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Abstract—Localization of non-cooperative radio frequency
transmitters in wireless networks can be performed by using
Time Difference of Arrival (TDoA). However, TDoA measurements
are often degraded by limited signal-to-noise ratio, multipath
components, non-line-of-sight (NLOS) visibility, etc. This causes
the TDoA measurements to have strong outliers, which cannot
easily be modelled mathematically. This paper investigates
algorithms to perform TDoA-based localization in the presence
of outlier measurements. Our algorithm is based on a geometric
interpretation, rather than a mathematical, noise model-based
approach. We show that our algorithm outperforms existing
algorithms when applied to real-world data in a vehicular scenario.

Index Terms—time difference of arrival, outlier, wireless
localization

I. INTRODUCTION

Precise localization of unknown Radio Frequency (RF) trans-
mitters is a crucial component of modern wireless systems, with
applications in vehicular technology, sensor networks, smart
cities and industry 4.0 [1], [2]. Localization through cellular
networks is especially important when Global Navigation
Satellite Systems (GNSS) are unreliable or not available, for
instance, in urban or suburban environments due to severe
multipath conditions or blockage of the satellites’ signals [3].

TDoA-based localization is the most common method for
target positioning in wireless sensor networks. In such a system,
several anchor nodes (with known locations) measure the
difference in the Time of Arrival (ToA) of a signal transmitted
by a target node. The TDoA between each pair of anchors
defines a hyperbola of possible locations of the target node,
and the intersection of these hyperbolas indicates the target’s
location. The main advantage of TDoA-based localization
systems is that the target transmitter node is not required
to be synchronized with the anchor nodes, providing the
possibility of low-cost target nodes. Another advantage is that
the transmit time of the target node needs not be known by the
anchor nodes. Several closed-form estimators exist for TDoA
localization, such as [4]–[6]. One major problem of TDoA-
based localization is the presence of outliers that may occur in
the TDoA measurements. This may be due to multiple factors,
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such as multipath components (MPCs), NLOS propagations
and time synchronization mismatch between the anchor nodes.
Such outliers degrade the accuracy of the estimation if not
properly accounted for [7], [8].

Several algorithms have been proposed for dealing with
outliers in TDoA measurements [6]–[13]. [6] proposed an
algebrical solution to select a subset of accurate measure-
ments but concerns multiple transmitter scenario only. [12]
used redundant time measurements to reduce the negative
impact of NLOS propagation time-based localization. However,
redundant time measurements are not always available in
passive localization scenario. Algorithms proposed in [8] and
references therein, [10], [11] allow for some improvement over
classical Maximum Likelihood (ML)-based estimation, but a
closer visual inspection of our measurement results showed
some poor results in situations where visual inspection could
outperform said algorithms (as will be shown in this paper).
The fact that TDoA-based localization relies on hyperbolic
geometry causes outliers that deviate from the noise model to
have disproportionate influence on the final result. Therefore,
algorithms that rely on a more geometric approach, such as
[7], [13], should outperform model-based algorithms. However,
there were tested on simulation data and not on experimental
data.

In this paper, we propose a new, geometry-based algorithm to
deal with outlier measurements in TDoA-based measurements.
The algorithm is evaluated on an experimental dataset of
outdoor vehicular wireless TDoA measurements, and compared
with existing algorithms in literature. It is shown that our
algorithm outperforms existing methods and allows to have
much more reliability in real-world measurements.

The paper is organized as follow: section II formulates
the TDoA system and the outlier problem, section III details
several multilateration algorithms (with and without outlier
management), section IV describes the experimental setup used
to generate the dataset and evaluates the algorithms’ accuracy
on estimating the target’s position in the presence of outliers.

Notations: ˆ symbol indicates variable with errors (e.g.
noise). Small letter b is a scalar, bold b is a vector, bold capital
B is a matrix. The notation ∥·∥ represents the L2-norm, while
∥·∥p represents the Lp-norm.
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II. PROBLEM STATEMENT

Consider N time-synchronized anchors with known positions
pi (i = 0, . . . , N − 1), and a target with unknown position
ps, which transmits RF packets. The ToA of an RF packet at
anchor i is given by:

ti = ∥pi − ps∥/c+ t0 (1)

where c is the speed of transmission through the medium and t0
the unknown transmit time. In presence of a small measurement
error ηi in the ToA estimation at anchor i, the measured ToA
becomes:

t̂i = ∥pi − ps∥/c+ t0 + ηi (2)

No prior assumption is made on the distribution of ηi, except
that if errors are biased, they are biased identically across all
anchors.

To retrieve the target’s position ps, a TDoA (or Range
Difference (RD)) system of equations is constructed:

di = cti

tij = tj − ti

dij = dj − di

= ∥pj − ps∥ − ∥pi − ps∥

(3)

where i = 0, . . . , N − 2, i < j < N . This system of equations
represents a set of hyperbolas which intersect at ps.

In practice, the ToA measurements can be further degraded
due to multiple factors such as MPC, NLOS and time syn-
chronization error. In such cases, the measurement is called
an outlier:

d̂i = ct̂i = ∥pi − ps∥+ c(t0 + ηi + ϑi) (4)

where ϑi is the additional error, ϑi ≫ σi (with σi being
the standard deviation of ηi). These outliers will degrade the
estimation of ps, and are hard to model mathematically. This
paper focuses on estimating ps in presence of such outliers.

III. LOCALIZATION ALGORITHMS WITH AND WITHOUT
OUTLIERS

In this section, we will investigate different types of
algorithm for TDoA localization (without or with outliers). We
start with ML-type algorithms, we then briefly discuss closed-
form estimation using linearisation, and we finally present our
geometry-based algorithm.

A. Maximum Likelihood estimation

In absence of outliers in (2) and if ηi is i.i.d. Gaussian, the
ML estimator is given by [7]:

ps = argmin
p

∥Q(d̂− f(p))∥2 (5)

where

f(p)i = ∥pi − p∥
d̂ = [d̂0, . . . , d̂N−1]

T

Q = IN − (1/N)JN

(6)

1) Metrics: Equation (5) is not robust against outlier
measurements [7]. Fig. 1 shows a snapshot of experiment
results (the details of the experimental setup will be presented in
section IV). It shows target and anchors’ positions, hyperbolas
generated from the measured TDoA and the estimated target’s
position from several estimators. As we can see, anchor 3
introduces a large bias in the estimated target’s position.

In the following, we propose several algorithms that derive
from the ML algorithm to mitigate the effect of outliers on the
ML estimator. The procedure is the following:

1) Compute a first location estimate using (5).
2) Use that estimate to filter out some TDoAs or anchors

that are perceived as outliers.
3) Compute a final location estimate from the filtered data

using (5).
If most of TDoAs are not outliers, it is expected that the first
estimation will carry enough information to detect outliers.

The considered filtering methods are the following:
Farthest Remove the anchor farthest from the initial location

estimate.
Middle Cut the scene in half. Remove the anchors that are

not in the same area as the target.
Biggest Cumulated Error (BCE) Compute the absolute er-

ror between the measured TDoA and the TDoA recon-
structed from the location estimate, eij = c|tij − t̂ij | for
i = 0, . . . , N − 2, i < j < N . Remove anchor i such as:

argmax
i

∑
j

eij

or such as:
argmax

ij
eij

Biggest TDoA Error (BTE) Remove the TDoA with the
largest error eij .

Threshold Remove all TDoAs for which eij > α,α ∈ R
The relation between the TDoA error and the resulting

distance between the hyperbola branch and the target non-
linearly depends on the position of the target. E.g., a 1m/c
TDoA error does not produce the same displacement when the
target is close or far from the center of the hyperbola. Hence,
we also introduce variants for methods that use eij (i.e. the
BCE and BTE methods): the estimated error is divided by the
gradient of the hyperbola considered [14].
However, all these methods are still based on the ML algorithm.
If the initial ML estimate is too far off (as is the case in Fig. 1),
the filtering methods will be ineffective, as will be show in
section IV. This is mainly because it is impossible to accurately
model outliers in (4), as the nature of outlier measurements is
often unpredictable.

B. Closed-form estimation using linearisation

One of the drawbacks of ML estimators is their high
computational cost. Several closed-form solutions have been
proposed in literature [4], [6], which rely on a linearisation
of (3). While such algorithms have a lower computation
complexity than ML estimators, they suffer from the same



−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20 22 24

0

2

4

6

8

10

12

14

16

18

0 1 2

345

GPS
DBSCAN

ML
ML without anchor 3

Fig. 1. Influence of outliers produced by anchor 3 on the target’s location estimate. Colored dots are anchors’ position. Bicolored curves correspond to
hyperbolas branches generated by corresponding anchors (associated by color). GPS cross is the used ground-truth for the target’s location. ML crosses are the
estimation of the target’s location using (5), with and without anchor 3. DBSCAN cross is the estimation using the algorithm described in subsection III-C.

fundamental flaws as ML estimators when it comes to outliers.
The performance of these algorithms will be evaluated in
section IV.

C. Intersection + DBSCAN

When examining Fig. 1, it is clear that most hyperbolas
intersect each other close to the true target’s location. However,
the presence of a handful of outliers (which cannot be modelled
mathematically) will draw the ML estimate away from the true
target’s location. A more geometric interpretation of the TDoA
measurements offers an algorithm that will be more robust to
the presence of outliers. This algorithm will be presented in
this section.

The Intersection + DBSCAN algorithm finds the intersec-
tions of all pair of hyperbolas, then applies Density-Based
Spatial Clustering of Applications with Noise (DBSCAN)
on the hyperbola intersections, a clustering method robust
to outlier, to deduce the target’s location. It differs from
most classical methods – which derive solutions through
mathematical developments – by taking the geometrical aspect
of the problem into account.

When TDoAs measurements are only affected by small
errors, the corresponding hyperbolas and intersections will
stay in a vicinity of the target’s location, forming a cluster
of intersections. However, when TDoAs measurements are
affected by large errors (i.e. outliers), their hyperbolas and
intersections will most likely exit that vicinity and fail to form
a cluster.

An analytical solution for hyperbolas’ intersections is pre-
sented in [15]. However, [15] only considers some anchor
configurations and considers the two branches of a hyperbola.
Hence, the algorithm in [15] has been extended to consider all
anchor configurations, consider only the relevant branch, and
avoid solving the 4th-order equation when possible.

After locating the intersections of hyperbolas, they are
processed using DBSCAN to constructs clusters.

DBSCAN defines the following concepts:

core point a point p is a core point if there is at least mp

points (including p) within a ϵ distance from p
directly reachable a point q is directly reachable from p if p

is a core point and q is within a ϵ distance from p.
indirectly reachable a point q is indirectly reachable from p

if there is a chain pi, i = 1, . . . , n, where pi+1 is directly
reachable from pi and q is directly reachable from pn.

If p is a core point, then p and all points that are reachable
(directly or indirectly) from p constitute a cluster. Non-core
points inside a cluster are located at the border of this cluster,
since only core points can reach other points. Points not
belonging to a cluster are considered outliers. These concepts
are depicted in Fig. 2.

The target’s location is estimated by taking the median of
intersections belonging to the largest cluster (as the number of
members).
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Fig. 2. Illustration of DBSCAN algorithm with mp = 4 [16]. Point A and
other red points are core points, since there is at least 4 points (including
them) within a ϵ distance from them (red circles). Points B and C are border
points, since they are reachable from a core point without having at least
4 point in their respective vicinities (yellow circles). As all red and yellow
points are reachable from one another, they form a single cluster. Point N is
an outlier since it is neither a core point nor reachable from one.

IV. EXPERIMENT RESULTS

The algorithms presented in section III will be evaluated
on a real-world wireless TDoA dataset to test their robustness
against outliers. We first present the experimental setup, and
then present the performances of the different algorithms.

A. Experimental setup

The experimental setup consists of 6 anchors (USRP-X310
Software Defined Radio (SDR)) for TDoA acquisition, 1 master
(USRP-X310 SDR) for Over-The-Air (OTA) synchronization,
and up to 4 targets (USRP-E310 SDR). The master and
targets transmit the 802.11 non-HT training field (20MHz)
every 10ms, at carrier frequencies of 2.55GHz and 2.35GHz,
respectively. The anchors estimates the ToA of the received
packets from the master and the targets, at a sampling rate of
100MHz.

Targets record their location using Global Positioning System
(GPS), and will be used as ground-truth1. Since the rates of
GPS and the RF system differ, GPS locations are interpolated
at estimated acquisition times of the RF packets. Furthermore,
the following data preprocessing is performed:

• Discard data segments when the time interval between
GPS updates is ≥ 4 s.

• Discard trajectories that are outside the smallest rectangu-
lar area containing all anchors.

The experiment considered several road scenarios: Major
Road (MR), Road Junction (RJ), Roundabout (RA), depicted in
Fig. 3. For each scenarios, between 30 and 40 measurements
were taken, with almost 4000 snapshots per measurement and
target. In total we have almost 7 millions individual ToA
measurements, reduced to 2 millions after preprocessing.

The resulting dataset consists of ToA measurements, with un-
known time of transmission. Those ToAs suffer from noise, but
also from other phenomenons such as NLOS propagation, MPC

1Note that while the environment setup was very good (no close building,
open sky), GPS is most likely 1m to 2m-accurate.
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Fig. 3. Map for the OTA-synchronized experiment. It combines 6 TDoA
anchors, 1 bistatic radar, and 1 monostatic radar. The devices are placed
≈ 2m above ground.

and OTA synchronization error. Outliers are measurements
where those effects inflict large errors on the ToA estimation.

From preliminary cable-connected lab experiments, we
estimate that master-slave synchronization with a refresh rate
of 10ms for these devices introduces ≈ 3 ns uncertainty in
TDoA estimation.

B. Performance of Maximum Likelihood and Maximum Likeli-
hood-filtered algorithms

The ML is evaluated using a 2D-grid with 0.5m spacing.
Removing more than 1 anchor/TDoA has been evaluated
(removing 2 in 1 or 2 passes), but did not produce finer accuracy
than removing only 1. For simplicity, they are not shown in
this paper.

The impact of the metrics (presented in subsubsection III-A1)
on the ML accuracy is shown in Fig. 4. From all metrics,
the BCE and the threshold (α = 5m) methods achieves the
most accurate estimates. Their improvements at key values
are summarised in Table I2. Nevertheless, half of tested
methods performs worse than without any anchor filtering.
Furthermore, several methods are very sensitive to the scenarios
considered. For example, the middle method performs in a
similar fashion than the unfiltered version when excluding
roundabout scenarios, but worse when only considering the

2DBSCAN and Picard are discussed in subsection IV-D



TABLE I
ECDF VALUES OF THE ERROR BETWEEN GROUND-TRUTH LOCATIONS AND

ESTIMATED ONES USING SEVERAL METHODS, ACROSS ALL SCENARIOS.

3m 5m 10m
ML 0.62 0.85 0.92
ML + BCE 0.62 0.87 0.95
ML + threshold (α = 5m) 0.64 0.87 0.94
Picard (ασn = 3m) 0.61 0.86 0.95
Intersection + DBSCAN 0.67 0.93 0.99
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Fig. 4. eCDF values of the error between ground-truth locations and estimated
ones using ML estimation, all scenarios. ML estimation coupled with metric
to discard outliers exhibits better accuracy than without metric.

roundabout scenarios. This could be explained by the shape of
the scenario. In the roundabout scenarios, deciding on how to
split the area in half is not straightforward due to their circular
geometry.

The difference between the L2-norm and the Lp-norm, p =
0.8 are summarized in Table II. There is no large difference
when changing the norm, as expected [7].

Overall, some of these metrics help improving the accuracy
of the ML estimator by a few percentage. Nonetheless, there
exist major drawbacks:

TABLE II
ECDF VALUES OF THE ERROR BETWEEN GROUND-TRUTH LOCATIONS AND

ESTIMATED ONES USING DIFFERENT NORMS, ACROSS ALL SCENARIOS.

3m 5m 10m
ML 0.62 0.85 0.92
ML + threshold (α = 5m) 0.64 0.87 0.94
ML (p = 0.8) 0.60 0.84 0.94
ML (p = 0.8) + threshold (α = 5m) 0.62 0.87 0.96
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Fig. 5. eCDF values of the error between ground-truth locations and estimated
ones. All evaluated closed-forms perform worst than the ML estimation.

• It is computationally heavy. It requires a 2D-grid search
and must be evaluated a couple of times.

• Most of the methods are sensitive to scenarios.
• In presence of strong outliers, the first estimation can go

too far away from the true location to get any information
on the outliers. Fig. 1 is such an example, where no
metric was capable of filtering out anchor 3, and hence
recovering.

C. Performance of closed-form solutions using linearisation

The comparison between the ML estimator and closed-form
estimators from Chan and Ho [4] and Yu, Gaubitch, and
Heusdens [6] is depicted in Fig. 5. As expected, they all
performs worse than the ML estimator.

D. Performance of Intersection + Density-Based Spatial Clus-
tering of Applications with Noise algorithm

The Intersection + DBSCAN method has been evaluated
with parameters ϵ = 5m and mp = min(20,#point/4). For
comparison, algorithms proposed in [7] and the most accurate
ML+metric are plotted alongside it.

Picard and Weiss [7] is able to achieve similar results than the
most accurate ML+metric, with lower complexity. Intersection
+ DBSCAN outperforms both of them. Their improvements at
key values are summarised in Table I.

While the proposed algorithm outperforms all the others in
the presence of outliers, Intersection + DBSCAN comes with
several drawbacks:
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Fig. 6. eCDF values of the error between ground-truth locations and estimated
ones. Picard – when using fine-tuned parameters – and ML + threshold gives
similar results. Intersection + DBSCAN outperforms them.

• The intersection algorithm is not numerically stable. Due
to the high non-linearity of the general solution and
the finite precision of floating point arithmetic, some
intersections are missing or biased.

• If there is only a small number of hyperbolas, there is
a high probability of having few to no intersection. If
there is not enough intersections, close to each other, then
DBSCAN will not be able to form a cluster and estimate
a location.

V. CONCLUSION

In this work, we have evaluated the robustness of several
TDoA-based localization algorithms against outliers. Most
conventional methods overlook the issue of outliers in mea-
surements. They require specific noise distribution, small
errors, or a priori knowledge on outliers. To achieve higher
estimation accuracy, 2-pass ML estimators, combined to several
metrics to detect outliers, have been evaluated. However, these
estimators are computationally heavy and sensitive to the
considered geometry, for little accuracy gain (less than 5%).
A novel method is also presented, consisting of geometrical
consensus based on hyperbolas’ intersections. It achieves
precise localization in presence of outliers, without requiring
any prior information on them.
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