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Nuclear level densities play a key role in many nuclear applications. To go beyond the usual particle-
independent approximation, a conceptually new approach based on the boson expansion of QRPA 
excitations is proposed. The calculated nuclear level densities are shown to follow an energy dependence 
close to a constant-temperature formula at energies above a few MeV, but present a rather narrow spin 
distribution. They are shown to provide a quite remarkable agreement with s-wave resonance spacings 
and Oslo data, at least for the 48 even-even nuclei considered in the present study.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
1. Introduction

The knowledge of nuclear level densities (NLDs) plays a key role 
in the evaluation of the nuclear data and in many nuclear applica-
tions. It has been a field of research for years going back at least to 
1936 with Bethe’s pioneering work [1]. Based on the corresponding 
Fermi Gas model, a large number of analytical formulas have been 
proposed to describe not only the exponential increase of levels 
with excitation energies, but also the impact of shell, pairing and 
collective effects (see, e.g. Ref. [2] and references therein).

Level densities play a key role for modelling nuclear reactions. 
With the development of new facilities and innovative experi-
ments, as well as for astrophysical purposes, nuclear data far from 
the valley of stability are required. This challenges the NLD mod-
els. Indeed, cross section predictions have mainly relied on more or 
less phenomenological approaches, depending on parameters ad-
justed to scarce experimental data or deduced from systematics. 
Such predictions are expected to be reliable for nuclei not too far 
from experimentally accessible regions, but are questionable when 
dealing with exotic nuclei. To face such difficulties, it is preferable 
to rely on as fundamental (microscopic) as possible methods based 
on physically sound models.

Microscopic models of NLD have been developed (see e.g. [3–9]
and references therein), but they are seldom used for practical 
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applications due to (i) their lack of accuracy in reproducing ex-
perimental data (especially when considered globally on a large 
data set), (ii) their restricted flexibility in comparison with highly 
parametrized analytical expressions, or (iii) their limitation when 
applied to the large set of nuclei needed for applications. The com-
binatorial approach followed in Refs. [3,4] clearly demonstrated 
that such models can compete with the statistical ones in the 
global reproduction of experimental data. This approach provides 
energy, spin and parity dependence of NLD, and, at low ener-
gies, describes the non-statistical limit which, by definition cannot 
be described by the traditional statistical formulas. Such a non-
statistical behaviour can have a significant impact on cross section 
predictions, particularly when calculating cross sections known to 
be sensitive to spin or parity distributions such as for isomeric 
production or low-energy neutron capture [10]. However, the com-
binatorial method also offers room for improvement because of the 
phenomenological aspects of some ingredients it contains as well 
as the fundamental assumption of independent particles it entails, 
as all statistical approach also do; both aspects could hamper its 
microscopic nature, and consequently its predictive power, espe-
cially at the lowest energies.

When considering publicly available global NLD models pro-
viding predictions for a large number of nuclei, only a limited 
number of methods are available. These include one of the many 
analytical forms of the Fermi Gas model [see e.g 2,11], the statis-
tical model based on mean-field single-particle scheme and pair-
ing properties [12] and the combinatorial approach [3,4]. Such a 
collection of NLD models is in particular available in the TALYS 
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reaction code [13,14]. All these models more or less reproduce 
equally well the overall set of NLD experimental data that essen-
tially consist of low-lying levels, s-wave resonance spacings at the 
neutron separation energy [2] and the Oslo data [15,16]. They are 
all based on the independent-particle approximation, so that at en-
ergies below a few MeV, they all failed to reproduce the detailed 
structure-dependent distribution of low-lying levels, in particular 
the vibrational ones. More microscopic approaches, like the shell 
model and its many variants, include correlations beyond mean-
field theory but their applications, even within the shell model 
Monte Carlo method [7,8], are restricted to medium-mass nuclei 
and can hardly be extended to the thousands of nuclei of interest 
in nuclear applications.

For this reason, a conceptually new approach beyond the 
independent-particle approximation and still tractable at large 
scale is proposed here on the basis of the boson expansion of 
QRPA excitations (hereafter referred to as QRPA+BE). After describ-
ing the methodology, the energy, parity and spin distributions of 
the newly estimated NLDs are compared with other global models 
and available experimental data.

2. Methodology

2.1. Building QRPA excitations

Considering the underlying quasi-boson approximation, all 
QRPA states are boson excitations acting on the QRPA vacuum. 
The latter can be built from the HFB ground state with an ex-
ponential form of boson operators (see e.g. Eq. 8.101 of [17]). 
Such a QRPA formalism based on axially-symmetric-deformed HFB 
equations solved in a finite harmonic oscillator basis in cylindri-
cal coordinates has been described in details in Refs. [18–23]. This 
QRPA method using the D1M Gogny force [24] has proven its ca-
pacity to predict the E1 and M1 photon strength functions [21,25]
as well as the Gamow-Teller response [26,23] with a high degree of 
reliability. The QRPA method has also shown its capacity to repro-
duce rather well low-lying vibrational levels [20,25]. In the present 
study, the D1M+QRPA approach is used to estimate all intrinsic 
states with angular momentum projection up to Kmax = 9.

The impact of the size of the basis dimension and two-quasi-
particle excitation energy cutoff on the K = 0− and K = 1−
strengths and energies has been studied in Ref. [21] and will not 
be re-iterated here. Note, however, that for nuclei up to Z = 74, 
QRPA calculations are performed without any energy cutoff on the 
two-quasi-particle states energies. In contrast, for Z ≥ 76 nuclei, a 
cutoff energy εc = 120 MeV is applied for practical consideration, 
i.e. to decrease the computational time. Since for heavy systems 
like actinides, it remains computerwise extremely heavy to con-
sider large basis dimension and large cutoff energies of the two-
quasi-particle states, nuclei with Z > 82 are not considered at this 
stage.

2.2. The boson expansion

To go beyond the QRPA excitations, the level density can be 
properly described using a boson partition function [27]. The con-
struction of the intrinsic plus vibrational states consists in expand-
ing the generalized boson partition function,

Zboson =
∏
λ

λ∏
μ=−λ

∑
Nboson

[
yελμtμpλ

]Nboson , (1)

where y, t and p keep track of the boson excitation energies, their 
spin and parity projections, respectively. In this equation, ελμ is 
the energy of a QRPA boson with multipolarity λ and spin pro-
jection μ, and pλ = (−1)λ or (−1)(λ+1) for magnetic and electric 
2

excitations, respectively. The expansion of Eq. (1) formally yields a 
polynomial form in which the coefficient C(U , M) before the term 
yU tM , for a given parity π , corresponds to the number of ways 
one can couple bosons for a given total excitation energy U and 
angular momentum projection M . Matrix algebra, as described in 
Refs. [27,28], enables the total parity assignment. Dividing C(U , M)

by the width of the discretized bin provides the total state density 
in the laboratory frame, i.e. ωtot(U , M, π) [3,27,28]. All details rel-
ative to Eq. (1) can be found in Ref. [27]. However, it should be em-
phasized that the present approach is conceptually different from 
our previous works [27,28,3]. There is no need to perform here any 
convolution with incoherent particle-hole excitations, since those 
are implicitly included in the QRPA phonons. In addition, there is 
no limit on the number of phonons included in Eq. (1).

2.3. Spurious and unphysical states

Although the QRPA calculations described above are performed 
without any energy cut-off (at least for Z ≤ 74 nuclei), some spuri-
ous states within various K π blocks may be predicted with a non-
zero energy (though without perturbing the rest of the spectrum) 
[20] and consequently needs to be omitted. More specifically,

• K π = 0+: due to pairing interaction for neutron or protons, 
the first or first two K π = 0+ modes may be spurious for non-
zero neutron and/or proton pairing and should not be included 
in the boson expansion;

• K π = 1+: for deformed nuclei, a rotation perpendicular to the 
symmetry axis may lead to a spurious first 1+ that needs to 
be excluded;

• K π = 0−/1−: translational invariance should bring the first 0−
and 1− energies down to zero, but, if not, such a spurious state 
should be removed.

In addition, some low-lying K π = 2+ states may also be un-
physical. In particular, in the case of triaxial deformed or γ -soft 
nuclei calculated within the axial approximation, the first 2+ state 
may be found artificially too low, giving rise to an increase of NLD. 
This pathology is avoided by constraining the energy of the lowest 
2+ state to a value at least higher than Emin

2+ = 40 A−5/6 MeV, as 
extracted from experimental data [28].

Finally note that in addition to the presence of spurious states, 
QRPA excitation energies with D1M or D1S interactions tend to be 
overestimated (see Fig. 1 of Ref. [25]) by typically 100-200 keV. For 
this reason, all QRPA K π energies are lowered here by 150 keV 
before applying the boson expansion. Similarly, the D1M interac-
tion is known to give rather strong shell effects due to its low 
effective mass leading to a systematic overestimate of QRPA exci-
tations for closed shell nuclei. We find in particular that the first 
208Pb 2+ and 3− levels are overestimated by typically 0.6 MeV. By 
simplicity for nuclei with Z , N or N + 2 corresponding to magic 
numbers, a constant energy shift of -0.65 MeV has been applied to 
all K π components. The impact of such an empirical correction is 
discussed below.

3. The QRPA+BE level densities

For spherical nuclei, the level density can be estimated from

ρs(U , J ,π) = ωtot(U , M = J ,π)

−ωtot(U , M = J + 1,π), (2)

while for deformed nuclei, rotational bands need to be constructed, 
so that the NLD reads [28,6]
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ρd(U , J ,π) = 1

2

[ J∑
K=− J ,K �=0

ωtot(U − E J ,K
rot , K ,π)

]

+ωtot(U − E J ,0
rot ,0,π)

[
δ( J even) δ(π=+)

+δ( J odd) δ(π=−)

]
. (3)

In Eq. (3), the symbol δ(x) (defined by δ(x) = 1 if x holds true 
and 0 otherwise) restricts the rotational bands built on intrin-
sic states with spin projection K = 0 and parity π to the levels 
sequences0, 2, 4, ... for π = + and 1, 3, 5, ... for π = −. Finally, the 
rotational energy is obtained with the well-known expression [29],

E J ,K
rot = J ( J + 1) − K 2

2J⊥
, (4)

where J⊥ is the Belyaev moment of inertia of a nucleus rotat-
ing around an axis perpendicular to the symmetry axis, as deter-
mined within the HFB approach with D1M effective interaction. 
The Belyaev moment of inertia is typically about 30% lower than 
experimental one and is consequently systematically increased by 
30% in the present calculations.

Finally, it is well known that there is a sharp transition ap-
pearing when selecting either Eq. (2) or (3) (i.e. if a nucleus is 
spherical or deformed). Both spherical and well-deformed nuclei 
can be properly described in the present framework. However, it 
fails to describe intermediate cases for which an exact projec-
tion technique should be included. For this reason, to smooth out 
the difficult cases of transitional deformation, a phenomenological 
damping function F is introduced [3,28] such that

ρ(U , J ,π) =
[

1 −F
]
ρs(U , J ,π) +Fρd(U , J ,π). (5)

We consider, as in Ref. [4], an expression depending on the 
quadrupole deformation parameter β2 only which reads

F = 1 −
[

1 + e(β2 − 0.18)/0.04
]−1

, (6)

where the parameters have been adjusted in order to reproduce at 
best the measured s-wave mean spacings.

3.1. Energy distribution

The energy dependence of the QRPA+BE NLD (for both parities) 
is compared for the spherical 136Ba and deformed 170Yb nuclei 
in Fig. 1 with 2 alternative and widely used NLD models, namely 
the HFB plus combinatorial (HFB+comb) [3] and the constant tem-
perature (Cst-T) matched to the Fermi gas model [11]. Above a 
few MeV, the QRPA+BE NLD is found to give an energy depen-
dence rather similar to the Cst-T one, both for the spherical and 
deformed nuclei. Deviations from a simple exponential law are 
however found at low energies and depict the complex nuclear 
structure properties of each individual case.

3.2. Parity distribution

The parity-dependent QRPA+BE NLDs are also compared in 
Fig. 1. As observed, the equiparity is seen to require a higher 
excitation energy in the QRPA+BE case than in the particle-
independent combinatorial approach. In particular, an energy of 
more than 10 MeV is needed to reach the equiparity. For deformed 
nuclei, the equiparity is achieved above ∼ 2 MeV, but also at en-
ergies relatively higher than in the HFB+comb approach.
3

Fig. 1. Total parity-dependent NLD of 136Ba and 170Yb as a function of the excita-
tion energy U for 3 different models, including the present QRPA+BE (solid lines), 
HFB+comb [3] (dashed lines), and the Cst-T [11] (dotted line). Positive- (negative-) 
parity NLD are given in red (blue). The Cst-T model assumes equiparity. The in-
serts in both panels emphasise the non-Cst-T behaviour of the QRPA+BE NLD at low 
energies.

3.3. Spin distribution

The spin distribution of the QRPA+BE NLD is illustrated in Fig. 2
for a spherical and a deformed nucleus at 5 different energies 
ranging between 4 and 12 MeV. These spin distributions are also 
compared with the HFB+comb predictions. Significantly narrower 
distributions are obtained with the QRPA+BE NLDs. Also relatively 
high excitation energies are needed to reach a Gaussian pattern, in 
contrast to assumptions made by most of the NLD formulas. For 
the spherical Ba isotope, the spin distribution is relatively simi-
lar to the other formulas, while for the deformed Yb isotope, the 
QRPA+BE spin distribution is clearly much narrower than predicted 
by HFB+comb model with a spin cutoff factor close to 3-4 at ener-
gies around the separation energy, as found for example by (p,p′) 
experiment on 150Nd isotope at these low energies [30]. Finally, 
note that the same calculations were performed on the basis of the 
D1S Gogny interaction and, qualitatively, similar results obtained 
for the energy, parity and spin dependences.

4. Comparison with experiments

The most reliable experimental data on NLD concerns the s-
wave neutron resonance spacings D0 at the neutron separation 
energy Sn [2,31]. Due to the low excitation energy Sn at which 
the level spacing can be estimated, D0 is very sensitive to shell, 
pairing and deformation effects. The quality of a global NLD for-
mula can be described by the root-mean-square (rms) deviation 
factor frms with respect to experimental D0 values (taking the er-
rors into account), as defined in Ref. [16].

The QRPA+BE s-wave spacings for 48 even-even nuclei are com-
pared in Fig. 3 with experimental data [2]. An overall excellent 
agreement by a factor frms = 1.65 is obtained, showing the rele-
vance of the newly proposed QRPA+BE approach to reproduce ex-
perimental data in the wide range of 74 ≤ A ≤ 209 globally within 
a factor of 2 and of no more than a factor of 3.8. This level of accu-
racy is similar to (or even better than) the one found by the most 
successful global NLD models [2]. In particular, on the same set of 
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Fig. 2. Normalized spin distribution in the spherical 136Ba and deformed 170Yb nu-
clei as a function of the spin J (in h̄) for 5 energies between 4 and 12 MeV. The 
QRPA+BE spin distributions (solid lines) are compared with the HFB+comb [3] pre-
dictions (dashed lines).

Fig. 3. Ratio of QRPA+BE (Dth ) to the experimental (Dexp ) [2] s-wave neutron reso-
nance spacings for 48 even-even compound nuclei.

D0 values, frms = 1.5 and 2.4 for the Cst-T and HFB+comb models, 
respectively. Note that the energy shift applied to the QRPA ener-
gies by −0.15 MeV typically reduces the NLD by a factor of 2 and 
the −0.65 MeV shift for closed-shell nuclei by a factor between 
5 and 25. This simulation also shows how important it is to ac-
curately estimate in particular the lowest QRPA energies. For this 
reason, this approach to NLD also represents a stringent test of the 
interaction used in the QRPA calculation. In particular an overes-
timation of the QRPA energies, for both D1S or D1M interactions, 
leads to an underestimate of the NLD after the boson expansion.

The energy distribution of the QRPA+BE NLD is finally com-
pared with Oslo measurements in Fig. 4 for 9 cases using the 
same procedure as in Ref. [16]. QRPA+BE NLDs are seen to be in 
good agreement with data, even at the lowest energies in particu-
lar for 74Ge and 112Cd. The extremely complicated case of 208Pb is 
also seen to be relatively satisfactory and significantly better than 
found with traditional formulas [11,2,3].

5. Conclusion

To go beyond the usual particle-independent approximation, a 
new approach based on the boson expansion of QRPA excitations 
is proposed. The calculated NLDs are shown to follow an energy 
4

Fig. 4. Theoretical and renormalized Oslo NLDs for 9 even-even nuclei between 74Ge 
and 208Pb. The solid line represents the NLD extracted from known discrete levels 
on an energy bin 
E = 0.5 MeV. The solid circles correspond to the Oslo data [15]
and the solid lines to the present QRPA+BE NLD predictions. The full square at U =
Sn corresponds to the total level density extracted for the QRPA+BE NLD model after 
renormalization on the experimental D0 value.

dependence close to a constant-temperature formula at energies 
above a few MeV, but present a spin distribution that is rather 
narrower than what is predicted by other models, especially for 
deformed nuclei. The NLDs are also found to achieve equiparity 
at energies higher than what is obtained within the combinatorial 
approach. For the 48 even-even nuclei considered in the present 
study, a quite remarkable agreement with s-wave resonance spac-
ings and Oslo data is found, highlighting the relevance of the 
present approach.

The QRPA+BE approach is restricted at the present time to even-
even systems but will be in the future extended to nuclei with 
an odd number of nucleons. Since these systems breaks the time-
reversal symmetry but also the boson nature of the QRPA excita-
tions, they should be treated with special care. Similarly, a special 
attention will be given to nuclei heavier than Pb for which some 
truncations may need to be imposed to the QRPA calculation to re-
main tractable. These species will be the subject to a forthcoming 
study. While a long-term goal will be to improve the interaction to 
accurately describe the QRPA excitations, some refined systematics 
regarding their energy renormalisation can provide in the mean 
time a phenomenological approach that can further increase the 
accuracy of NLD predictions. A large-scale calculation of QRPA+BE 
NLD for applications is also foreseen in the future.
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