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We wish to congratulate the authors for their contribution to the selection of variables
in generalized linear models with controlled false discovery rate, in both moderate and high-
dimensional settings.

1 Maximum likelihood estimators in moderately high dimen-
sions

One of the noteworthy results in this paper is the asymptotic characterization of maximum
likelihood parameter estimators in generalized linear models where the number of parameters p
grows with the sample size n in such a way that the ratio p/n converges to a limit in the open
interval (0,1). The mean and variance adjustment, as compared to the classical low-dimensional
setting with a fixed p extends the results that were earlier obtained only for logistic regression
models. While this was not the main topic of this paper, estimation of the mean and variance
adjustment parameters would be quite interesting. That would pave the way to develop other
ways of variable selection in such moderate high dimensional models.

In the numerical studies for the moderate dimensional settings, Figures 2 and 3 in Dai et al.
(2023) considered logistic regression models, and Figure 4 is about a negative binomial model
with dispersion parameter 2. The Benjamini-Hochberg procedure (BH) and the adjusted BH
procedure based on the bias and variance adjustment scaling factors (Sur and Candes, 2019)
attracted our attention. The BH procedure has surprisingly high power among the competitors,
i.e., the proposed Gaussian mirror (GM), data splitting (DS), multiple data splitting (MDS),
and the knockoff filter (KN). The classic BH in Figure 2 (n = 500, p = 60) also properly achieves
the FDR control when the asymptotic normality has not been severely affected. In Figure 3
(n = 3000, p = 500), the BH procedure lost FDR control but gained it back after the bias and
variance adjustments for the logistic regression model. Figure 4 is similar to Figure 3, but the
adjusted BH procedure is yet to be derived. From the numerical results in Section 5.1, it appears
that the p-value-based procedure should be favored if applicable. The p-values are based on the
asymptotic distribution, in this case, the asymptotic normality of the regression parameter
vector. The asymptotic normality is the golden rule for frequentist statistical inference. Once
the asymptotic normality is derived, a simple yet elegant and powerful FDR control can be
achieved with low computational complexity.

Dai et al. (2023) have established the asymptotic normality of the MLE for distributions
in the exponential family in Proposition 3.1, which agrees with Sur et al. (2019); Sur and
Candes (2019); Zhao et al. (2022). This result indicates that the asymptotic distribution of the
MLE should be adjusted by bias and variance scaling factors as compared to the values in the
low dimensional case. An open question here is how to estimate the scaling factors, which is
challenging but worth looking into.



2 Highly sparse models in high dimensions

In the case of p > n, the authors considered the desparsified Lasso (van de Geer et al., 2014) for
generalized linear models in Section 4 to construct mirror statistics. The asymptotic normality
of the desparsified Lasso requires a sparsity condition s = o(y/n/log(p)), where s is the number
of non-null components of the regression coefficient vector of length p. Further, the sparsity
condition is always mandatory for all regularization-based estimation approaches to guarantee
certain consistency properties of the regularized estimators. This could explain why the knockoff
filter performs well only in sparse settings since it relies on a good estimator. Surprisingly, the
proposed GM, DS, MDS have robust and fair performance in the medium sparse settings, which
is a great contribution where variable selection by regularization faces challenges. One reason
could be that the proposed methods rely on the symmetry of the mirror statistics for the null
components instead of directly relying on the consistency of the regularized estimators.

One question we have is: how do the methods behave in high-sparsity settings where
estimator-based FDR control procedures should have reasonable performance? A concern is
that when only a handful of variables are relevant to the response variable, the FDR could
possibly be arbitrarily large. For example, when only five variables are relevant, making one
mistake out of 5 in the selection set could already make the false discovery proportion equal to
0.2. In the paper, the authors focused on large n, p cases (p = 2000, n = 800), which is helpful in
validating FDR control asymptotically. We were more curious about the small n, p cases since it
obviously favors the BH procedure in the moderate dimensional settings with p/n — k € (0,1),
see Dai et al. (2023, Figure 2).

Following our observation in the moderate dimensional settings, we proposed to simply apply
a BH procedure to the p-values based on the desparsified Lasso (van de Geer et al., 2014). The
simulation setting we took for logistic regression models is similar to the left panel of Figure 5 in
Dai et al. (2023), and we focus on even sparser settings where s = 5,10, 15,20. For comparison,
we also consider s = 50. We proportionally reduce n,p and set n = 200,p = 500 such that
p/n = 2.5 agrees with the setup in Dai et al. (2023, Figure 5). We consider the nominal FDR
level ¢ = 0.1,0.2. As was done in Dai et al. (2023), the averaged FDR and power are calculated
by averaging over 50 randomly generated datasets for all five methods, i.e., BH procedure (Dai
et al., 2023) (BHq), data splitting (DS), multiple data splitting (MDS), the knockoff filter (KN),
and a naive BH simply apply the BH procedure to the p-values from the desparsified Lasso in
van de Geer et al. (2014) (BHdesparsify). The simulation results are presented in Figure 1. As
expected, the BHq and BHdesparsify have reasonable FDR, control and promising power in high
sparse settings where s = 5,10, 15.

Surprisingly, the biggest difference between BH and DS is only in the very sparse setting
s =5 and ¢ = 0.1. The DS has good performance with power and FDR, control for the other
settings. We wonder what could be an explanation for the observation that for smaller n, p
settings, DS and MDS no longer outperform BHq. In which ways could DS and MDS be further
improved for the moderate n, p settings with high sparsity?

3 A three-step approach in high dimensions

For the case of regularized estimation for high dimensional data the procedure of Dai et al.
(2023) proceeds in three steps. Step 1: In high dimensional settings the /1 regularization (lasso
estimation) takes care of a selection of the variables. This means that some of the coefficients will
actually be set to zero, depending on the value of the regularization constant A. Step 2: Since
the point mass at zero for the asymptotic distribution of the variables that are not selected may
cause difficulties for inference, the desparsification or debiasing methods add a certain random
quantity to the vector of estimated coefficients such that all coefficients become non-zero. While
this results in a multivariate normal random vector (all the zeros became nonzero), it has thus
also undone the selection aspect of the regularized estimation method since there are no longer
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Figure 1: The averaged FDR and power are calculated by averaging over 50 randomly generated
datasets for all five methods, i.e., BH procedure (Dai et al., 2023) (BHq), data splitting (DS),
multiple data splitting (MDS), the knockoff filter (KN), and a naive BH simply apply the BH
procedure to the p-values from the desparsified Lasso in van de Geer et al. (2014) (BHdespar-
sify). The first and second columns present results for the nominal level ¢ = 0.1 and ¢ = 0.2,
respectively.

components set to zero. Step 3: This is another stage of selection, this time by means of the
(multiple) data splitting and mirror statistics. One is left wondering whether this back-and-forth
approach of selection - unselection and again selection might be open for improvement.

We have the following questions regarding this three-step approach.

3.1 How does the choice of ) in step 1 of the procedure influence the final
result?

In the current implementation of Dai et al. (2023) 10-fold cross-validation is used for all of the
nodewise regressions used in the debiasing step, as well as for the lasso-estimation problems in
each of the data splitting sets. To be precise, the authors’ code computes the cross-validation
value for the full dataset and divides this value by V/2 for each of the split datasets. In order
to investigate the effect of the initial choice of the A in Step 1 on the final FDR, we ran a small
simulation study. The number of replicates is set to 500. The considered setting takes: n = 200,
p = 500, ¢ = 0.2 or ¢ = 0.1 and the number of nonzero regression coefficients s = 50 in a
logistic regression model with normal covariates, as in our previous setting in Section 2, based
on the simulation by Dai et al. (2023). While we kept the cross-validation value for the nodewise
regression problems in the debiasing step 2, we investigated the choice of A in step 1 to be ten
times smaller and 10 times bigger than the authors’ choice by cross-validation.

Table 1 gives a numerical summary of (i) the average number of FDR = number of false
positives/max(1,number of selected variables) over these simulation replicates, (ii) the average
number of selected variables/number of true nonzero variables (power) and (iii) the percentage
of times that the FDR was found to be at least 50%. Histograms of the simulated FDR and
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q=20.2 average FDR 0.15 0.16 0.27
#(FDR> 50%)/Nyep  0.13  0.11  0.31
average power 0.05  0.06 0.10
q=0.1 average FDR 0.03 0.03 0.08
#(FDR> 50%)/Nyep ~ 0.02  0.02  0.09
average power 0.01 0.01 0.03
Step 1 Lasso average FDR 0.74 062 0.03
#(FDR> 50%)/Nyep ~ 1.00  0.94  0.03
average power 0.60 042 0.01

Table 1: Results from N., = 500 simulation replicates using three different values for the
regularization parameter A in step 1. Average number of false positives (FDR), percentage
of simulation runs where FDR> 50% and average number of selected positives/true positives
(power) when ¢ = 0.2 and ¢ = 01 for the single data split method (DS). The last part of the
table presents these summary values for the regularized estimator from Step 1.

power values are shown in Figure 2, which depict a clear bimodal shape for the FDR values
from the 500 simulation replicates and indeed shows a dependence on the chosen value of the
regularization parameter. Table 1 further indicates that some of the FDR values might be quite
large, e.g., for a nominal ¢ = 0.2 and using cross-validation in step 1 to set A, 11% of the FDR
values was found to be larger or equal to 0.5. The observed values for the power, see Figure 2,
might indicate that a strong emphasis on the FDR might result in a low power. It would be
interesting to better understand this behavior of FDR and its relation to power.

3.2 Could the three-step procedure be simplified in a single-step procedure?

We wonder whether it would be possible to achieve the same goal by an adequate choice of A that
keeps the FDR under control, as opposed to the cross-validation selection of A. As a numerical
experiment, Table 1 also shows the simulated FDR and power values for the full dataset with
cross-validation as a method to set A, and choices that are 10 times smaller or 10 times larger.
It appears that a larger value of A as compared to the cross-validated one would be needed in
order to control FDR.

The lasso regularization defines a convex optimization problem leading to an estimation
in which many covariates end up being zero. The implicit covariate selection is interesting in
the sense that it mimics the computationally infeasible search for the subset of covariates of
given cardinality that minimizes the squared residual sum after orthogonal projections, see, for
instance, results in Donoho (2006). Next to a covariate selection, however, Lasso also includes
a shrinkage on the selected covariates, thus tempering the effect of false positive selections.
With two sources of bias, namely false negatives and shrinkage bias, and reduced variance in
false positives due to the shrinkage, the trade-off between bias and shrinkage in fine-tuning the
smoothing parameter A in the lasso regularization shifts towards larger models that are less
sensitive to bias. In other words, being tolerant towards false positives, fine-tuning lasso for a
bias-variance trade-off tends to largely overestimate the size of the least false model. This holds,
in particular, if the criterion for the assessment of the selected model is based on the prediction
error or the expected log-likelihood (i.e., Kullback-Leibler divergence). This is the case when
using information criteria such as AIC and Mallows’s C,. Cross-validation and generalized
cross-validation are well known to be linked to Mallows’s Cp, see, for instance, Jansen (2015).
The information criteria can be adjusted to assess debiased lasso (Jansen, 2014), thus balancing
between bias and variance, or closeness and complexity after undoing the shrinkage.

A three-steps procedure in which the prediction error or Kullback-Leibler divergence is alter-
nated with a more conservative approach, such as FDR, may also lead to a balanced approach
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Figure 2: Results from N, = 500 simulation replicates using three different values for the
regularization parameter \ in step 1. Average number of false positives (FDR), percentage
of simulation runs where FDR> 50% and average number of selected positives/true positives
(power) when ¢ = 0.2 and ¢ = 01 for the single data split method (DS).



serving different objectives in an application dependent order of importance. However, if the
final focus lies on controlling the false discovery rate, it would be useful to examine if the lasso
fine-tuned for FDR control could be beneficial in terms of computation speed, the reported false
discoveries and the interpretability of the obtained results. An FDR-controlled lasso could be
integrated into the subsequent debiasing, data splitting and mirror statistics steps, leading to a
coherent approach.

4 Post-selection inference

Like any variable selection method, also the selected models resulting from FDR control with
the method from Dai et al. (2023) come with uncertainties. While in the theoretical work of Dai
et al. (2023) for the high-dimensional case the regularization parameters A that appear at several
instances were kept fixed, in their numerical work the values are obtained in a data-driven way.
Also this aspect introduces additional variability.

When inference is to be performed on the parameters in the model obtained after selection,
one should use proper inference methods that account for the selection of the variables and of
the regularization parameters when present. This aspect is not included in the asymptotic dis-
tribution result of Proposition 3.1 (Dai et al., 2023), where the model is assumed to be correctly
specified. It would be interesting to develop post-selection inference results, for example, by
conditioning on the selection event in the style of Lee et al. (2016), for inference in the models
obtained by this FDR controlled selection, both in moderate and high-dimensions.
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