
actinides. J. Nucl. Sci. Tech. 45, 333–340 (2009)

36. S. Watanabe, High energy scattering of deuterons by complex
nuclei. Nucl. Phys. 8, 484–492 (1958). https://doi.org/10.1016/
0029-5582(58)90180-9

37. D.G. Madland, Recent results in the development of a global
medium-energy nucleon-nucleus optical model potential. Pro-
ceedings of a Specialists’ Meeting on preequilibrium nuclear reac-
tions, Semmering, Austria, February 10-12 1988, 103

38. W.W. Daehnick, J.D. Childs, Z. Vrcelj, Global optical model
potential for elastic deuteron scattering from 12 to 90 MeV. Phys.
Rev. C21, 2253–2274 (1980). https://doi.org/10.1103/PhysRevC.
21.2253

39. J. Bojowald, H. Machner, H. Nann, W. Oelert, M. Rogge, P. Turek,
Elastic deuteron scattering and optical model parameters at ener-
gies up to 100 MeV. Phys. Rev. C 38, 1153–1163 (1988). https://
doi.org/10.1103/PhysRevC.38.1153

40. Y. Han, Y. Shi, Q. Shen, Deuteron global optical model potential
for energies up to 200 MeV. Phys. Rev. C 74, 044615 (2006).
https://doi.org/10.1103/PhysRevC.74.044615

41. H. An, C. Cai, Global deuteron optical model potential for the
energy range up to 183 MeV. Phys. Rev. C 73, 054605 (2006).
https://doi.org/10.1103/PhysRevC.73.054605

42. L. McFadden, G.R. Satchler, Optical-model analysis of the scat-
tering of 24.7 MeV alpha particles. Nucl. Phys. 84(1), 177–200
(1966). https://doi.org/10.1016/0029-5582(66)90441-X

43. M. Nolte, H. Machner, J. Bojowald, Global optical potential for
α particles with energies above 80 MeV. Phys. Rev. C 36, 1312–
1316 (1987). https://doi.org/10.1103/PhysRevC.36.1312

44. V. Avrigeanu, P.E. Hodgson, M. Avrigeanu, Global optical poten-
tials for emitted alpha particles. Phys. Rev. C 49, 2136–2141
(1994). https://doi.org/10.1103/PhysRevC.49.2136

123

https://doi.org/10.13182/NSE98-48
https://doi.org/10.13182/NSE98-48
https://doi.org/10.1016/S0375-9474(02)01321-0
https://doi.org/10.1016/0375-9474(86)90009-6
https://doi.org/10.1016/0375-9474(91)90090-S
https://doi.org/10.1016/0375-9474(91)90090-S
https://doi.org/10.1103/PhysRevC.70.014601
https://doi.org/10.1103/PhysRevC.76.044601
https://doi.org/10.1103/PhysRevC.76.044601
https://doi.org/10.1016/0370-1573(76)90017-X
https://doi.org/10.1016/0370-1573(76)90017-X
https://doi.org/10.1103/PhysRevC.10.1391
https://doi.org/10.1103/PhysRevC.10.1391
https://doi.org/10.1103/PhysRevC.15.10
https://doi.org/10.1103/PhysRevC.15.10
https://doi.org/10.1103/PhysRevC.16.80
https://doi.org/10.1103/PhysRevC.63.024607
https://doi.org/10.1103/PhysRevC.60.034615
https://doi.org/10.1103/PhysRevC.60.034615
https://doi.org/10.1103/PhysRevC.63.014604
https://doi.org/10.1103/PhysRevC.61.034306
https://doi.org/10.1016/j.nds.2014.04.033
https://doi.org/10.1016/j.nds.2014.04.033
https://doi.org/10.1016/S0375-9474(02)01031-X
https://doi.org/10.1016/S0375-9474(02)01031-X
https://doi.org/10.1016/0029-5582(58)90180-9
https://doi.org/10.1016/0029-5582(58)90180-9
https://doi.org/10.1103/PhysRevC.21.2253
https://doi.org/10.1103/PhysRevC.21.2253
https://doi.org/10.1103/PhysRevC.38.1153
https://doi.org/10.1103/PhysRevC.38.1153
https://doi.org/10.1103/PhysRevC.74.044615
https://doi.org/10.1103/PhysRevC.73.054605
https://doi.org/10.1016/0029-5582(66)90441-X
https://doi.org/10.1103/PhysRevC.36.1312
https://doi.org/10.1103/PhysRevC.49.2136


  131 Page 80 of 85 Eur. Phys. J. A           (2023) 59:131 

45. P. Demetriou, C. Grama, S. Goriely, Improved global
alpha-optical model potentials at low energies. Nucl.
Phys. A 707(1), 253–276 (2002). https://doi.org/10.1016/
S0375-9474(02)00756-X

46. V. Avrigeanu, M. Avrigeanu, C. Mihaelescu, Further explorations
of the α-particle optical model potential at low energies for the
mass range A≈ 45–209. Phys. Rev. C 90, 044612 (2014). https://
doi.org/10.1103/PhysRevC.90.044612

47. G.R. Satchler,Direct nuclear reactions (Clarendon Press, Oxford,
1983)

48. T. Tamura, Analyses of the scattering of nuclear particles by
collective nuclei in terms of the coupled-channel calculation.
Rev. Mod. Phys. 37, 679–708 (1965). https://doi.org/10.1103/
RevModPhys.37.679

49. J.P. Delaroche, Use of coupled-channel optical model calculations
in nuclear data evaluations for incident energies up to 1 GeV. Pro-
ceedings of the International Symposium on Nuclear Data Eval-
uation Methodology, C.L. Dunford (Ed.), October 12-16 1992,
Brookhaven, USA, 347 (1992)

50. N. Olsson, E. Ramström, B. Trostell, Neutron elastic and inelas-
tic scattering from Mg, Si, S, Ca, Cr, Fe and Ni at En = 21.6
MeV. Nucl. Phys. A 513, 205–238 (1990). https://doi.org/10.
1016/0375-9474(90)90096-5

51. B.V. Carlsson, Optical model calculations with the code ECIS95.
Workshop on Nuclear Reaction Data and Nuclear Reactors:
Physics, Design and Safety, edited by N. Paver, M. Herman and
A. Gandini, March 13 - April 14 2000, Trieste Italy, 61 (2001)

52. E.S. Soukhovitskii, R. Capote, J.M. Quesada, S. Chiba, D.S.
Martyanov, Nucleon scattering on actinides using a dispersive
optical model with extended couplings. Phys. Rev. C 94, 064605
(2016). https://doi.org/10.1103/PhysRevC.94.064605

53. P.P. Guss, R.C. Byrd, C.R. Howell, R.S. Pedroni, G. Tungate, R.L.
Walter, J.P. Delaroche, Optical model description of the neutron
interaction with 116Sn and 120Sn over a wide energy range. Phys.
Rev. C 39, 405–414 (1989). https://doi.org/10.1103/PhysRevC.
39.405

54. M.J.L. Jimenez, B. Morillon, P. Romain, Triple-humped fission
barrier model for a new 238U neutron cross-section evaluation
and first validations. Ann. Nucl. Energy 32(2), 195–213 (2005).
https://doi.org/10.1016/j.anucene.2004.08.005

55. P. Romain, B. Morillon, H. Duarte, Bruyères-le-Châtel neutron
evaluations of actinides with the TALYS code: The fission chan-
nel. Nuclear Data Sheets 131, 222–258 (2016). https://doi.org/10.
1016/j.nds.2015.12.003. Special Issue on Nuclear Reaction Data

56. P.E. Hodgson, Nuclear reactions and nuclear structure (Claren-
don Press, Oxford, 1971)

57. A. van der Woude, Electric and magnetic giant resonances in
nuclei, 99–232 (1991)

58. C. Kalbach, Surface and collective effects in preequilibrium reac-
tions. Phys. Rev. C 62, 044608 (2000). https://doi.org/10.1103/
PhysRevC.62.044608

59. W. Hauser, H. Feshbach, The inelastic scattering of neutrons.
Phys. Rev. 87, 366–373 (1952). https://doi.org/10.1103/PhysRev.
87.366

60. J.M. Blatt, L.C. Biedenharn, The angular distribution of scattering
and reaction cross sections. Rev. Mod. Phys. 24, 258–272 (1952).
https://doi.org/10.1103/RevModPhys.24.258

61. T. Kawano, R. Capote, S. Hilaire, P. Chau Huu-Tai, Statistical
Hauser-Feshbach theory with width-fluctuation correction includ-
ing direct reaction channels for neutron-induced reactions at low
energies. Phys. Rev. C 94, 014612 (2016). https://doi.org/10.
1103/PhysRevC.94.014612

62. T. Kawano, Unified description of the coupled-channels and sta-
tistical Hauser-Feshbach nuclear reaction theories for low energy
neutron incident reactions. European Physical Journal A 57, 1–16
(2021)

63. J.W. Tepel, H.M. Hofmann, H.A. Weidenmueller, Hauser-
Feshbach formulas for medium and strong absorption.
Phys. Lett. B 49(1), 1–4 (1974). https://doi.org/10.1016/
0370-2693(74)90565-6

64. H.M. Hofmann, J. Richert, J.W. Tepel, H.A. Weidenmueller,
Direct reactions and Hauser-Feshbach theory. Ann. Phys. 90(2),
403–437 (1975). https://doi.org/10.1016/0003-4916(75)90005-6

65. H.M. Hofmann, T. Mertelmeier, M. Herman, J.W. Tepel, Hauser-
Feshbach calculations in the presence of weakly absorbing chan-
nels with special reference to the elastic enhancement factor and
the factorization assumption. Zeit. Phys. A 297, 153 (1980)

66. P.A. Moldauer, Evaluation of the fluctuation enhancement fac-
tor. Phys. Rev. C 14, 764–766 (1976). https://doi.org/10.1103/
PhysRevC.14.764

67. P.A. Moldauer, Statistics and the average cross section.
Nucl. Phys. A 344(2), 185–195 (1980). https://doi.org/10.1016/
0375-9474(80)90671-5

68. J.J.M. Verbaarschot, H.A. Weidenmueller, M.R. Zirnbauer, Grass-
mann integration in stochastic quantum physics: The case
of compound-nucleus scattering. Phys. Rep. 129(6), 367–438
(1985). https://doi.org/10.1016/0370-1573(85)90070-5

69. S. Hilaire, C. Lagrange, A.J. Koning, Comparisons between var-
ious width fluctuation correction factors for compound nucleus
reactions. Ann. Phys. 306(2), 209–231 (2003). https://doi.org/10.
1016/S0003-4916(03)00076-9

70. M. Ernebjerg, M. Herman, Assessment of approximate methods
for width fluctuation corrections. AIP Conf. Proc. 769, 1233–1236
(2005)

71. T. Kawano, P. Talou, Numerical simulations for low energy
nuclear reactions to validate statistical models. Nucl. Data Sheets
118, 183–186 (2014). https://doi.org/10.1016/j.nds.2014.04.032

72. H. Gruppelaar, G. Reffo, Some properties of the width fluctuation
factor. Nucl. Sci. Eng. 62(4), 756–763 (1977). https://doi.org/10.
13182/NSE77-A15219

73. D. Rochman, J.-C.S.A.J. Koning, A statistical analysis of evalu-
ated neutron resonances with TARES for JEFF-3.3, JENDL-4.0,
ENDF/B-VIII.0 and TENDL-2019. Nucl. Data Sheets 163, 163
(2020)

74. J. Kopecky, M.G. Delfini, H.A.J. van der Kamp, D. Nierop, Revi-
sions and extensions of neutron capture cross-sections in the Euro-
pean Activation File EAF-3. ECN-C–92-051, July 1992 (1992)

75. S.F. Mughabghab, Atlas of Neutron Resonances, 6th edn. (Else-
vier, The Netherlands, 2018)

76. S.I. Sukhoruchkin, Z.N. Soroko, Neutron Resonance Parameters,
5th edn. (Landolt-Bornstein, Germany, 2015)

77. D.E. Cullen, PREPRO 2021 - ENDF/B6 Pre-processing codes.
Technical report IAEA-NDS-0238, IAEA (2021)

78. D. Rochman, S. Goriely, A.J. Koning, H. Ferroukhi, Radiative
neutron capture: Hauser Feshbach vs. statistical resonances. Phys.
Lett. B 764, 109–113 (2017). https://doi.org/10.1016/j.physletb.
2016.11.018

79. C. Kalbach, Systematics of continuum angular distributions:
Extensions to higher energies. Phys. Rev. C 37, 2350–2370
(1988). https://doi.org/10.1103/PhysRevC.37.2350

80. N. Otuka, E. Dupont, V. Semkova, B. Pritychenko, A.I. Blokhin,
M. Aikawa, S. Babykina, M. Bossant, G. Chen, S. Dunaeva et al.,
Towards a more complete and accurate experimental nuclear reac-
tion data library (EXFOR): International collaboration between
nuclear reaction data centres (NRDC). Nucl. Data Sheets 120,
272–276 (2014)

81. A.J. Koning, M.C. Duijvestijn, A global pre-equilibrium analysis
from 7 to 200 MeV based on the optical model potential. Nucl.
Phys. A 744, 15–76 (2004). https://doi.org/10.1016/j.nuclphysa.
2004.08.013

82. H. Gruppelaar, P. Nagel, P.E. Hodgson, Pre-equilibrium processes
in nuclear reaction theory. Riv. Nuovo Cimento 9(7), 1 (1986)

123

https://doi.org/10.1016/S0375-9474(02)00756-X
https://doi.org/10.1016/S0375-9474(02)00756-X
https://doi.org/10.1103/PhysRevC.90.044612
https://doi.org/10.1103/PhysRevC.90.044612
https://doi.org/10.1103/RevModPhys.37.679
https://doi.org/10.1103/RevModPhys.37.679
https://doi.org/10.1016/0375-9474(90)90096-5
https://doi.org/10.1016/0375-9474(90)90096-5
https://doi.org/10.1103/PhysRevC.94.064605
https://doi.org/10.1103/PhysRevC.39.405
https://doi.org/10.1103/PhysRevC.39.405
https://doi.org/10.1016/j.anucene.2004.08.005
https://doi.org/10.1016/j.nds.2015.12.003
https://doi.org/10.1016/j.nds.2015.12.003
https://doi.org/10.1103/PhysRevC.62.044608
https://doi.org/10.1103/PhysRevC.62.044608
https://doi.org/10.1103/PhysRev.87.366
https://doi.org/10.1103/PhysRev.87.366
https://doi.org/10.1103/RevModPhys.24.258
https://doi.org/10.1103/PhysRevC.94.014612
https://doi.org/10.1103/PhysRevC.94.014612
https://doi.org/10.1016/0370-2693(74)90565-6
https://doi.org/10.1016/0370-2693(74)90565-6
https://doi.org/10.1016/0003-4916(75)90005-6
https://doi.org/10.1103/PhysRevC.14.764
https://doi.org/10.1103/PhysRevC.14.764
https://doi.org/10.1016/0375-9474(80)90671-5
https://doi.org/10.1016/0375-9474(80)90671-5
https://doi.org/10.1016/0370-1573(85)90070-5
https://doi.org/10.1016/S0003-4916(03)00076-9
https://doi.org/10.1016/S0003-4916(03)00076-9
https://doi.org/10.1016/j.nds.2014.04.032
https://doi.org/10.13182/NSE77-A15219
https://doi.org/10.13182/NSE77-A15219
https://doi.org/10.1016/j.physletb.2016.11.018
https://doi.org/10.1016/j.physletb.2016.11.018
https://doi.org/10.1103/PhysRevC.37.2350
https://doi.org/10.1016/j.nuclphysa.2004.08.013
https://doi.org/10.1016/j.nuclphysa.2004.08.013


Eur. Phys. J. A           (2023) 59:131 Page 81 of 85   131 

83. E. Gadioli, P.E. Hodgson, Pre-equilibrium nuclear reactions
(1992)

84. C. Kalbach, Two-component exciton model: Basic formalism
away from shell closures. Phys. Rev. C 33, 818–833 (1986).
https://doi.org/10.1103/PhysRevC.33.818

85. C.K. Cline, M. Blann, The pre-equilibrium statistical model:
Description of the nuclear equilibration process and parameteriza-
tion of the model. Nucl. Phys. A 172(2), 225–259 (1971). https://
doi.org/10.1016/0375-9474(71)90713-5
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Krtička, E. Kwan, A. Makinaga, G. Rusev, Evidence for radiative
coupling of the Pygmy dipole resonance to excited states. Phys.
Rev. C 86, 051302 (2012)
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