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Abstract

The contribution of this work is twofold. The first part deals with a Hilbert-space version of
McCann’s celebrated result on the existence and uniqueness of monotone measure-preserving
maps: given two probability measures P and Q on a separable Hilbert space H where P does
not give mass to “small sets” (namely, Lipschitz hypersurfaces), we show, without imposing any
moment assumptions, that there exists a gradient of convex function ∇ψ pushing P forward to Q.
In case H is infinite-dimensional, P-a.s. uniqueness is not guaranteed, though. If, however, Q is
boundedly supported (a natural assumption in several statistical applications), then this gradient
is P-a.s. unique. In the second part of the paper, we establish stability results for transport maps
in the sense of uniform convergence over compact “regularity sets”. As a consequence, we
obtain a central limit theorem for the fluctuations of the optimal quadratic transport cost in a
separable Hilbert space.

Keywords: Brenier’s polar factorization theorem; central limit theorem; Lipschitz hypersurfaces;
local uniform convergence; McCann’s theorem; measure transportation; stability of optimal transport
maps; Wasserstein distance.

1 Introduction

1.1 Brenier and McCann

Two seminal results had a major impact on the recent surge of interest in measure transportation
methods and their applications. The first one is the polar factorization theorem (Brenier, 1991),
associated with the name of Yann Brenier, although several authors (Cuesta-Albertos and Matrán,
1989; Rüschendorf and Rachev, 1990) independently contributed partial versions of the same result.
The second one (McCann, 1995), which extends the generality of Brenier’s theorem by relaxing the
moment conditions, is due to Robert McCann.

Let P and Q belong to the family P(Rd) of Borel probability measures over Rd, for d ≥ 1. Under
its most usual version (see, e.g., Theorem 2.12 in Villani (2003)), McCann’s theorem states that,
for P in the Lebesgue-absolutely-continuous subfamily P a.c.(Rd) ⊂ P(Rd), there exists a P-a.s.
unique gradient of convex function ∇ψ pushing P forward to Q (notation: ∇ψ#P = Q); in case P
and Q admit finite moments of order two, that gradient, moreover, is the P-a.s. unique solution of the
quadratic optimal transport problem

T2(P,Q) := inf
T#P=Q

∫
∥T (x) − x∥2 dP(x). (1)

Actually, McCann (1995) established this result under the weaker assumption that P belongs to
the class PH(Rd) ⊋ P a.c.(Rd) of probability measures vanishing on all Borel sets with Hausdorff
dimension (d− 1). McCann’s result constitutes a substantial extension of Brenier’s theorem which,
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under the restrictive assumption of finite second-order moments,1 only implies that a gradient of
convex function is the P-a.s. unique solution of the transport problem (1). In his proofs, McCann
adopted geometric ideas rather than analytical ones to prove his result; as commented in Gangbo and
McCann (1996), his argument can be related to that of Alexandrov’s uniqueness proof for convex
surfaces with prescribed Gaussian curvature.

1.2 Measure transportation in Hilbert spaces

Now suppose that H is a separable Hilbert space with inner product ⟨·, ·⟩ and induced norm ∥ · ∥.
A very natural question is “Can we extend McCann’s theorem (McCann, 1995) from the finite-
dimensional real space Rd to the case of a general separable Hilbert space H?” In other words,
given two probability measures P and Q in the family P(H) of all Borel probability measures
on H such that P does not give mass to “small sets”, does there exist a unique gradient of convex
function ∇ψ pushing P forward to Q?

Theorem 2.3 in Section 2.2 provides an affirmative answer to the above question by showing
that, for any separable Hilbert space H, provided that P gives zero mass to so-called Lipschitz
surfaces, there exists a convex function ψ the gradient ∇ψ of which pushes P forward to Q. Under
the additional assumption that the support of Q is bounded, we further show that such a gradient of
convex function ∇ψ is P-a.s. unique.

To the best of our knowledge, the first results on the existence of optimal transport mappings in
Hilbert spaces are due to Cuesta-Albertos and Matrán (1989) who prove the existence of solutions
of (1) (for P and Q ∈ P(H)) under the following assumption on P: for any basis {ei}i∈N of H and
for any set E ⊂ H with P(E) > 0, there exists a ∈ H such that µ1({t ∈ R : a+ t ei ∈ E}) > 0
for all i ∈ N, where µ1 denotes the univariate Lebesgue measure. A probability measure satisfying
this assumption, in particular, gives no mass to Aronszajn null sets.2 A uniqueness result for the same
problem is established in Ambrosio et al. (2005, Theorem 6.2.10) under the additional assumption of
finite second-order moments for P and Q. The argument for that uniqueness result takes advantage
of the strict convexity of the functional in the right-hand side of (1), and is therefore helpless in the
absence of finite second-order moments. Thus, so far, no McCann extension of Brenier-type results
is available in the general Hilbert space setting.

Let us now comment on the main hurdles encountered in proving Theorem 2.3. McCann (1995)
showed the existence of such a ∇ψ pushing forward P to Q, when H = Rd, by using a Rademacher-
type result (see Anderson and Klee, Jr. (1952)) which implies that a lower semi-continuous (l.s.c.) con-
vex function φ : H → (−∞,∞] is continuous on the interior of its domain and differentiable except
on a set of Hausdorff dimension d− 1 in dom(φ).3 Although there are infinite-dimensional exten-
sions of the above result (see e.g., ? or Ambrosio et al. (2005, Theorem 6.2.3)), these results assume
continuity and/or a local Lipschitz property of the underlying l.s.c. convex function φ. Now, when H
is infinite dimensional, there exists proper l.s.c. convex functions f : H → (−∞,∞] discontinuous at
every point of H such that ∇f pushes forward a non-degenerate Gaussian distribution to another; see
Remark 2.2 for the details. We circumvent this difficulty by showing both existence and uniqueness
of such a ∇ψ pushing forward P to a boundedly supported target measure, then creating a sequence

1Finite second-order moments and P ∈ P a.c.(Rd) are sufficient (see Chapter 2 inVillani (2003)) for Brenier’s result.
Brenier (1991), however, had further additional assumptions involving, e.g., the density and the support of P, which are
not necessary.

2Recall that E ⊂ H is an Aronszajn null set (cf. Csörnyei (1999)) if there exists a complete sequence {ei}i∈N ⊂ H
such that E can be written as a union of Borel sets {Ei}i≥1 such that each Ei is null on every line in the direction ei, i.e.,
for every a ∈ H, µ1({t ∈ R : a+ t ei ∈ Ei}) = 0 for all i ∈ N.

3Here dom(φ) := {x ∈ H : φ(x) ∈ R} denotes the domain of φ.



3

of distributions with increasing but bounded supports to approximate Q. Note that when the target
measure is boundedly supported, following the arguments in Ambrosio et al. (2005, p. 147), we can
show that ∇ψ exists with ψ agreeing P-a.s. with a continuous convex function ψ̄. As a consequence,
we can assume that ψ is continuous in H when Q is boundedly supported.

To prove the uniqueness of ∇ψ under the assumption that supp(Q) is bounded, we show
that if two continuous convex functions f and g have different gradients at a point x ∈ H (that
is, ∇f(x) ̸= ∇g(x)), then there exists a neighborhood Ux of x such that Ux∩{f = g} belongs to the
class of Lipschitz hypersurfaces which, under the assumption that P does not give mass to such a class
of sets, i.e., P ∈ P ℓ(H) (see Definition 2.3-(ii)), is a P-null set. As a consequence, if x ∈ supp(P),
the set Vx := Ux ∩ {f ̸= g} has strictly positive P-measure. A contradiction is now obtained by
noting that P(∇f ∈ ∂g(Vx)) ̸= P(∇g ∈ ∂g(Vx)), which makes ∇f#P = ∇g#P = Q impossible.

Note that, in particular, for H = Rd, P ℓ(Rd) ⊇ PH(Rd), and, for general H, any non-degenerate
Gaussian measure belongs to P ℓ(H) (see Section 2.1.2).

1.3 Stability of Hilbertian transport maps

The second objective of this paper (Section 3) is a characterization of the stability properties of the
transport map ∇ψ—a problem that has not been considered so far in infinite-dimensional spaces.

The most general results in the finite-dimensional case are due to Ghosal and Sen (2022), del
Barrio et al. (2022), and Segers (2022). Being based on the Fell topology, which does not have
nice properties in non-locally compact spaces, the techniques used by these authors do not extend
to general Hilbert spaces. Let us briefly describe the stability result when H = Rd. Let {Pn}n∈N
and {Qn}n∈N be two sequences of probability measures on Rd such that Pn

w−→ P and Qn
w−→ Q,

as n → ∞, where w−→ denotes weak convergence of probability measures. Recall that the subdiffer-
ential of a l.s.c. convex function ψ : H → (−∞,+∞] is defined as

∂ψ := {(x, y) ∈ H × H : ψ(x) + ⟨y, z − x⟩ ≤ ψ(z) for all z ∈ H}.

Denote by Π(Pn,Qn) the family of distributions in P(H × H) with marginals Pn and Qn, and
let γn ∈ Π(Pn,Qn) be such that supp(γn) ⊆ ∂ψn for some l.s.c. convex function ψn : H →
(−∞,+∞]. Further, let ψ : Rd → (−∞,+∞] be a proper l.s.c. convex function such that ∇ψ
pushes P forward to Q. Then, for any compact subset K of dom(∇ψ) ∩ int(supp(P)),4 (here int(·),
dom(·), and supp(·) stand for the interior of a set, the domain of a function, and the support of a
distribution, respectively)

sup
(x,y)∈∂ψn,x∈K

∥y − ∇ψ(x)∥ −→ 0 as n → ∞. (2)

In this Euclidean setting, (2) holds without any assumption on Q.
Section 3 extends this finite-dimensional stability result to arbitrary separable Hilbert spaces. A

Hilbert space H, however, has two useful topologies: the strong topology under which xn → x if and
only if ∥xn − x∥ → 0 and the weak topology under which xn ⇀ x if and only if ⟨h, xn⟩ → ⟨h, x⟩
for all h ∈ H. In the finite-dimensional case, these two topologies coincide, but they are distinct
in the infinite-dimensional case. Due to the fact that the map ∇ψ is only a.s. strong-to-weak
continuous—it is mapping strongly convergent sequences to weakly convergent ones—in the set
of differentiability points of ψ (see Bauschke and Combettes (2011, Theorem 21.22) and Section 3
for formal definitions), we cannot expect convergence in norm as in (2) to hold in general H: our

4For notational convenience, we write sup(x,y)∈∂ψn,x∈K ∥y − ∇ψ(x)∥ := supx∈K supy∈∂ψn(x) ∥y − ∇ψ(x)∥.
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Theorem 3.1 yields, for any strongly5 compact set K ⊆ dom(∇ψ) ∩ int(supp(P)),

sup
(x,y)∈∂ψn,x∈K

⟨y − ∇ψ(x), h⟩ −→ 0 as n → ∞, (3)

for any h ∈ H, i.e., stability in the weak topology. In the infinite-dimensional case we show via an
example (see remark (a) in Section 3.1) that, without the assumption that supp(Q) is bounded, (3)
can fail.

Our proof strategy for Theorem 3.1 is as follows. We first prove (Lemma 3.4) the stability of
the optimal (cyclically monotone) couplings γn ∈ Π(Pn,Qn). As a second step, we establish the
convergence of the subdifferential ∂ψn as a set-valued map; since we are dealing with cyclically
monotone set-valued maps, graphical convergence in the sense of Painlevé-Kuratowski (Rockafellar
and Wets, 2009, p. 111) provides the appropriate framework. Mrówka’s theorem (Lemma 3.5) then
guarantees the existence of a graphical limit along subsequences. We show (Lemma 3.6) that the
cyclical monotonicity of ∂ψn is preserved in this graphical limit. The final step establishes that this
limit, moreover, is contained in ∂ψ. This is achieved with Lemma 3.3, of independent interest, where
we show that if the subdifferentials of two convex functions coincide on a dense subset of some
convex open set B ⊂ H, then they coincide on the entire set B.

Theorem 3.1 also entails the stability of the potentials (whenever they are unique, up to additive
constants) defining the transport maps. The proof follows along similar lines as in the Euclidean case
but is more involved due to the fact that H may not be locally compact and hence Arzelá-Ascoli
(see Brezis (2010, Theorem 4.25)) may not apply. To overcome this, we take advantage of the
fact that, since P is tight, we can restrict the study of the convergence of ψn to compact sets with
arbitrarily large P-probability.

Finally, denoting by Pn := 1
n

∑n
i=1 δXi the empirical distribution of a random sampleX1, . . . , Xn

from P, we obtain, in Theorem 3.2, the central limit result
√
n (T2(Pn,Q) − ET2(Pn,Q)) w−→ N(0, σ2

2(P,Q))

for the fluctuations of the squared 2-Wasserstein distance T2(Pn,Q) about its mean.6 This result
extends to general Hilbert spaces the finite-dimensional result by del Barrio and Loubes (2019).

1.4 Statistical applications: Hilbert space-valued “center-outward” distribution and
rank functions

Observations, in a variety of statistical and machine learning problems, increasingly often take values
in more complex spaces than Rd and infinite-dimensional Hilbert-space-valued observations (Small
and McLeish (1994)) nowadays are frequent—in functional data analysis (Horváth and Kokoszka
(2012); Hsing and Eubank (2015); Kokoszka and Reimherr (2017)), in the so-called kernel methods
for general pattern analysis (e.g., in object-oriented data analysis, see Marron and Alonso (2014)),
in kriging theory for random fields (Menafoglio and Petris (2016)), in shape analysis (Jayasumana
et al. (2013)), etc. Moreover, the use of measure-transportation-based techniques to analyze such
complex data has also become increasingly important, with direct implications in several problems
involving Hilbert-space-valued data, such as two-sample testing (Cuesta-Albertos et al., 2006),
independence testing (Lai et al., 2021), quantile estimation (Chakraborty and Chaudhuri, 2014b),
data depth (Chakraborty and Chaudhuri, 2014a), etc.

5By strongly compact we mean compact with respect to the strong (norm) topology.
6Here we assume that P ∈ P ℓ(H) admits finite fourth-order moments and Q ∈ P(H) has bounded support.
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The finite second-order moment assumption required, e.g., in Ambrosio et al. (2005, Theo-
rem 6.2.10), needs not to be satisfied, though. This makes the McCann-type generalization in
Theorem 2.3 essential and important in statistical problems with Hilbert-space-valued observations.

A major statistical application of measure transportation in the d-dimensional Euclidean space is
the definition of multivariate concepts of “center-outward” distribution, rank and quantile functions
and their empirical counterparts satisfying all the properties that make their univariate counterparts
fundamental tools for statistical inference. These, in particular, allow for the construction of rank-
based methods (distribution-free rank-based testing and R-estimation) in Rd.

Recall that the distribution function of a continuous univariate random variable X ∼ P is defined
as x 7→ F (x) := P(X ≤ x) for x ∈ R. This distribution function F actually is the unique gradient of
a convex function pushing P forward to the uniform distribution over (0, 1), which exists and is P-a.s.
unique irrespective of the existence of any moments. Similarly, given a sample X1, . . . , Xn ∼ P,
the empirical distribution function is the transport map pushing the empirical measure of the Xi’s
forward to 1

n

∑n
i=1 δi/(n+1)—a natural discretization of the uniform distribution over (0, 1)—while

minimizing the quadratic transportation cost (1). This measure-transportation-based characterization
has been used successfully to define multivariate versions of the concepts of “center-outward”
distribution, multivariate rank and quantile functions, with the Lebesgue uniform over the unit cube
(Chernozhukov et al., 2017; Deb and Sen, 2023) or the spherical uniform over the unit ball (del
Barrio and González-Sanz, 2023; del Barrio et al., 2020; Figalli, 2018; Hallin et al., 2021) playing
the role of the reference distributions Q;7 these distributions are boundedly supported, hence enter
the realm of our uniqueness results.

The multivariate rank (or “center-outward” distribution) function F of P ∈ Pa.s.(Rd) is then
defined as the unique gradient of a convex function pushing P forward to the reference distribution Q.
The essential properties of F, matching the properties of the traditional univariate distribution
function, are: (i) distribution-freeness (as F(X) ∼ Q if X ∼ P); (ii) F entirely characterizes P; (iii)
the (natural) empirical version of F is uniformly consistent at its continuity points (see Hallin et al.
(2021) for details). It is worth mentioning that in this context, a sensible definition of the concept of a
“center-outward” distribution or rank function cannot be subjected to the existence of finite moments;
a McCann-type approach, thus, as opposed to Brenier’s finite-second moment one, is essential.

These new concepts have been applied to a wide range of inference problems such as vector
independence and goodness-of-fit testing (Deb and Sen, 2023; Ghosal and Sen, 2022; Shi et al., 2021,
2022), testing for multivariate symmetry (Huang and Sen, 2023), distribution-free rank-based testing
and R-estimation for VARMA models (Hallin et al., 2022a,b; Hallin and Liu, 2022), multiple-output
linear models and MANOVA (Hallin et al., 2022), multiple-output quantile regression (del Barrio
et al., 2022), definition of multivariate Lorenz functions (Hallin and Mordant, 2022), etc.; see Hallin
(2022) for a recent survey.

Defining adequate concepts of a “center-outward” distribution or multivariate rank function in
dimension d > 1 has been an open problem in the statistical literature for about half a century.
Many definitions have been proposed in this direction, including the many notions of statistical
depth following Tukey’s celebrated concept (see Tukey (1975)). None of these definitions, however,
yield the essential properties (i)-(iii) of the traditional univariate concept mentioned above. By
establishing the existence and uniqueness of the gradient of a convex function pushing P ∈ P ℓ(H),
where H is a separable Hilbert space, forward to a boundedly supported Q, our Theorem 2.3, which
does not require P to admit any moments, is a first step in the direction of extending this measure-
transportation-based approach to multivariate rank (or “center-outward” distribution) function from

7Due to its strong symmetry properties, the spherical uniform over the unit ball, unlike the Lebesgue uniform over the
unit cube, induces adequate notions of quantile function and quantile regions.
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Euclidean spaces to general separable Hilbert spaces.

2 Existence and uniqueness of monotone measure-preserving maps in
Hilbert spaces

2.1 Preliminaries: definitions and notation

2.1.1 Some results from convex analysis

Throughout, denote by H a separable Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥. Two
topologies can be considered for H: the strong topology, under which xn → x as n → ∞
(where {xn}n≥1 ⊂ H) if and only if ∥xn − x∥ → 0, and the weak one, under which xn ⇀ x
if and only if ⟨h, xn⟩ → ⟨h, x⟩ for all h ∈ H. The weak and strong topologies in H generate the
same Borel σ-algebra (see Edgar (1977)).

Recall that a set Γ ⊆ H × H is said to be cyclically monotone if, for all n ∈ N and
all {(xk, yk)}nk=1 ⊆ Γ, letting yn+1 = y1,

n∑
k=1

⟨xk, yk+1 − yk⟩ ≤ 0. (4)

A Borel probability measure γ ∈ P(H × H) is said to have P ∈ P(H) and Q ∈ P(H) as its
(left and right, respectively) marginals if γ(A× H) = P(A) and γ(H ×B) = Q(B) for all Borel
sets A,B ⊆ H. The family of γ’s having marginals P and Q is denoted by Π(P,Q).

Cyclically monotone sets and convex functions are related in the following sense. Let Γ ⊆ H×H
be cyclically monotone. Theorem B in Rockafellar (1970) establishes the existence of a proper
lower semi-continuous (l.s.c.) convex function f : H → (−∞,+∞] such that Γ is contained in the
subdifferential ∂f of f :

Γ ⊆ ∂f := {(x, y) ∈ H × H : f(x) − f(x′) ≤ ⟨y, x− x′⟩, for all x′ ∈ H}.

Without any loss of generality, the subdifferential ∂f can be assumed to be maximal monotone in the
sense that ∂f ⊆ ∂g for some other proper l.s.c. convex function g implies ∂f = ∂g.

Slightly abusing notation, for each x ∈ H, call ∂f(x) := {y ∈ H : (x, y) ∈ ∂f} the
subdifferential at x of f . The mapping x 7→ ∂f(x) is generally multi-valued. For a set A ⊆ H, write

∂f(A) :=
⋃
a∈A

∂f(a).

In case ∂f(x) is a singleton, denote by ∇f(x) its unique element.
When the Hilbert space H is not finite-dimensional, some of the familiar properties of convex

functions no longer hold. For instance, the continuity of a convex f in its domain is no longer
guaranteed:

dom(f) := {x ∈ H : f(x) ∈ R} ̸= cont(f) := {x ∈ H : x 7→ f(x) is continuous}.

However, when f is a proper l.s.c. convex function, int(dom(f)) and cont(f) coincide (Bauschke
and Combettes, 2011, Corollary 8.30). Moreover, in that case, Proposition 16.14 (Ibidem) yields

int(dom(f)) = cont(f) ⊆ dom(∂f) := {x ∈ H : ∂f(x) ̸= ∅} ⊆ dom(f), (5)



7

provided that int(dom(f)) ̸= ∅. Note that the domain of differentiability of a convex function f ,
denoted by

dom(∇f) := {h ∈ H : ∂f(h) is a singleton}, (6)

in infinite-dimensions, differs from8

domFr(∇f) := {h ∈ H : f is Fréchet-differentiable at h}.

The following lemma gives some basic continuity properties of the subdifferential of a proper
l.s.c. convex function defined on a Hilbert space—the continuity of the subdifferential ∂f of f
depends on the kind of differentiability considered. Part (i) of Lemma 2.1 is a direct consequence of
the fact that, in the product space H × H with the first H factor equipped with the weak topology
and the second one with the strong topology, the subdifferential ∂f is a closed locally bounded9 set
(see Propositions 16.26 and 16.14 in Bauschke and Combettes (2011)). Parts (ii) and (iii) can be
found in Propositions 17.32 and 17.33 (Ibid.).

Lemma 2.1. Let f : H → (−∞,+∞] be a proper l.s.c. convex function, x ∈ int(dom(f)),
and {xn}n∈N ⊂ H be a sequence such that xn → x as n → ∞. Then,

(i) for any sequence {yn}n∈N with yn ∈ ∂f(xn), there exists a subsequence weakly converging
to y ∈ ∂f(x).

Moreover (note that, by definition, domFr(∇f) ⊆ dom(∇f)),

(ii) if x ∈ dom(∇f), then yn ⇀ y = ∇f(x);

(iii) if x ∈ domFr(∇f), then yn → y = ∇f(x).

2.1.2 Hilbertian null sets

Before formally stating our Hilbertian version of McCann’s theorem, we need infinite-dimensional
extensions of the finite-dimensional conditions of absolute continuity (i.e., P ∈ P a.c.(Rd)) and Borel
measures with Hausdorff dimension (d− 1) (i.e., P ∈ PH(Rd)). Due to the absence of a Lebesgue
measure, on general Hilbert spaces, this requires some care.

Definition 2.1 (Non-degenerate Gaussian distribution). We say that a random variable ξ ∈ H is non-
degenerate Gaussian if, for all h ̸= 0 ∈ H, the inner product ⟨ξ, h⟩ ∈ R is a non-degenerate Gaussian
random variable, i.e., ⟨ξ, h⟩ ∼ N (mh, σh) with σh > 0. The distribution µξ of a non-degenerate
Gaussian random variable ξ is called a non-degenerate Gaussian measure. Denote by GN(H) the
class of Borel sets negligible with respect to any non-degenerate Gaussian measure.

In the Euclidean space Rd, the null sets of all nondegenerate Gaussian measures are exactly the
same, and are equivalent to the Lebesgue negligible sets; for H = Rd, thus, GN(H) reduces to the
class of Lebesgue-null Borel sets. This is no longer the case in infinite-dimensional H, where several
mutually singular non-degenerate Gaussian distributions exist (see e.g., the Feldman–Hájek theorem);
this is why the definition of GN(H) imposes negligibility with respect to any non-degenerate
Gaussian measure.

Equivalently, GN(H) can be described as the class of Borel sets that are negligible under any cube
measure (see Csörnyei (1999)); a cube measure is the distribution of a random variable a+

∑n
i=1Xiei

8Recall from Shapiro (1990) that a proper function f : H → (−∞,+∞] is Fréchet-differentiable at h0 ∈ H if there
exists a∗ ∈ H such that limh→0 ∥f(h0 + h) − f(h0) − ⟨a∗, h⟩∥/∥h∥ = 0.

9That is, for any x ∈ int(dom(f)), there exists a ball B(x, ϵ) centered at x such that ∂f(B(x, ϵ)) is bounded.
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where the span of {ei}i∈N is dense in H, such that
∑

i∈N ∥ei∥2 < ∞, and {Xi}i∈N are uniformly
distributed independent random variables with values in (0, 1). Moreover, Csörnyei (1999) proved
that the class of Aronszajn null sets previously mentioned also coincides with GN(H).

Definition 2.2 (Regular probability measures). A probability measure P is called regular if P(A) = 0
for all A ∈ GN(H). In case H = Rd for some finite d, the class of regular probability measures
over H coincides with the class P a.c.(Rd) of Lebesgue absolutely continuous measures, and we
therefore denote by P a.c.(H) the family of all regular probability measures on H.

Note that P a.c.(H) contains all probability measures which are absolutely continuous with
respect to some (degenerate or non-degenerate) Gaussian measure, as well as all the Gaussian
measures themselves. As we shall see, P ∈ P a.c.(H) is sufficient for existence and uniqueness in
Theorem 2.3 below. But it is not necessary: as in the Euclidean case, where it is sufficient for P to be
in the class PH(Rd) of measures giving mass zero to (d− 1)-rectifiable10 sets, this assumption on P
can be relaxed. Additionally, the class PH(Rd) turns out to be too restrictive even in the Euclidean
case—all we need is to ensure that the gradients of continuous l.s.c. convex functions are P-a.e. well
defined.

Before moving on with this discussion, let us formally introduce the classes of probability
measures we will need in this paper.

Definition 2.3. (i) A set Av ⊆ H, where v ∈ H \ {0}, is called a delta-convex hypersurface if there
exist two convex Lipschitz functions τ1, τ2 : Z → R, with Z := {λ v : λ ∈ R}⊥ (the orthogonal
complement of the space generated by v), such that Av = {z + (τ1(z) − τ2(z))v : z ∈ Z}. Denote
by P d.c.(H) the class of distributions giving mass zero to all delta-convex hypersurfaces.

(ii) A set of the form {z + τ(z)v : z ∈ Z}, where τ : H → R is a Lipschitz function, is called a
Lipschitz hypersurface. Denote by P ℓ(H) the class of distributions giving mass zero to all Lipschitz
hypersurfaces.

A delta-convex hypersurface is automatically Lipschitz and Lipschitz hypersurfaces are Gaussian
null sets: hence,

P d.c.(H) ⊇ P ℓ(H) ⊇ P a.c.(H) (7)

(see e.g., Zajíček (1983, p. 295) or ?, p. 521). The converse, however, is not true: ?, Example 1 shows
that Lipschitz hyperspaces are not necessarily delta-convex hyperspaces, even in the Euclidean case.
In the Euclidean case (H = Rd) with d ≥ 2,

P d.c.(Rd) ⊋ P ℓ(Rd) ⊇ PH(Rd) ⊋ P a.c.(Rd),

where PH(Rd) ⊆ P ℓ(Rd) may be an equality. For d = 1, that is, for H = R, however, we
have P d.c.(R) = P ℓ(R) = PH(R) = P a.c.(R).

Remark 2.2. When H is infinite-dimensional, there exists a l.s.c. convex function f that is
nowhere continuous whose gradient nevertheless pushes forward one non-degenerate Gaussian
measure to another. Further, the set dom(∇f) is a Gaussian null set. We provide the con-
struction of such a function below. Let us consider a fixed orthonormal basis {ei}i∈N in the
infinite-dimensional Hilbert space H. Consider the unbounded operator A : dom(A) → H
defined by x 7→

∑
i∈N 4i⟨x, ei⟩ei ∈ H. Here, dom(A) is the pre-image A−1(H) of H un-

der A, that is, dom(A) = {x ∈ H :
∑

i∈N 8i|⟨x, ei⟩|2 ∈ R}. For the l.s.c. convex func-
tion f : H → (−∞,+∞] defined as f(x) := 1

2∥Ax∥2 if x ∈ dom(A) and +∞ otherwise,

10A set is called (d− 1)-rectifiable if it can be written as a countable union of C1 manifolds, apart from a set of (d− 1)-
dimensional Hausdorff measure zero (Villani, 2009, p. 271).
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the subdifferential is Ax if x ∈ dom(A), and is empty otherwise. Let {ξi}i∈N ⊂ R be a sequence of
i.i.d. N(0, 1) variables. We have the following two observations:

(i) The gradient of the l.s.c. convex function f pushes forward the Gaussian random vari-
able

∑
i∈N

1
8i ξiei to

∑
i∈N

1
2i ξiei. The function f is discontinuous everywhere in H.

(ii) The Gaussian random variable X :=
∑

i∈N
1
2i ξiei ∼ µ is non-degenerate but

P (X ∈ dom(A)) = P

(∑
i∈N

2iξ2
i < +∞

)
= 0.

Since dom(∇f) = dom(A), however,

µ ({x ∈ H : ∂f(x) is a singleton}) = P (X ∈ dom(A)) = 0.

Thus, the set where the subdifferential is single-valued, i.e., dom(∇f), is a Gaussian null set.

2.2 Existence and uniqueness of monotone measure-preserving maps

We can now state and prove our main result about the existence and uniqueness, without second-order
moment restrictions, of monotone measure-preserving maps in a separable Hilbert space H—the
Hilbertian generalization of McCann’s result in Rd.

2.2.1 Existence and uniqueness

Theorem 2.3. Let Q ∈ P(H), where H is a separable Hilbert space.

(i) If P ∈ P ℓ(H), there exists a gradient of convex function ∇ψ pushing P forward to Q;

(ii) if P ∈ P ℓ(H) and supp(Q) is bounded, then ∇ψ is unique P-a.s.

The assumption of a boundedly supported Q is quite natural when the objective is the defini-
tion, without any moment assumptions, of a Hilbertian transport-based notion of “center-outward”
distribution or multivariate rank function similar to the finite-dimensional concepts proposed in
Chernozhukov et al. (2017) or Hallin et al. (2021): the reference distributions Q there, indeed, are
(a) the Lebesgue uniform over the d-dimensional unit cube or (b) the spherical uniform over the
unit ball in Rd. Natural infinite-dimensional extensions would include (a) cubic probability mea-
sures, i.e., the distributions of random variables of the form

∑
i∈N λiUiei where {λi}i∈N ⊂ [0,+∞)

with
∑

i∈N λ
2
i < +∞, {ei}i∈N ⊂ H an orthonormal basis of H, and {Ui}i∈N a sequence of i.i.d.

univariate Uniform(0, 1) variables (see e.g., Csörnyei (1999)) or (b) the distributions of random
variables of the form UG/∥G∥ where U ∼ Uniform(0, 1) and G is a Gaussian random variable
in H.

The proof of Theorem 2.3, presented in Section 2.2.3, relies on four lemmas which we state and
prove next.

2.2.2 Four lemmas

Throughout, it is tacitly assumed that H is a separable Hilbert space.
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Lemma 2.4. Let {Pn}n∈N and {Qn}n∈N be sequences of probability measures in P(H) such
that Pn

w−→ P ∈ P(H) and Qn
w−→ Q ∈ P(H). Suppose that the sequence {γn}n∈N ∈ P(H × H)

is such that γn ∈ Π(Pn,Qn) and supp(γn) is cyclically monotone for all n ∈ N. Then, for
any subsequence {γnk}k∈N, there exists a further subsequence {γnki}i∈N such that γnki

w−→ γ for
some γ ∈ Π(P,Q) with cyclically monotone support.

Proof. Lemma 4.4 in Villani (2009) implies the tightness of {γn}n∈N. Hence, for any subse-
quence {γnk}k∈N, there exists γ and a further subsequence {γnki}i∈N such that γnki

w−→ γ. Let us
prove that γ ∈ Π(P,Q) and that supp(γ) is cyclically monotone. For ease of notation, we keep the
notation {γn}n for the subsequence.

Suppose that γ is not cyclically monotone. Then, the the subset

M :=
{

(x, y) such that there exists a finite sequence {(xk, yk)}nk with (x1, y1) = (x, y)

violating (4) for yn+1 = y1

}
of H × H has strictly positive γ probability. That set M is open, so that the Portmanteau theorem
applies, yielding lim infn γn (M) ≥ ϵ > 0, which is impossible in view of the cyclical monotonicity,
for all n ∈ N, of γn. Let f : H → R be a continuous bounded function. The function g(x, y) = f(x)
is continuous and bounded in H × H, hence uniformly γn-integrable. Thus, γn(g) = Pn(f) → P(f)
and γn(g) → γ(g), so that the left marginal of γ is P. Similarly, Q is the right marginal. Any
weak limit γ of {γn}n∈N has, thus, cyclically monotone support and belongs to Π(P,Q). The claim
follows.

Noting that the directional derivative and the subgradient ∂f of a proper l.s.c. convex
function f : H → (−∞,∞] are related through the formula

lim
t→0+

f(h+ ta) − f(h)
t

= sup
y∈∂f(h)

⟨y, a⟩ h, a ∈ H (8)

(see, e.g., Bauschke and Combettes (2011, Theorem 17.19)), we obtain the following mean value
theorem for convex functions in Hilbert spaces (the Hilbert space version of McCann (1995)’s
finite-dimensional Lemma 21).

Lemma 2.5. Let f, g : H → (−∞,+∞] be proper l.s.c. convex functions and p, q ∈ cont(f) ∩ cont(g)
be such that f(p) − f(q) = g(p) − g(q). Then, there exists xt = tp + (1 − t)q,
with t ∈ (0, 1), u ∈ ∂f(xt), and v ∈ ∂g(xt) such that ⟨u− v, p− q⟩ = 0.

Proof. By convexity, f(xt) and g(xt) are finite for any xt = tp+ (1 − t)q with t ∈ (0, 1). Moreover,
the function h : [0, 1] ∋ t 7→ f(xt) − g(xt) ∈ R is continuous (see Bauschke and Combettes
(2011, Corollary 9.20 and Theorem 8.29)). The values of h(t) at t = 0 and t = 1 are the same by
hypothesis; a fortiori an extreme value of h in [0, 1] is attained at some t∗ ∈ (0, 1). Suppose, without
loss of generality, that h(t∗) is a maximum. Letting x∗ := t∗p+ (1 − t∗)q, note that f and g both
are continuous at x∗, so that ∂f(x∗) and ∂g(x∗) both are convex and weakly compact (see Bauschke
and Combettes (2011, Proposition 16.14)). Since the function x 7→ ⟨x, p− q⟩ is weakly continuous,
there exist u+, u−, v+, and v− such that

u+ = arg max
y∈∂f(x∗)

⟨y, p− q⟩ and u− = arg min
y∈∂f(x∗)

⟨y, p− q⟩,

for f , and

v+ = arg max
y∈∂g(x∗)

⟨y, p− q⟩ and v− = arg min
y∈∂g(x∗)

⟨y, p− q⟩
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for g. Thus, via (8), we obtain

lim
t→0+

h(x∗ + t(p− q)) − h(x∗)
t

= ⟨u+ − v+, p− q⟩

and

lim
t→0−

h(x∗ + t(p− q)) − h(x∗)
t

= lim
t→0+

h(x∗ + t(q − p)) − h(x∗)
−t

= ⟨u− − v−, p− q⟩.

McCann (1995, Lemma 20) states that, as h has a maximum at t∗,

⟨u−−v−, p−q⟩ = lim
t→0−

h(x∗ + ta) − h(x∗)
t

≤ 0 ≤ lim
t→0+

h(x∗ + ta) − h(x∗)
t

= ⟨u+−v+, p−q⟩.

Hence, there exists some λ ∈ [0, 1] such that ⟨(u− − v−)λ + (1 − λ)(u+ − v+), p − q⟩ = 0.
Since ∂f(x∗) and ∂g(x∗) are compact, u± and v± belong to ∂f(x∗) and ∂g(x∗), respectively. So,
using the convexity of ∂f(x∗) and ∂g(x∗), we obtain

λu− + (1 − λ)u+ ∈ ∂f and λv− + (1 − λ)v+ ∈ ∂g,

which concludes the proof.

The next result states that if the gradients of two continuous convex functions f and g differ
at a point p, there exists a neighborhood of p such that the set where both functions agree in this
neighborhood is “small” (i.e., P-negligible). Moreover, the inverse image by ∇g of ∂f({f ̸= g})
lies at a strictly positive distance from p.

Lemma 2.6. Let f and g be two proper l.s.c. convex functions from H to (−∞,+∞] such that, for
some p ∈ dom(∇f) ∩ dom(∇g) ∩ cont(f) ∩ cont(g), ∇f(p) ̸= ∇g(p) = 0 and f(p) = g(p) = 0.
Then,

(i) X := (∇g)−1(∂f({h ∈ H : f(h) > g(h)})) ⊆ {h ∈ H : f(h) > g(h)},
(ii) infh∈X ∥h− p∥ > 0, and

(iii) there exists a neighborhood Up ⊂ H of p such that the set {h ∈ Up : f(h) = g(h)} lies in a
Lipschitz hypersurface.

Proof. The proof is inspired by that of McCann (1995, Lemma 13). Part (i) of the lemma di-
rectly follows from the definition of subdifferentials. Take x ∈ X . Then, x ∈ dom(∇g) is such
that ∇g(x) ∈ ∂f({h ∈ H : f(h) > g(h)}). Hence,

∇g(x) ∈ ∂f(h) for some h ∈ dom(∂f) ∩ {h ∈ H : f(h) > g(h)} (9)

and thus, for any z ∈ H,

f(z) − f(h) ≥ ⟨∇g(x), z − h⟩ and g(h) − g(x) ≥ ⟨∇g(x), h− x⟩. (10)

In particular, for x = z, we obtain

f(x) − f(h) ≥ ⟨∇g(x), x− h⟩ and g(h) − g(x) ≥ ⟨∇g(x), h− x⟩.

Since f(h) > g(h), adding the above two inequalities yields

f(x) − g(x) > f(x) − f(h) + g(h) − g(x) ≥ 0.
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Hence x ∈ {h ∈ H : f(h) > g(h)}. This completes the proof of part (i).
To prove part (ii), let us assume that there exists a sequence {xn}n∈N ⊆ X converging to p in

norm. Then ∇g(xn) ∈ ∂f({h ∈ H : f(h) > g(h)}), so that there exists a sequence {hn}n∈N ⊆
{h ∈ H : f(h) > g(h)} such that ∇g(xn) ∈ ∂f(hn) for all n ∈ N. Since ∇g(p) = 0 and g(p) = 0,
the convexity of g implies that g ≥ 0. Moreover, the strong-to-weak continuity of the directional
derivative (see Lemma 2.1) implies ∇g(xn) ⇀ ∇g(p) = 0. It also follows from

|g(xn) − g(x)| ≤ (∥∇g(xn)∥ + ∥∇g(x)∥)∥xn − p∥ (11)

that g(xn) → g(p) = 0. On the other hand, ∇f(p) ̸= 0 and the fact that, for all z ∈ dom(∇f),

−f(z) = f(p) − f(z) ≥ ⟨∇f(z), p− z⟩

jointly imply (taking zn := p− 1
n∇f(p), with n ∈ N large enough) that

f(zn) ≤ − 1
n

⟨∇f(zn),∇f(p)⟩.

Hence, due to the strong-to-weak continuity of the directional derivative,

lim sup
n→∞

n f(zn) ≤−∥∇f(p)∥2,

and there exists z = zn0 (for n0 big enough) such that f(z) < 0. Using (10), we obtain

(f(z) − f(h)) + (g(h) − g(x)) ≥ ⟨∇g(x), z − h+ (h− x)⟩ = ⟨∇g(x), z − x⟩,

for any z ∈ H and h, x as in (9). Since f(h) > g(h), we have f(z) − g(x) ≥ ⟨∇g(x), z − x⟩. By
taking z = zn0 and x = xn, this yields

0 > f(z) ≥ ⟨∇g(xn), z − xn⟩ + g(xn)
≥ ⟨∇g(xn), z⟩ − ⟨∇g(xn), xn − p⟩ − ⟨∇g(xn), p⟩ + g(xn)
≥ ⟨∇g(xn), z − p⟩ − ∥∇g(xn)∥∥xn − p∥ + g(xn). (12)

The right-hand side in (12) tends to 0 since: (i) the first term goes to zero as ∇g(xn) ⇀ ∇g(p) = 0;
(ii) the second term goes to zero by the boundedness of ∥∇g(xn)∥ (see, e.g., Brezis (2010, Proposi-
tion 3.13 (iii))) and the fact that xn → p; and (iii) the last term tends to 0 by (11). This, however,
yields a contradiction from which we conclude that p ̸∈ X . This completes the proof of part (ii) of
the lemma.

Turning to part (iii), let us write {f = g} for {x ∈ H : f(x) = g(x)}. Consider an orthonormal
basis {ei}i∈N such that e1 := ∥∇f(p)∥−1∇f(p) ̸= 0. As in McCann (1995), the goal is to show the
existence of a Lipschitz function τ : H → R and a neighborhood Up of p such that

{f = g} ∩ Up ⊆ {z + τ(z)e1 : z ∈ Z} (13)

where Z = {λe1 : λ ∈ R}⊥ and π(x) := x− ⟨e1, x⟩e1 is the orthogonal projection of x ∈ H onto
the closure of the subspace generated by {ei}∞

i=2. Set h ∈ cont(f)∩dom(∇f). The strong-to-weak
continuity of the subdifferential (see, e.g., Bauschke and Combettes (2011, Proposition 17.3)) means
that un ⇀ ∇f(p) =: λ1e1 and vn ⇀ ∇g(p) for any pn → p, un ∈ ∂f(pn) and vn ∈ ∂g(pn).
Let Up denote a neighborhood of p small enough that ∂f(Up) ∪ ∂g(Up) is bounded, i.e., contained in
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a ball B(0, R/2) (see, e.g., Bauschke and Combettes (2011, Proposition 16.14)). Then we can find a
neighborhood (we use the same notation Up as above) of p such that

⟨e1, u− v⟩ > λ1
2 and ∥π(u) − π(v)∥ ≤ R (14)

whenever u ∈ ∂f(x), v ∈ ∂g(x), and x ∈ Up. The first inequality in (14) holds due to the strong-
to-weak continuity of the subdifferential (namely, for x ≈ p, we have ⟨e1, u⟩ ≈ ⟨e1,∇f(p)⟩ = λ1,
and ⟨e1, v⟩ ≈ ⟨e1,∇g(p)⟩ = 0). As for the second inequality in (14), noting that the projection
operator π is 1-Lipschitz, it follows from the fact that u, v ∈ B(0, R/2).

We now proceed with the construction of the Lipschitz function τ . It follows from (14)
that ⟨e1, u − v⟩ > 0. For x ∈ H and t ∈ R such that p + π(x) + t e1 ∈ Up, define the real
functions hx(t) := [f − g](p + π(x) + t e1). Observe that t 7→ hx(t) is strictly monotone in its
domain. To see this, suppose that for t1 ̸= t2, we have hx(t1) = hx(t2); then by Lemma 2.5 we
would have (t1 − t2)⟨e1, u − v⟩ = 0 which, letting s = t∗t1 + (1 − t∗)t2 with t∗ ∈ (0, 1), is a
contradiction by (14) (here u ∈ ∂f(p+ π(x) + se1) and u ∈ ∂g(p+ π(x) + se1).

Let t ̸= 0 be such that p+ t e1, p− t e1 ∈ Up. We can pick r > 0 such that

h0(−t) < −2r < 0 = h0(0) < 2r < h0(t)

and, by the continuity of f − g, also hx(−s) < −r < 0 < r < hx(s) for all p + π(x) − s e1
and p+ π(x) + s e1 belonging, respectively, to balls, B(p− t e1, ρ) and B(p+ t e1, ρ), say, included
in a small neighborhood of p ensuring that s and ∥π(x)∥ are small. We can assume that such neighbor-
hoods are contained in Up. The intersection of Up and the cylinder {x ∈ H : ∥π(x− p)∥ < ρ} is
still a neighborhood of p that we still denote as Up.

Let V := {x ∈ H : p + π(x) ∈ Up}. For any x ∈ V , t 7→ hx(t) is a strictly monotone and
continuous function taking both positive and negative values in a neighborhood of 0. Then there
exists a unique tx such that hx(tx) = 0. By construction, tx depends only on π(x): writing tπ(x)
instead of tx, define τ : V → R such that τ : x 7→ tπ(x). Thus, τ(x) = τ(π(x)) if π(x) ∈ V . Let us
show that τ is Lipschitz. Set x,w ∈ V . Since

0 = hx(tπ(x)) = [f − g](p+ π(x) + tπ(x) e1) = [f − g](p+ π(w) + tπ(w) e1) = hw(tπ(w)),

Lemma 2.5 ensures the existence of some u ∈ ∂f(y) and v ∈ ∂g(y) where

y := p+ λπ(x) + (1 − λ)π(w) + λtπ(x) + (1 − λ)tπ(w)

for some λ ∈ (0, 1) such that ⟨u− v, π(w−x) + (tπ(x) − tπ(w)) e1⟩ = 0. Observe that y ∈ Up. This
further implies that

⟨u−v, π(w−x)⟩ = −(tπ(x)−tπ(w)) ⟨u−v, e1⟩, hence |⟨u−v, π(w−x)⟩| = |τ(x)−τ(w)||⟨u−v, e1⟩|.

In view of (14), we thus obtain

λ1
2 |τ(x) − τ(w)| < |τ(x) − τ(w)| |⟨u− v, e1⟩| = |⟨u− v, π(w − x)⟩|

= |⟨π(u− v), π(w − x)⟩| ≤ ∥π(u− v)∥ ∥π(w − x)∥
≤ R ∥π(w − x)∥.

Then τ is (2R/λ1)-Lipschitz. Note that such a τ can be extended to the whole space H while
preserving the Lipschitz constant and the dependence of τ(x) on π(x) only. To prove this, we
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only need to apply (Hiriart-Urruty, 1980, Theorem 1) to the restriction of τ(·) to the set π(H).
For any x ∈ H, let us define the translation of τ as τ∗(p + x) := τ(x) = τ(π(x)) and show
that τ∗ satisfies (13). Take h ∈ {f = g} ∩ Up. Then, h = p + π(x) + se1, for some s ∈ R
and x := h − p. Note that τ(x) is the unique point in the line p + π(x) + te1 such that, for t
small, f(p+ π(x) + τ(x)e1) = g(p+ π(x) + τ(x)e1). But h ∈ {f = g} ∩ Up is also a point in the
line segment p+π(x)+te1 such that, for t small, f(h) = g(h). By the uniqueness of the construction
of τ , we get τ(x) = s. Therefore, h = p + π(x) + τ(x)e1 = z + τ∗(z)e1 where z := p + π(x)
(note that τ∗(z) = τ(π(x)) = τ(x)). Thus, (13) holds for τ = τ∗, which completes the proof.

2.2.3 Proof of Theorem 2.3

We now turn to the proof of Theorem 2.3. We first assume that Q has bounded support and, under
this assumption, we prove (i) existence and (ii) uniqueness. In (iii), we then extend the existence
result to the case when supp(Q) is unbounded.
(i) [Existence, boundedly supported Q.] This part of the proof follows along similar steps as in the
finite-dimensional case (cf. McCann (1995, Theorem 6))—with the significant difference, however,
that the Riesz-Markov theorem no longer can be invoked since Hilbert spaces are not necessarily
locally compact: the space of Radon measures and the dual of the space of bounded continuous
functions, thus, do not necessarily coincide.

We can easily construct two sequences of probability measures Pn and Qn with finite second-
order moments for all n converging weakly to P and Q, respectively. The existence of measure-
preserving cyclically monotone maps between Pn and Qn follows from Cuesta-Albertos and Matrán
(1989). Therefore, we can construct a sequence γn ∈ Π(Pn,Qn) with supp(γn) cyclically monotone.
By Lemma 2.4 and Rockafellar (1970), there exists γ ∈ Π(P,Q) and a proper l.s.c. convex function ψ
such that ∂ψ ⊇ supp(γ). Note that, denoting by ψ∗ the convex conjugate of ψ and by c̄h(supp(Q))
the closed convex hull of supp(Q),

ψ̄(x) := sup
y∈c̄h(supp(Q))

{⟨x, y⟩ − ψ∗(y)} (15)

and ψ P-a.e. agree (see Ambrosio et al. (2005, p. 147)). For x, x′ ∈ H, as

|ψ̄(x) − ψ̄(x′)| ≤ sup
y∈c̄h(supp(Q))

{⟨x− x′, y⟩} ≤ ∥x− x′∥ sup
y∈c̄h(supp(Q))

∥y∥,

the function ψ̄ is continuous. Accordingly, we keep the notation ψ = ψ̄.
Since P ∈ P ℓ(H), ∂ψ(x) is a singleton for P-a.e. x, i.e., P(dom(∇ψ)) = 1 (see ?). Define

T : dom(∇ψ) → H with x 7→ T (x) = ∇ψ(x) ∈ H.

This T is a Borel map and is such that γ = (identity × T )#P (as ∂ψ ⊇ supp(γ)). Thus T = ∇ψ
is the gradient of a convex function pushing P to Q, thereby completing the proof of the existence
part of Theorem 2.3 for boundedly supported Q.

(ii) [Uniqueness, boundedly supported Q.] To prove uniqueness, let us assume that two distinct l.s.c.
proper convex functions f and g are such that ∇f and ∇g both push P forward to Q. To start with,
assume that p ∈ supp(P)∩dom(∇f)∩dom(∇g)∩cont(f)∩cont(g) is such that ∇f(p) ̸= ∇g(p).
Consider the two functions (from H to R)

f∗(·) := f(·) − ⟨·,∇g(p)⟩ − (f(p) − ⟨p,∇g(p)⟩) (16)
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and
g∗(·) := g(·) − ⟨·,∇g(p)⟩ − (g(p) − ⟨p,∇g(p)⟩) (17)

obtained by adding to f and g affine functions (depending on f(p), g(p), and ∇g(p)). Clearly,
one has f∗(p) = g∗(p) = 0 and f∗ and g∗ satisfy ∇f∗(p) ̸= ∇g∗(p) = 0 just as f and g. For
simplicity, we keep for f∗ and g∗ the notation f and g.

Let Up be the open neighborhood of p given by Lemma 2.6.11 Then the set

A := Up ∩ {h ∈ H : f(h) = g(h)}

is contained in a Lipschitz hypersurface so that, since p ∈ supp(P) and P ∈ P ℓ(H) ⊋ P a.c.(H),
we obtain P(Up \ A) > 0. Now, Up \ A is the disjoint union of

M := Up ∩ {h ∈ H : f(h) > g(h)} and N := Up ∩ {h ∈ H : f(h) < g(h)},

one of which at least has strictly positive P-probability; let us assume that P(M) > 0. Lemma 2.6
implies that X := (∇g)−1(∂f(M)) ⊆ M and infh∈X ∥h − p∥ > 0, so that there exists an open
neighborhood Wp of p such that X ∩Wp = ∅. Assume, without loss of generality, that Wp ⊆ Up. As a
consequence, P(X ∩(H\Wp)) ≤ P(M∩(H\Wp)) and, by the previous argument, P(M∩Wp) > 0.
Therefore, since X ∩ Wp = ∅,

P(X ) = P(X ∩ Wp) + P(X ∩ (H \ Wp)) < P(M ∩ Wp) + P(M ∩ (H \ Wp)) = P(M),

while, on the other hand, as dom(∇f) has P-probability 1 (by part (i) above),

P((∇f)−1(∂f(M))) = P((∇f)−1(∂f(M)) ∩ dom(∇f)) ≥ P(M),

so that P((∇f)−1(∂f(M))) ̸= P(X ) = P((∇g)−1(∂f(M))). This contradicts the fact that
both ∇f and ∇g (up to a translation: see (16) and (17)) are pushing P forward to Q. As a
consequence, ∇f and ∇g must agree on supp(P) ∩ dom(∇f) ∩ dom(∇g). Uniqueness follows.

(iii) [Unbounded supp(Q).] The rest of the proof is inspired by that of Ambrosio et al. (2005,
Theorem 6.2.10). We have shown before that there exists γ ∈ Π(P,Q) and a proper l.s.c. convex
function ψ such that ∂ψ ⊇ supp(γ). Denoting by IB(0,n) the indicator function of the ball B(0, n)
with radius n centered at 0 ∈ H, characterize the measure γn as satisfying∫

f(x, y)dγn(x, y) =
∫

IB(0,n)(y)f(x, y)dγ(x, y)

for any continuous bounded function f : H × H → R. Since supp(γ) is cyclically monotone,
supp(γn) is cyclically monotone as well. Denote by Pn and Qn the marginals of γn. Note
that

∫
f(y)dQn(y) =

∫
IB(0,n)(y)f(y)dQ(y) for any continuous bounded function f : H → R,

that Qn is boundedly supported, and that Pn is absolutely continuous with respect to P. It fol-
lows from part (i) of this proof (applied to the duly rescaled γn to make it a probability measure)
that γn is unique and that there exists a unique gradient ∇ψn of a l.s.c. convex function ψn such
that (Identity × ∇ψn)#Pn = γn. Since supp(γn) ⊂ supp(γ) (and we know that ∂ψ ⊇
supp(γ)), it follows from parts (i) and (ii) of the proof above that ∇ψn = ∇ψ, Pn-a.s. As
a consequence, γn = (Identity × ∇ψ)#Pn, so that by taking weak limits as n → +∞, we
obtain γ = (Identity × ∇ψ)#P. Such a ∇ψ satisfies the assumptions of Theorem 2.3 (i) and,
moreover, any γ ∈ Π(P,Q) such that ∂ψ ⊇ supp(γ) for some proper l.s.c. convex function ψ is of
the form γ = (Identity × ∇ψ)#P.

11To meet the assumptions of Lemma 2.6, we need to ensure that, any proper l.s.c. convex function f such that ∇f
pushes P forward to Q satisfies P(cont(f)) = 1. This, however, follows from Bauschke and Combettes (2011, Proposi-
tion 17.41) and (15).
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3 Stability of transport maps and a central limit theorem

The objective of this section is to establish the stability of transport maps of the form ∇ψ,
where ψ : H → (−∞,∞] is a proper l.s.c. convex function. This problem has not been ad-
dressed so far in the literature for infinite-dimensional spaces. Indeed, the techniques of Hallin
et al. (2021), Ghosal and Sen (2022), del Barrio et al. (2022) or Segers (2022) are based on the
Fell topology, which does not have nice properties in non-locally compact spaces. Consequently, as
stressed by Segers (2022, p. 4), stability results, in general Hilbert spaces, are a challenging topic.

Our main stability result is stated in Theorem 3.1, along with some remarks. In Section 3.2, we
establish a central limit result for the cost of the optimal transport. The proof of Theorem 3.1 is given
in Section 3.3.

3.1 A stability result for cyclically monotone transport maps

Throughout, H stands for a separable Hilbert space. Unless otherwise specified, limits are taken
as n → ∞. By a strongly compact set K ⊂ H we mean a compact set K with respect to the strong
topology (i.e., xn → x if and only if ∥xn − x∥ → 0). Recall that, in a Hilbert space H, the closed
unit ball B(0, 1) = {x ∈ H : ∥x∥ ≤ 1} is weakly compact, but may not be strongly compact; see,
e.g., Brezis (2010, Theorem 3.16).

Theorem 3.1. Let {Pn}n∈N and {Qn}n∈N ⊆ P(H) be two sequences of probability measures
such that Pn

w−→ P ∈ P ℓ(H) and Qn
w−→ Q ∈ P(H). Assume that supp(Q) and supp(Qn) both

are subsets of the ball B(0,M) for all n ∈ N and some M > 0. Let γn ∈ Π(Pn,Qn) be such
that supp(γn) ⊆ ∂ψn for some proper l.s.c. convex function ψn, and let ψ be a proper l.s.c. convex
function such that ∇ψ#P = Q. Then,

(i) for any strongly compact set K ⊆ int(dom(∇ψ)) ∩ int(supp(P)) and any h ∈ H,

sup
(x,y)∈∂ψn,x∈K

⟨y − ∇ψ(x), h⟩ −→ 0; (18)

(ii) if ψ is (up to additive constants) the unique proper l.s.c. convex function such that ∇ψ#P = Q,
there exists a sequence {an}n∈N such that, for any strongly compact convex set K ⊆ supp(P),

sup
x∈K

|ψn(x) + an − ψ(x)| −→ 0; (19)

(iii) if supp(Q) is strongly compact or dim(H) is finite, under the same assumptions as in (i), we
have

sup
(x,y)∈∂ψn,x∈K

∥y − ∇ψ(x)∥ −→ 0. (20)

Relaxing some of the assumptions in Theorem 3.1 would be quite desirable; whether this is
possible, however, is unclear. Below are two examples of violations of these assumption under which
the theorem no longer holds true.

(a) [Boundedness of supp(Qn) and supp(Q)] Let P = Q denote the centered Gaussian distri-
bution with covariance operator diag(1/4i)—namely, the distribution ofX =

∑
i≥1(1/2i)ξiei

where {ξi}i≥1 are i.i.d. N(0, 1) and {ei}i∈N is some fixed orthonormal basis of H.
Let Qn, n ∈ N, denote the centered Gaussian distribution with covariance opera-
tor diag(1/(2 − 1/n)2i) with respect to the same orthonormal basis {ei}i∈N. Assume
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that Pn = P for all n ∈ N. Clearly: (i) the identity map Id is the unique gradient of a
convex function that pushes P forward to Q; (ii) the map x 7→ Tn(x) defined as

Tn(
∑
i≥1

λiei) :=
∑
i≥1

(2/(2 − 1/n))iλiei

is the unique gradient of a convex function that pushes Pn forward to Qn (see e.g., Cuesta-
Albertos et al. (1996, Proposition 2.2)); and (iii) we have Pn

w−→ P and Qn
w−→ Q. Let {xm}m≥1

be a sequence such that xm → x :=
∑

i≥1(1/i)ei; then ∥Tn(xm)∥ → ∞ asm → ∞ (where n
is kept fixed). Thus, we can choose xm(n) such that ∥Tn(xm(n))∥ > n. Set h ∈ H. As the
sequence {xm(n)}n∈N converges strongly to x, we have ⟨h, Id(xm(n))⟩ → ⟨h, x⟩ as n → ∞.
However, ∥Tn(xm(n))∥ → ∞. This means that the sequence {Tn(xm(n))}n∈N is unbounded.
Banach–Steinhaus’s theorem (e.g., Brezis (2010, Theorem 2.2)) then implies the existence of
some h ∈ H such that ⟨h, Tn(xm(n))⟩ → ∞ as n → ∞. As a consequence,

|⟨h, Tn(xm(n)) − Id(xm(n))⟩| = |⟨h, Tn(xm(n)) − xm(n)⟩| → +∞

as n → ∞, where we have used the fact that ⟨h, xm(n)⟩ → ⟨h, x⟩. Hence, part (i) of
Theorem 3.1 no longer holds true.

(b) [K ⊆ int(supp(P))] This assumption also appears in the finite-dimensional case (see del
Barrio et al. (2021b); González-Delgado et al. (2021); Segers (2022)). The following example,
where H = R, shows that this assumption cannot be avoided. Let P = Q ∈ P a.c.(R) be
the uniform distribution on (0, 1) ∪ (2, 3). Here, the identity function Id is the monotone
transport map pushing P forward to Q. Of course, Id is everywhere single-valued. Let Pn be
the uniform distribution on (0, 1 + 1/n) ∪ (2 + 1/n, 3). Then, a subdifferential ∂ψn (defined
as in Theorem 3.1) pushing Pn forward to Q is

∂ψn(x) :=


{x} if x ∈ (−∞, 1) ∪ (2 + 1/n,+∞),
{x+ 1} if x ∈ (1 + 1/n),
{2 + 1/n} if x ∈ [1 + 1/n, 2],
[1, 2] if x = 1.

Clearly, 2 ∈ ∂ψn(1) for all n ∈ N, but 2 ̸→ 1 = Id(1). This counterexample arises from
the fact that the identity function Id is not the unique monotone mapping pushing P forward
to Q. Although any other mapping T satisfying this property agrees with Id in the interior
of the support of P, there exist mappings that differ from Id on the boundary of the supp(P).
For example, consider the mapping T (x) = 2 for x ∈ [1, 2) and T (x) = x otherwise. This
mapping is monotone and does not agree with Id at point 1∈supp(P). Hence, we conclude
that the hypothesis K ⊆ int(supp(P)) cannot be relaxed without imposing some additional
assumptions (such as strict convexity; see Segers (2022)) on the shape of the support of Q.

(c) [Strong compactness of supp(Q)] In general, the subdifferential of a l.s.c. convex function is
strong-to-weak continuous in the set of differentiability points and strong-to-strong continuous
in the set of Fréchet differentiability points (Bauschke and Combettes, 2011, Theorem 21.22).
The latter is not necessarily a null set with respect to any non-degenerate Gaussian measure
(see Bogachev (2008, Problem 5.12.23) for an example). Hence, in an infinite-dimensional
space, we cannot expect strong convergences (as in part (iii) of the theorem) unless supp(Q)
is strongly compact.

Theorem 3.1 also has important consequences and potential applications.
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(d) [Discrete Pn] When Pn is discrete, a transport map inducing the coupling γn ∈ Π(Pn,Qn)
may not exist, but (under second order moment assumptions) the solution γn of the optimal
transport problem

inf
π∈Π(Pn,Qn)

∫
∥x− y∥2dπ(x, y)

always exists. In the notation of Theorem 3.1, the sequence γn of couplings thus still provides
a consistent estimator of ∇ψ since, for any h ∈ H,

sup
(x,y)∈ supp(γn),x∈K

⟨y − ∇ψ(x), h⟩ −→ 0 as n → ∞.

(e) [Glivenko-Cantelli] When Pn and Qn are supported on two disjoint sets of the same cardinality
and give the same probability mass to each point (i.e., Pn and Qn are the empirical measures
over these two sets), then, for each n ∈ N the transport problem (1) from Pn to Qn admits
a solution Tn defined uniquely on the support points of Pn only. In this case, under the
assumptions of Theorem 3.1, for any h ∈ H,

sup
x∈ supp(Pn)∩K

⟨Tn(x) − ∇ψ(x), h⟩ −→ 0 as n → ∞. (21)

This scenario frequently arises in statistical applications, where Pn is the empirical measure
associated with an i.i.d. sample X1, . . . , Xn ∼ P and Qn is a certain discretization of a given
reference measure Q. For H = R and Q = Uniform[0,1], the transport map Tn then reduces
to the usual cumulative distribution function: (21), therefore, has the form of an extended
local Glivenko-Cantelli theorem (where the convergence, moreover, holds P-a.s.). To obtain a
“full” (non-local, i.e., over all of H) Glivenko-Cantelli result, we may investigate the regularity
properties of ∇ψ under some smoothness assumptions on P. In the Euclidean case, such results
have been established in Hallin et al. (2021), del Barrio et al. (2020), Ghosal and Sen (2022)
and Figalli (2018). Their proof uses the well-known Caffarelli theory (see Figalli (2017) and
references therein) which, however, has not been fully developed in the infinite-dimensional
case.

3.2 A central limit result for Wasserstein distances

The stability (19) of potentials implies (under appropriate moment assumptions), via the Efron-Stein-
inequality-based argument of del Barrio and Loubes (2019) and del Barrio et al. (2021b), a central
limit behavior of the fluctuations of the squared Wasserstein distance

T2(Pn,Q) := inf
π∈Π(Pn,Q)

∫
∥x− y∥2dπ(x, y),

between the empirical distribution of an i.i.d. sample X1, . . . , Xn from P and Q. In the following
theorem, we show that, under suitable conditions, the fluctuations of T2(Pn,Q) around its expectation
are asymptotically Gaussian.

Theorem 3.2. Let P,Q ∈ P(H) be such that P ∈ P ℓ(H) and has connected support. Assume fur-
thermore that the boundary ∂ supp(P) of supp(P) has P-probability zero, that

∫
∥x∥4dP(x) < ∞,

and that supp(Q) is bounded. Then, there exists a unique (up to additive constants) proper l.s.c.
convex function ψ such that (∇ψ)#P = Q, and

√
n
(

T2(Pn,Q) − E[T2(Pn,Q)]
)

w−→ N
(

0, σ2
2(P,Q)

)
, (22)
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where N(0, σ2
2(P,Q)) is a univariate Gaussian distribution with mean zero and variance

σ2
2(P,Q) :=

∫
(∥x∥2 − 2ψ(x))2dP(x) −

(∫ (
∥x∥2 − 2ψ(x)

)
dP(x)

)2
. (23)

Note that a central limit theorem for T2(Pn,Q) centered at its population counterpart T2(P,Q)
is, in general, impossible in infinite-dimensional Hilbert spaces due to the well-known curse of
dimensionality: see, e.g., Weed and Bach (2019), who show that the convergence to zero of the bias
is much slower than the decrease of the variance in dimension higher than 5.12

The proof of Theorem 3.2 mainly consists of showing the P-a.s. uniqueness of ψ; the rest of the
proof follows, almost verbatim, along the arguments developed in del Barrio et al. (2021b). Details,
thus, are skipped. To prove the P-a.s. uniqueness of ψ, we first show that, if the subdifferentials of
two convex functions coincide on a dense subset of an open convex set, they coincide everywhere on
that open set. The following lemma makes this precise and is inspired by the proof of Case (2-c) in
Cordero-Erausquin and Figalli (2019).

Figure 1: A visual illustration of the proof of Lemma 3.3. The subdifferential ∂f maps each
region of the figure on the left to the region of the same color on the right. In each region we
can pick a point in Df∩g := {x ∈ H : ∂f(x) ∩ ∂g(x) ̸= ∅}, hence create a sequence xn → x0
with {xn}n∈N ⊂ Df∩g. Then the only possible limit for {yn}n∈N where yn ∈ ∂f(xn) ∩ ∂g(xn)
is y0.

Lemma 3.3. Let f, g : H → (−∞,+∞] be proper l.s.c. convex functions such that the set

Df∩g := {x ∈ H : ∂f(x) ∩ ∂g(x) ̸= ∅}

is dense in an open convex set U ⊆ int(dom(f)) ∩ int(dom(g)). Then ∂f = ∂g in U .
12There are a few exceptions, though. In some particular cases, when either P or Q or both are supported on simpler

spaces (such as a finite number of points or a lower-dimensional manifold), replacing the expectation of T2(Pn,Q) with
the population quantity T2(P,Q) in (22) is possible; see the results of del Barrio et al. (2021a) and Hundrieser et al. (2022).
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Proof. Suppose that there exists x0 ∈ U such that ∂f(x0) ̸= ∂g(x0). We will show that this
assumption leads at a contradiction. The set ∂f(x0) is convex and weakly compact (Bauschke and
Combettes, 2011, Proposition 16.14) so that, via the Lindenstrauss theorem (see Lindenstrauss (1963,
Theorem 4)), ∂f(x0) is the closure of the convex hull of the set S(x0) of its exposed points. That is,
for any y0 ∈ S(x0), there exists a supporting hyperplane H := {z ∈ H : ⟨z, b⟩ + a = 0} such that

∂f(x0) ∩H = {y0} while ∂f(x0) ⊆ H−,

where H− := {z ∈ H : ⟨z, b⟩ +a ≤ 0}; see the visual illustration provided in Figure 1. This implies
that

∂f(x0) ∩H+ = ∂f(x0) ∩
(
(H \H−) ∪H

)
= {y0}, (24)

where H+ := {z ∈ H : ⟨z, b⟩ + a ≥ 0}.
Without loss of generality, we can assume x0 = y0 = 0, ∥b∥ = 1, and a = 0 (this can be achieved

by redefining f as in (17)). Denote by π be the orthogonal projection to the space {λ b : λ ∈ R}⊥.
Thus, for any z ∈ H, we can write z = ⟨z, b⟩b + π(z) where ⟨b, π(z)⟩ = 0. Consider the open
convex truncated cone (see Figure 1 for an illustration)

Cn :=
{
z ∈ H : n−1⟨z, b⟩ > ∥π(z)∥

}
∩ B(0, n−1) ∩ U .

Let {xn}n≥1 ⊆ dom(f) ∩ dom(g) be a sequence such that xn ∈ Cn for all n ∈ N.
Clearly, xn → 0 ≡ x0. However, by strong-to-weak continuity of the subdifferential (see part (i) of
Lemma 2.1), any sequence yn ∈ ∂f(xn)∩∂g(xn) converges weakly (possibly along subsequences) to
some u ∈ ∂f(x0) ∩ ∂g(x0). Let us now show that u = y0 = 0. To do so, observe that, by cyclical
monotonicity,

0 ≤ ⟨xn−x0, yn−y0⟩ = ⟨xn, yn⟩⟨π(xn), π(yn)⟩+⟨xn, b⟩⟨b, yn⟩ ≤ ∥π(xn)∥∥π(yn)∥+⟨xn, b⟩⟨b, yn⟩.

Since xn ∈ Cn,

⟨xn, b⟩(n−1∥π(yn)∥ + ⟨b, yn⟩) > ∥π(yn)∥∥π(z)∥ + ⟨xn, b⟩⟨b, yn⟩ ≥ 0

with ⟨xn, b⟩ > 0, so that yn ∈ {y ∈ H : −n−1∥π(y)∥ ≤ ⟨y, b⟩}.
Let us show that the weak limit u of {yn}n∈N is such that ⟨u, b⟩ ≥ 0. Suppose therefore

that ⟨u, b⟩ = −δ < 0. Then, by the definition of the weak limit of {yn}, we obtain ⟨yn, b⟩ → −δ;
also note that lim sup ∥π(yn)∥ ≤ lim sup ∥yn∥ < ∞ (see e.g., Brezis (2010, Proposition 3.13 (iii))).
We also know that −n−1∥π(yn)∥ ≤ ⟨yn, b⟩, where taking limits yields the contradiction 0 ≤ −δ.
Hence, ⟨u, b⟩ ≥ 0.

As a consequence, u ∈ ∂f(x0) ∩ ∂g(x0) ∩ H+ where H+ := {z : ⟨z, b⟩ ≥ 0}. However, in
view of (24), y0 is the only point in ∂f(x0) ∩H+, so that y0 = u. This means that any y0 belonging
to S(x0) (the set extreme points of ∂f(x0)) also belongs to ∂g(x0). Hence, S(x0) ⊆ ∂g(x0).
Since ∂g(x0) is convex and weakly compact, ∂f(x0) ⊆ ∂g(x0). The converse follows by noting
that f and g are playing fully symmetric roles. Thus we obtain that ∂f(x0) = ∂g(x0), which yields
the contradiction. The claim follows.

Proof of Theorem 3.2. The proof of Theorem 3.2 is similar to that of del Barrio et al. (2021b,
Theorem 4.5) (see also González-Delgado et al. (2021) and del Barrio and Loubes (2019)) details
therefore are skipped and only a brief outline of the proof is given.

The proof proceeds via an application of the Efron-Stein inequality to the random variable

Rn := T2(Pn,Q) −
∫
ψ(x)dPn(x).
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Defining independent copies X ′
1, . . . , X

′
n of the random variables X1, . . . , Xn, denote by P(i)

n the
empirical measure on (X1, . . . , Xi−1, X

′
i, Xi+1, . . . , Xn) and by R(i)

n the version of Rn computed
from P(i)

n instead of Pn. The proof consists in showing that the sequence n(Rn −R
(i)
n ) converges

almost surely to 0 while n2E[(Rn − R
(i)
n )2] is bounded by some constant M . This latter claim is

a consequence of the finite fourth-order moment assumptions on P and Q while the first one (see
Eq. (6.2) in del Barrio et al. (2021b)) results from the stability of the potentials in Theorem 3.1 (ii)—
provided, however, that it holds true in this context. Assuming that it does, it follows from the
Banach-Alaoglu theorem (see e.g., Brezis (2010, Theorem 3.16)) and the Banach-Saks property
(see e.g., Brezis (2010, Exercise 5.24)) that there exists a subsequence of {n|Rn − R

(i)
n |}n∈N the

Cesàro mean13 of which converges to 0 in L2(P). The same property holds for the Cesàro means
of subsequences of {

√
n(Rn − ERn)}n∈N. This implies (see p. 21 in del Barrio et al. (2021b))

that
√
nE|Rn − ERn| converges to zero and the central limit theorem holds.

The only ingredient missing in this sequence of arguments, thus, is the stability result of the
potentials (Theorem 3.1-(ii)). The requirement here is the uniqueness (up to additive constants) of
the population potential ψ, which we now establish: given two proper l.s.c. convex functions ψ and f
such that ∇ψ = ∇f on a dense subset of int(supp(P)) ⊂ H, let us show that ψ and f are equal (up
to an additive constant) on int(supp(P)).

Let p ∈ int(supp(P)). Then there exists an open convex neighborhood B ⊂ int(supp(P))
of p. We have that ∇ψ = ∇f on a dense subset D of B. Lemma 3.3 thus implies that ∂ψ = ∂f
on B. Let B′ be an open convex neighborhood of p such that its topological closure B′ is contained
in B. Define sB′ as the support function of B′, i.e., sB′(x) = 0 if x ∈ B′ and +∞ otherwise.
Since ∂ψ̃(h) = ∂f̃(h) = ∅ for h ∈ H\B′ and ∂ψ̃(h) = ∂f̃(h) for h ∈ B′, the functions ψ̃ := ψ+sB′

and f̃ := f + sB′ are proper l.s.c. convex functions with ∂ψ̃ = ∂f̃ on H and ∇ψ̃ = ∇f̃ in the
dense subset D̃ := D ∪ (H \ B) of H. Rockafellar (1970, Theorem B) then yields the existence of
some a = ap ∈ R such that ψ̃ = f̃ + a. Thus, ψ = f + a on B′.

Up to this point, we have proven that, for all p ∈ H, there exists a neighborhood B′ of p and
a constant a = ap ∈ R such that ψ = f + a on B′. Using a connectedness14 argument, let us
show that this constant actually does not depend on p. The set Θ of all x in int(supp(P)) such
that ψ(x) = f(x)+a is open (i.e., each q ∈ Θ has a neighborhood where ψ = f +a) and non-empty
(since p ∈ Θ). Its complement is open, too (for each q ̸∈ Θ there exists a neighborhood of q
where ψ = f + b, with b ̸= a, and this neighborhood obviously does not contain any element of Θ).
Since int(supp(P)) is connected, Θ = int(supp(P)). This completes the proof of Theorem 3.2.

3.3 Proof of Theorem 3.1

The proof of Theorem 3.1 relies on a series of lemmas. Some of these lemmas are self-contained
“general” results; some others address the specific setting of Theorem 3.1.

Lemma 3.4. Under the assumptions of Theorem 3.1, γn
w−→ γ, where γ ∈ Π(P,Q) is the unique

probability measure such that supp(γ) ⊆ ∂ψ for some l.s.c. convex function ψ.

Proof. Lemma 2.4 implies that for any subsequence {γnk}k∈N there exists a further subse-
quence {γnki}i∈N converging weakly to a probability measure γ ∈ Π(P,Q) such that supp(γ) ⊆ ∂ψ
for some l.s.c. convex function ψ. Since ∂ψ is P-a.s. a singleton, it follows from Theorem 2.3
that γ = (Identity,∇ψ)#P is unique. Hence γn

w−→ γ.

13T Recall that the Cesàro mean of a sequence {xn}n∈N is the sequence {yn := 1
n

∑n
i=1 xi}n∈N.

14Recall that a set is connected if it cannot be written as the union of two non-empty open and disjoint sets.
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In order to move from weak convergence of couplings to convergence of mappings, we use the
set-topology of subdifferentials of the form ∂ψn where ψn denotes a sequence of convex functions
defined over H. Denoting by {An}n∈N a sequence of subsets of a second countable topological
space15 Y , define the inner and outer limits of {An}n∈N as

LiminnY
n An := {x ∈ Y : exists {xn}n∈N with xn ∈ An such that xn

Y−→ x as n → ∞}

and
LimoutY

n An := {x ∈ Y : exists {xnk}k∈N with xnk ∈ Ank such that xnk
Y−→ x as k → ∞},

respectively. Here the convergence xn
Y−→ x is to be understood in the sense of the topology of Y ,

i.e., for any neighborhood Ux of x, there exists NUx ∈ N such that xn ∈ Ux, for all n ≥ NUx . The
corresponding limit exists if and only if the inner and outer limits coincide, in which case we say
that {An}n∈N converges in the Painlevé-Kuratowski sense with respect to the topology of Y . When
the space Y is not second countable, the inner and outer limits are usually expressed in terms of nets
instead of sequences. For ease of reference, we recall here a fundamental result on this type of set
convergence, known in the literature as Mrówka’s theorem (see, e.g., Beer (1993, Theorem 5.2.12)).

Lemma 3.5 (Mrówka). Let Y be a second countable topological space. Then, for any sequence
{An}n∈N of subsets of Y , there exists a Painlevé-Kuratowski convergent subsequence {Ank}k∈N.

In particular, for Y = H × H, denote by

Limouts−wn An := {(x, y) ∈ H × H : exists (xnk , ynk) ∈ Ank such that xnk → x and ynk ⇀ y}

and

Liminns−wn An := {(x, y) ∈ H × H : exists (xn, yn) ∈ An such that xn → x and yn ⇀ y},

respectively, the strong-to-weak outer limits and strong-to-weak inner limits of {An}n∈N. For
sequences of subdifferentials of the form ∂ψn, when Liminns−wn ∂ψn = Limouts−wn ∂ψn, we
denote by Lims−w

n ∂ψn the strong-to-weak Painlevé-Kuratowski limit. Painlevé-Kuratowski limits
are appropriate for sequences of cyclically monotone sets since, as the following result shows, they
preserve that property.

Lemma 3.6. Let {Γn}n∈N be a sequence of cyclically monotone subsets of the product space H × H.
If Γs−w := Liminns−wn Γn ̸= ∅, then Γs−w is also cyclically monotone.

Proof. By definition, for each finite N -tuple {(xk, yk)}Nk=1 ⊆ Γs−w, there exists a sequence
of N -tuples {{(xnk , ynk )}Nk=1}n∈N with {(xnk , ynk )}Nk=1 ⊆ Γn such that xnk → xk and ynk ⇀ yk
as n → ∞, for all k = 1, . . . , N . For each n ∈ N, cyclical monotonicity of Γn implies

N∑
k=1

⟨xnk , ynk+1 − ynk ⟩ ≤ 0. (25)

Now, {∥ynk+1 − ynk∥}n∈N is bounded (e.g., Brezis (2010, Proposition 3.13 (iii))), so that

|⟨xnk , ynk+1 − ynk ⟩ − ⟨xk, yk+1 − yk⟩| = |⟨xnk − xk, y
n
k+1 − ynk ⟩ + ⟨xk, ynk+1 − ynk − (yk+1 − yk)⟩|

≤ ∥xnk − xk∥∥ynk+1 − ynk∥ + |⟨xk, ynk+1 − ynk − (yk+1 − yk)⟩| → 0.

Taking limits in (25) yields
∑N

k=1⟨xk, yk+1 − yk⟩ ≤ 0. The claim follows.

15A topological space is said to be second countable if its topology admits a countable basis.
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Let us now get back to the setting and the notation of Theorem 3.1. Observe that H × H with
strong topologies on both sets is a separable metric space and hence is second countable (see Rudin
(1953, Exercise 2.23)). The space H endowed with the weak topology, however, is not second
countable (see Helmberg (2006, Corollary 1)), so that Mrówka’s theorem does not directly apply to
Lims−w

n ∂ψn in the product space H × H when considering the strong topology in the first factor
and the weak topology in the second one—see Beer (1993, Proposition 5.2.13) for a counter-example
assuming the continuum hypothesis. However, consider the open ball B(0,M) with radius M
centered at 0, endowed with the metric structure (B(0,M), ∥ · ∥w), where

∥x∥w :=
∑
k∈N

1
2k

|⟨x, ek⟩|
1 + |⟨x, ek⟩|

(26)

with {ek}k∈N an orthonormal basis of H. The norm (26) metrizes weak convergence in B(0,M),
so that if

⋃
n∈N,x∈K ∂ψn(x) is a subset of B(0,M) — which holds by assumption — it is relatively

compact in (B(0,M), ∥ · ∥w). Moreover, (B(0,M), ∥ · ∥w) is separable and, being metrizable, it is
second countable, see Rudin (1953, Exercise 2.23). Mrówka’s theorem, thus, now applies.

Mrówka’s theorem (Lemma 3.5) implies that, given the sequence {∂ψn}n∈N, there exists a
subsequence {∂ψnk}k∈N which converges, in the Painlevé-Kuratowski sense with respect to the
strong-to-weak topology, to some Γ′. But this limit may be the empty set, rendering the application
of Mrówka’s theorem meaningless. The following Lemma shows that this is not the case for the
sequence of subdifferentials. The strong-to-weak Painlevé-Kuratowski inner limit Γ of {∂ψn}n∈N —
hence, also the set Γ′ ⊇ Γ — is non-empty and contains all the points of supp(P) at which ∂ψ is a
singleton.

Lemma 3.7. Under the assumptions of Theorem 3.1, the set Liminns−w ∂ψn in nonempty and,
moreover, contains {(h,∇ψ(h)) : h ∈ supp(P ) ∩ dom(∇ψ)}.

Proof. Let h ∈ supp(P ) ∩ dom(∇ψ) and let y := ∇ψ(h). Denote by {Um
y }m∈N a decreasing

(i.e., Um
y ⊆ Um−1

y ) countable sequence of neighborhoods (with respect to the strong topology) of y
such that

⋂
m∈N Um

y = {y}. Then, Bauschke and Combettes (2011, Theorem 21.22) entails the
existence of a selection16 Q of ∂ψ and a decreasing sequence of neighborhoods (with respect to
the weak topology) {Vmh }m∈N of h such that

⋂
m∈N Vmh = {h} and Q(Vmh ) ⊆ Um

y for all m ∈ N.
Since Vmh has non-empty interior and h ∈ supp(P ), and since γ = (Identity × Q)#P, we have

γ(Vmh × Um
y ) ≥ γ(Vmh × Q(Vmh )) = µ(Vmh ) =: δm > 0.

Moreover, δm → 0 monotonically because
⋂
m∈N Vmh = {h} and Vmh ⊆ Vm−1

h . Fix m ∈ N:
since γn converges weakly to γ = (Identity × Q)#P, the Portmanteau theorem yields

lim inf
n
γn(Vmh × Um

y ) ≥ δm,

so that there exists Nm ∈ N and a sequence (hn, yn) such that

(hn, yn) ∈ (Vmh × Um
y ) ∩ supp(γn)

for all n ≥ Nm. By definition of γn, there exists (hn, yn) ∈ ∂ψn such that hn ∈ Vmh and yn ∈ Um
y .

Lettingm → ∞ yields a sequence {(hn, yn)}n∈N with (hn, yn) ∈ ∂ψn, hn −→ h, and yn ⇀ ∇ψ(h),
which completes the proof.

16A selection of ∂ψ is a map Q : dom(∂ψ) → H such that (x,Q(x)) ∈ ∂ψ for all x ∈ dom(∂ψ) (see Bauschke and
Combettes (2011, p. 2)).
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Lemma 3.6 implies that, in the context of Theorem 3.1, for any subsequence {nk}k∈N, the
limiting sets Γ := Liminns−wn ∂ψn and Γ′ := Lims−w

k ∂ψnk both are cyclically monotone. As
a consequence, there exists a convex function ρ such that Γ ⊆ Γ′ ⊆ ∂ρ (see Rockafellar (1970,
Theorem B)). In view of Lemma 3.7, we have, still in the setting of Theorem 3.1, (h,∇ψ(h)) ∈ ∂ρ
for any h ∈ supp(P ) ∩ dom(∇ψ). Since this set is dense in supp(P) (see Bauschke and Combettes
(2011, Theorem 21.22)), Lemma 3.3 entails ∂ρ = ∂ψ in int supp(P), so that Γ ⊆ Γ′ ⊆ ∂ψ. This
constitutes a fundamental difference with the finite-dimensional case. In Euclidean spaces, indeed,
the limits of maximal monotone operators (subdifferentials of proper l.s.c. convex functions) is
automatically maximal monotone (see e.g. Adly et al. (2022)) and, instead of Γ ⊆ Γ′ ⊆ ∂ψ, it holds
that Γ = Γ′ = ∂ψ. In the infinite-dimensional case, with the notation of Theorem 3.1, we thus have
the following property.

Lemma 3.8. Under the assumptions of Theorem 3.1,

(i) for any x ∈ dom(∇ψ) ∩ int(supp(P)), there exists a sequence {(xn, yn)}n≥1 such that xn →
x and yn ⇀ ∇ψ(x) with yn ∈ ∂ψ(xn) for n large enough;

(ii) for any sequence {(xn, yn)} (or subsequence thereof) such that xn → x ∈ int(supp(P))
and yn ⇀ y, with yn ∈ ∂ψ(xn) for n large enough, y ∈ ∂ψ(x).

We are now ready for the proof of Theorem 3.1.

Proof of Theorem 3.1. First consider parts (i) and (iii). Set h ∈ H and suppose that

lim inf
n→∞

sup
(x,y)∈∂ψn, x∈K

|⟨y − ∇ψ(x), h⟩| > ϵ

for some K ⊆ dom(∇ψ) ∩ int(supp(P )): that implies the existence of sequences {xnk}k∈N ⊆ K
and {ynk}k∈N ⊆ H with ynk ∈ ∂ψnk(xnk) such that, for all k ≥ 1,

|⟨ynk − ∇ψ(xnk), h⟩| > ϵ. (27)

Since (by assumption)
⋃
n≥N0,x∈K ∂ψn(x) is contained in the ball B(0,M), there exist (by the

Banach-Alaoglu theorem; see e.g., Brezis (2010, Theorem 3.16)) a weak limit y of the sub-
sequence {ynki}i∈N and (by the strong compactness of K) a strong limit x of the subse-
quence {xnki}k∈N. The limit (x, y) belongs to the set Liminns−wi ∂ψnki , hence, via Lemma 3.8, the
only possible value of (x, y) is (x,∇ψ(x)). This yields a contradiction to (27) and proves part (i) of
the theorem, of which part (iii) is a direct consequence.

Turning to part (ii), let K be an arbitrary convex strongly compact subset of supp(P). Starting
from K0 := K, one can create an increasing sequence {Ki}∞

i=0 of strongly compact convex17 sets
such that P(H \Ki) ≤ 1

2i . Let K :=
⋃
i∈NKi. The functions ψn can be extended to be continuous

on H in view of the fact that
⋃
x∈H ∂ψn(x) ⊂ B(0,M) (see e.g., (15)). Let C(K) denote the space

of bounded continuous functions endowed with the metric

∥f∥K :=
∞∑
j=0

∥f∥Kj
(diam(Kj) + 1)2j

where ∥f∥Kj := supx∈Kj |f(x)| and diam(K) := supx,y∈K ∥x− y∥. Observe that fn → f in C(K)
if and only if fn → f uniformly in Ki for all i ∈ N. Since ψ, in part (ii) of the theorem, is unique

17Without loss of generality we can assume that Ki is convex for all i ∈ N; otherwise we replace each Ki by its closed
convex hull, which still enjoys strong compactness (see Rudin (1990, Theorem 3.20)).
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up to additive constants only, we can set ψn(x0) = ψ(x0) = 0 for some x0 ∈ supp(P). Note that,
for any x1, x2 ∈ K0 and y1

n ∈ ∂ψn(x1), y2
n ∈ ∂ψn(x2), the inequalities

ψn(x1) − ψn(x2) ≤ ⟨y1
n, x

1 − x2⟩ and ψn(x1) − ψn(x2) ≥ ⟨y2
n, x

1 − x2⟩, (28)

along with the assumption of bounded support, imply |ψn(x1) − ψn(x2)| ≤ M∥x1 − x2∥ for n
large enough. Then, the Arzelà-Ascoli theorem implies the uniform convergence of ψn (along a sub-
sequence {n0

k}k∈N) to a function ρ0 inK0. Set n0 ∈ N such that ∥ρ0 −ψn0∥K0 ≤ 1/20 = 1. We con-
struct a general ρ by using a diagonal argument: for K1, there exists a subse-
quence {n1

k}k∈N of {n0
k}k∈N such that ψn1

k
converges uniformly in K1 to a function ρ1. Set n1 ∈ N

such that ∥ρ1 − ψn1∥K1 ≤ 1/21 = 1/2. Note that ρ1 agrees with ρ0 in K0. Continuing in this
fashion for j = 1, 2, . . ., define ρj on Kj , which agrees with ρi on Ki for i < j with

∥ρj − ψnj∥Kj ≤ 1
2j . (29)

This iterative construction yields ρ as the unique function in K which agrees with ρi in Ki for
all i ∈ N and a sequence {ni}i∈N such that

∥ψni − ρ∥K ≤ C

2i +
∞∑
j=ni

∥ρj∥Kj∥ψni∥Kj
(diam(Kj) + 1)2j

where C :=
∑∞

j=0 1/(diam(Kj) + 1)2j < ∞. Since

∥ρj∥Kj ≤ ∥ψnj∥Kj + 1/2j ≤ M diam(Kj) + 1/2j ,

the rest
∑∞

j=ni ∥ρj∥Kj∥ψni∥Kj/(diam(Kj) + 1)2j of the series tends to zero as i → ∞. As a
consequence, ∥ψni − ρ∥K → 0 as i → ∞. We claim that this limit ρ is convex and continuous in K.
To prove convexity, set t ∈ (0, 1), (x, y) ∈ K2, and take limits (as i → ∞) in

ψni(tx+ (1 − t)y) ≤ tψni(x) + (1 − t)ψni(y).

To prove continuity in K, set (x1, x2) ∈ K2. There exists some Kj such that x1 and x2 both lie in Kℓ

for ℓ ≥ j. Since |ψni(x1) − ψni(x2)| ≤ M∥x1 − x2∥ and ∥ψni − ρ∥Kj → 0, we conclude that

|ρ(x1) − ρ(x2)| ≤ M∥x1 − x2∥

by letting i → ∞ in |ρ(x1) − ρ(x2)| ≤ 2∥ρ − ψni∥Kj + |ψni(x1) − ψni(x2)|. Set (i, j) ∈ N2

and characterize the measure γKjni by imposing
∫
f(x, y)dγKjni (x, y) =

∫
IKj (x)f(x, y)dγni(x, y)

(where IKj denotes the indicator function of the set Kj) for any continuous bounded

function f : H × H → R. Denote by PKjni and QKj
ni its marginals. Since supp(γni) is cycli-

cally monotone, supp(γKjni ) is cyclically monotone as well. The ‘truncated’ conjugate function

ψ∗
ni,Kj (y) := sup

x∈Kj
{⟨x, y⟩ − ψni(x)}, y ∈ H

satisfies
ψni(x) + ψ∗

ni,Kj (y) = ⟨x, y⟩ for γKjni -almost all (x, y). (30)

As i → +∞ with j fixed, γKjni tends weakly to the measure γKj characterized by∫
f(x, y)dγKj (x, y) =

∫
IKj (x)f(x, y)dγ(x, y)
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for any continuous bounded function f : H × H → R. Let us show that the truncated conjugate of ρ,
namely,

ρ∗
Kj (y) := sup

x∈Kj
{⟨x, y⟩ − ρ(x)} = sup

x∈Kj
{⟨x, y⟩ − ρj(x)}

is the uniform (in H) limit of ψ∗
ni,Kj

as i → ∞. To prove this claim, note that for all y ∈ H and
all i ≥ j,

|ψ∗
ni,Kj (y) − ρ∗

Kj (y)| ≤ ∥ρj − ψni∥Kj = ∥ρi − ψni∥Kj ≤ ∥ρi − ψni∥Ki ≤ 1
2i

i→∞−−−→ 0,

where the last inequality holds by construction (see (29). As a consequence, from Markov’s inequality,

QKi
ni ({y : |ρ∗

Kj (y) − ψ∗
ni,Kj (y)| > δ}) ≤ 1

2iδ → 0

as i → ∞ with j fixed, for all δ > 0. On the other hand, still using Markov’s inequality, we obtain

PKjni ({x : |ψni(x) − ρ(x)| > δ}) = Pni({x : |ψni(x) − ρi(x)| > δ} ∩Kj) ≤ 1
2iδ ,

which tends to zero as i → ∞ with j fixed. Then,

γ
Kj
ni

(
{(x, y) : |ρ(x) + ρ∗

Kj (y) − (ψni(x) + ψ∗
ni,Kj (y))| > δ}

)
→ 0

as i → ∞ so that, via (30),

γ
Kj
ni ({(x, y) : |⟨x, y⟩ − (ρ(x) + ρ∗

Kj (y))| > δ}) → 0

as i → ∞. Since (by the continuity of ρ and ρ∗
Kj

in Kj and H, respectively) the set

{(x, y) ∈ Kj × H : |⟨x, y⟩ − (ρ(x) + ρ∗
Kj (y))| > δ}

is open in Kj × H, the Portmanteau theorem yields

0 = lim inf
i

γ
Kj
ni ({(x, y) : |⟨x, y⟩ − (ρ(x) + ρ∗

Kj (y))| > δ})

≥ γKj ({(x, y) : |⟨x, y⟩ − (ρ(x) + ρ∗
Kj (y))| > δ}).

From this we conclude that γKj ({(x, y) : |⟨x, y⟩ − (ρ(x) + ρ∗
Kj

(y))| > δ}) = 0. Thus, on the one
hand,

⟨x, y⟩ − (ρi(x) + ρ∗
Kj (y)) = 0, for γKj -almost all (x, y) (31)

and, on the other hand,

⟨x, y⟩ − (ψ(x) + ψ∗(y)) = 0, for γKj -almost all (x, y). (32)

Theorem 2.3 applied to the marginals PKj and QKj of γKj (rescaled in order to be probability
measures) yields ∇ρ(x) = ∇ψ(x) for PKj -almost all x. That is, ∇ρ(x) = ∇ψ(x) for P-almost
all x ∈ Kj . As a consequence,

P({x ∈ H : ∇ρ(x) ̸= ∇ψ(x)}) ≤ P({x ∈ H : ∇ρ(x) ̸= ∇ψ(x)} ∩Kj) + P(H \Kj)

= P(H \Kj) ≤ 1
2j .

Letting j → ∞, we obtain P({x ∈ H : ∇ρ(x) = ∇ψ(x)}) = 1. Then, by the assumed
uniqueness, there exists a ∈ R such that ρ = ψ + a P-a.s. Such an a must be zero due to the fact
that ρ(x0) = limi→∞ ψni(x0) = ψ(x0).

To conclude, let us show that ρ(x) = ψ(x) for all x ∈ K. Assume that ρ(x1) ̸= ψ(x1) for
some x1 ∈ K0 = K ⊂ supp(P). The continuity of ρ − ψ in K implies that ρ(x) ̸= ψ(x) for
all x ∈ B(x1, ϵ) ∩ K with ϵ > 0 small enough. This, however, cannot be since P(B(x1, ϵ) ∩ K) > 0.
Hence, ρ(x) = ψ(x) for all x ∈ K, as was to be shown.
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