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Abstract We consider point estimation in an elliptical Principal Component Anal-
ysis framework. More precisely, we focus on the problem of estimating the leading
eigenvector \\\1 of the corresponding shape matrix. We consider this problem un-
der asymptotic scenarios that allow the difference A= := _=1 − _=2 between both
largest eigenvalues of the underlying shape matrix to converge to zero as the sam-
ple size = diverges to infinity. Such scenarios make the problem of estimating \\\1
challenging since this leading eigenvector is then not identifiable in the limit. In
this framework, we study the asymptotic behavior of \̂\\1, the leading eigenvector of
Tyler’s M-estimator of shape. We show that consistency and asymptotic normality
survive scenarios where

√
=A= diverges to infinity as = does, although the faster

the sequence (A=) converges to zero, the poorer the corresponding consistency rate
is. We also prove that consistency is lost if A= = $ (1/

√
=), but that \̂\\1 still bears

some information on \\\1 when
√
=A= converges to a positive constant. When

√
=A=

diverges to infinity, we provide asymptotic confidence zones for \\\1 based on \̂\\1. Our
non-standard asymptotic results are supported by Monte-Carlo exercises.

1 Introduction

Many classical models in multivariate statistics include scatter parameters. The most
common example is the elliptical model where observations are independent copies
of a random ?-vector X whose characteristic function is of the form

t ↦→ 48t
′ `̀̀q(t′ΣΣΣt) (1)
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for some characteristic generator q : R+ → R. Here, the ?-vector `̀̀ is a location
parameter and the ? × ? symmetric and positive definite matrixΣΣΣ is a scatter param-
eter. A very popular instance is of course the ?-variate normal model that is obtained
with q(B) = exp(−B2/2). Inference on the scatter parameter in the elliptical model
has been the subject of many contributions: to cite only a few, [6, 11, 20] studied the
asymptotic properties of robust estimators ofΣΣΣ, [1] provided several properties of the
Minimum Covariance Determinant estimator ofΣΣΣ, sphericity tests have been studied
in [8, 13], [18] computed the influence functions of empirical canonical correlation
coefficients, [9, 10, 17, 21, 22] considered Principal Component Analysis based on
estimators of ΣΣΣ, whereas [4, 19] studied estimators of the eigenvalues of ΣΣΣ.

In the present paper, we consider estimation of the leading eigenvector of ΣΣΣ,
that is, of the eigenvector, \\\1 say, associated with the largest eigenvalue of ΣΣΣ. This
is of course the primary object of interest when conducting a Principal Component
Analysis exercise. Since \\\1 does not changewhenΣΣΣ is replacedwith 2ΣΣΣ for any 2 > 0,
we actually want to estimate the leading eigenvector of the shape matrix

V :=
ΣΣΣ

(detΣΣΣ)1/?
(2)

associated with ΣΣΣ, that is, of the version of ΣΣΣ that is normalized to have determinant
one (see [14]); note that this also takes care of the fact that, in (1),ΣΣΣwas identified up
to a positive scalar factor only. What makes our contribution original is that we will
consider double asymptotic scenarios where, as the sample size = diverges to infinity,
the underlying shape matrix V = V= has its two leading eigenvalues _=1 > _=2 that
satisfy _=1/_=2 → 1. This means that, while \\\1 is properly identifiable for any =
(up to an unimportant sign change, as usual), it is no more identifiable in the limit
as = → ∞. Obviously, such weak identifiability scenarios make inference on \\\1
challenging for large =.

More precisely, we will consider throughout triangular arrays of observa-
tions X=1, . . . ,X==, where, for each =, the X8=’s form a random sample from the
?-variate elliptical distribution with location `̀̀, shape matrix

V= =
I? + X=b\\\1\\\

′
1

(det(I? + X=b\\\1\\\
′
1))1/?

=
(1 + X=b)
(1 + X=b)1/?

\\\1\\\
′
1+

1
(1 + X=b)1/?

(I?−\\\1\\\
′
1), (3)

and characteristic generator q=; in (3), \\\1 is a unit ?-vector, b is a positive real
number, and X= is a bounded positive sequence. We will denote the corresponding
sequence of hypotheses as P\\\1 , X= , b ,q= . Throughout the paper, we tacitly assume
that q= is such that X=1 ≠ 0 almost surely, which is needed to make Tyler’s estimator
of shape well-defined below. The second expression of V= in (3) makes it clear that
the leading eigenvalue of V= is

_=1 := (1 + X=b) (?−1)/? , (4)

with corresponding eigenvector \\\1, and that its remaining eigenvalues are
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_=2 = . . . = _=? := (1 + X=b)−1/? , (5)

with an eigenspace that is obviously the orthogonal complement to \\\1. If X = 1 for
any = (which we will denote as X ≡ 1 in the sequel), then the classical setup in
which _=1 remains asymptotically well separated from the remaining eigenvalues is
obtained. While we will cover this case as well, our main interest below will be on
the weakly identifiable case where X= is >(1), which provides _=1/_=2 → 1, hence
makes \\\1 unidentifiable in the limit.

In the sequel, we will restrict to the case `̀̀ = 0, which is actually without any
loss of generality in the distributional setup considered above. In elliptical models,
the Fisher information matrix for location and shape parameters is indeed block-
diagonal (see [8]), which entails that asymptotic inference for the shape parameter
can be conducted in the same way under specified and unspecified location (block-
diagonality of the Fisher information matrix guarantees in particular that parametric
efficiency bounds for shape under known and unknown `̀̀ do coincide). In the
specified location case, the results of this paper actually trivially extend to the
generalized elliptical distributions introduced in [5].

Quite naturally, \\\1 can be estimated by the leading eigenvector of a shape estima-
tor V̂=. For this purpose, we will focus in this paper on the shape estimator V̂= that
was proposed by David Tyler in [20]. We will investigate the asymptotic behavior of
the corresponding leading eigenvector \̂\\=1 in the triangular distributional framework
described above. In particular, we will show that \̂\\=1 is consistent and asymptoti-
cally normal when

√
=X= → ∞, but that it is not consistent when X= = $ (1/

√
=).

We will precisely derive the limiting distribution of \̂\\=1 for any sequence (X=). Our
results identify the same phase transitions as in the corresponding hypothesis testing
framework, when testing H0 : \\\1 = \\\

0
1 against H1 : \\\1 ≠ \\\0

1 for some fixed unit
?-vector \\\0

1; see [15, 16].
The rest of the paper is organized as follows: in Section 2, we recall the definition

of Tyler’s estimator of shape V̂= and provide its asymptotic distribution under weak
identifiability. In Section 3, we derive the limiting behavior of \̂\\=1 under weak iden-
tifiability and discuss the construction of confidence zones for \\\1 under sequences X=
such that

√
=X= → ∞. In Section 4, we corroborate the results of Section 3 through

Monte-Carlo exercises. A technical appendix collects the proofs.
For the sake of convenience, we collect here the notation that will be used in the

paper. Throughout, eℓ will denote the ℓth vector of the canonical basis of R? , so that
K? :=

∑?

8, 9=1 (e8e
′
9
) ⊗ (e 9e′8) is the usual commutation matrix. Denoting as vec A the

vector obtained by stacking the columns of the matrix A on top of each other, we
let J? := (vec I?) (vec I?) ′, where Iℓ is the ℓ-dimensional identity matrix. We will
write diag(01, . . . , 0ℓ) for the diagonal matrix collecting the real numbers 01, . . . , 0ℓ
on its diagonal. For a symmetric and positive definitematrixB, wewill denote asB1/2

its symmetric and positive definite square root and as B−1/2 the inverse of this square
root. Finally,→D will stand for convergence in distribution.
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2 Tyler’s estimator of shape under weak identifiability

As explained above, we consider the problem of estimating the eigenvector \\\1 asso-
ciated with the largest eigenvalue of the underlying shape matrix V=. To estimate \\\1,
we will use the leading eigenvector \̂\\=1 of Tyler’s estimator of shape V̂= from [20].
Under specified location `̀̀ = 0, this shape estimator V̂= is defined as the solution of

?

=

=∑
8=1

X=8X′=8
X′
=8

V̂−1
= X=8

= V̂=, (6)

normalized to have unit determinant. This can be seen as the estimator of shape for
which the directions (or spatial signs) of the resulting sphericized observations

V̂−1/2
= X=1

‖V̂−1/2
= X=1‖

, . . . ,
V̂−1/2
= X==

‖V̂−1/2
= X==‖

have an empirical covariance matrix (with respect to specified location `̀̀ = 0) equal
to (1/?)I? . Tyler’s estimator of shape enjoys many nice properties. In particular, it
is distribution-free in the (centered) elliptical model and it is consistent and asymp-
totically normal under a broad range of distributions without moment assumptions;
see [20]. Distribution-freeness is an important property since it entails that the dis-
tribution of \̂\\=1 does not depend on the underlying characteristic generator q=, that
is, it does not depend on the type of elliptical distribution at hand (normal, C, etc.)
nor on the scale of this elliptical distribution.

The following result provides the asymptotic distribution of Tyler’s estimator of
shape in a framework where \\\1 is possibly weakly identifiable.

Proposition 1 Fix a unit vector \\\1, a positive real number b and a sequence (X=)
that either is X= ≡ 1 or is >(1). Let (V=) be the resulting sequence of shape matrices
in (3). Let further (q=) be a sequence of characteristic generators. Then,

√
= vec(V̂= − V=) →D N

(
0,

(
1 + 2

?

) {
(I?2 +K?) (V ⊗ V) − 2

?
vec(V)vec′(V)

} )
under P\\\1 , X= , b ,q= as =→∞, where V is the limit of (V=).

This result shows that root-= consistency of Tyler’s estimator of shape V̂= is
robust to arbitrarily weakly identifiable scenarios, that is, to scenarios where (X=)
converges to zero arbitrarily fast. As we will show in the next section, this is not the
case for the leading eigenvector of V̂=.
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3 Asymptotic behavior of Tyler’s leading eigenvector under weak
identifiability

The main goal of this section is to derive the asymptotic behavior of the leading
eigenvector \̂\\=1 of V̂= under weak identifiability. Denoting as _̂= 9 , 9 = 1, . . . , ?,
the eigenvalues of V̂= in decreasing order (these sample eigenvalues are pairwise
different almost surely), we first provide the following result, that shows that root-=
consistency of these eigenvalues is robust to weak identifiability.

Proposition 2 Fix a unit vector \\\1, a positive real number b and a sequence (X=)
that either is X= ≡ 1 or is >(1). Let (q=) be a sequence of characteristic generators.
Then, for any 9 = 1, . . . , ?,

√
=(_̂= 9 − _= 9 ) is $P (1) as =→∞ under P\\\1 , X= , b ,q= .

With \\\1 fixed, pick arbitrarily ?-vectors \\\2, . . . , \\\ ? such thatΓΓΓ := (\\\1, \\\2, . . . , \\\ ?)
is orthogonal. Let further Γ̂ΓΓ= := (\̂\\=1, . . . , \̂\\=?) stand for the orthogonal matrix
whose 9 th column vector is an eigenvector of V̂= associated with eigenvalue _̂= 9 . To
unambiguously fix the “signs” of \̂\\= 9 , 9 = 1, . . . , ?, we impose that, with probability
one, all entries in the first column of

E= := Γ̂ΓΓ′=ΓΓΓ =
(
�=,11 E=,12
E=,21 E=,22

)
(7)

are positive (note that all entries of E= are almost surely non-zero). The following
result then provides the asymptotic behavior of E= in the present context.

Proposition 3 Fix a unit vector \\\1, a positive real number b and a sequence (X=)
that either is X= ≡ 1 or is >(1). Let (q=) be a sequence of characteristic generators.
Let Z be a ? × ? random matrix such that

vec(Z) ∼ N
(
0,

(
1 + 2

?

) {
(I?2 +K?) −

2
?

J?
})
,

and let E(b) := (w1 (b), . . . ,w? (b)) ′, where w 9 (b) = (F 91 (b), . . . , F 9 ? (b)) ′ is the
unit eigenvector associated with the 9 th largest eigenvalue of Z + diag(b, 0, . . . , 0)
and such that F 91 (b) > 0 almost surely. Then, we have the following as = → ∞
under P\\\1 , X= , b ,q= :

(i) if X= ≡ 1, then =(�=,11−1) = $P (1),E=,22E′
=,22 = I?−1+>P (1),

√
=E=,21 = $P (1),

and both
√
=E′

=,22E=,21 and
√
=E′

=,12 are asymptotically normal with mean zero
and covariance matrix b−2 (1 + b) (1 + 2

?
)I?−1;

(ii) if X= is >(1) with
√
=X= → ∞, then =X2

= (�=,11 − 1) = $P (1), E=,22E′
=,22 =

I?−1 + >P (1),
√
=X=E=,21 = $P (1), and both

√
=X=E′=,22E=,21 and

√
=X=E′=,12 are

asymptotically normal with mean zero and covariance matrix b−2 (1 + 2
?
)I?−1;

(iii) if X= = 1/
√
=, then E= converges weakly to E(b);

(iv) if X= = >(1/
√
=), then E= converges weakly to E := E(0).
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The four regimes (i)–(iv) identified in this result will play a crucial role in the
asymptotic behavior of \̂\\=1 below. At this point, let us note that, in regimes (i)–(ii),

‖
√
=X= (\̂\\=1 − \\\1)‖2 = 2=X2

= (1 − \̂\\
′
=1\\\1) = 2=X2

= (1 − �=,11) = $P (1); (8)

this is compatible with the well-known
√
=-consistency of \̂\\=1 in the classical

case obtained with X= ≡ 1, and suggests that
√
=-consistency deteriorates into

(
√
=X=)-consistency in regime (ii), which in turn suggests that consistency is lost in

regime (iii). The following result, which is the main result of the paper, shows that
this is precisely what happens.

Theorem 1 Fix a unit vector \\\1, a positive real number b and a sequence (X=) that
either is X= ≡ 1 or is >(1). Let (q=) be a sequence of characteristic generators.
Then, the leading eigenvector \̂\\=1 of Tyler’s estimator of shape satisfies the following
as =→∞ under P\\\1 , X= , b ,q= :

(i) if X= ≡ 1, then
√
=(\̂\\=1 − \\\1) is asymptotically normal with mean zero and

covariance matrix

1
b2 (1 + b)

(
1 + 2

?

)
(I? − \\\1\\\

′
1) =

(
1 + 2

?

)
_1_2

(_1 − _2)2
(I? − \\\1\\\

′
1),

where _1 and _2 are the eigenvalues in (4)–(5) with X= ≡ 1;
(ii) if X= is >(1) with

√
=X= → ∞, then

√
=X= (\̂\\=1 − \\\1) is asymptotically normal

with mean zero and covariance matrix

1
b2

(
1 + 2

?

)
(I? − \\\1\\\

′
1); (9)

(iii) if X= = 1/
√
=, then \̂\\=1 converges weakly to the unit eigenvector associated with

the largest eigenvalue of Z+b\\\1\\\
′
1, whereZ is as in the statement of Proposition 3;

(iv) if X= = >(1/
√
=), then \̂\\=1 converges weakly to a random vector that is uniformly

distributed over the unit sphere S?−1.

This result confirms that, while the consistency rate of \̂\\=1 is of course
√
= in

the standard case X= ≡ 1, this consistency rate goes down to
√
=X= when X= → 0

with
√
=X= → ∞. Asymptotic normality is obtained in both cases. In the threshold

regime (iii) obtained with X= = 1/
√
=, the estimator \̂\\=1 is no more consistent

for \\\1, yet it still bears some information on \\\1. Clearly, the larger b, the larger this
information (in particular, the weak limit of \̂\\=1 converges to the Dirac distribution
at \\\1 as b → ∞). Finally, if X= = >(1/

√
=), then \̂\\=1 behaves asymptotically as a

random vector that is uniformly distributed on the unit sphere of R? , hence does
not bare any information on \\\1. Incidentally, we stress that since \\\=1 (resp., \̂\\=1) is
a homogenous function of V= (resp., V̂=), Theorem 1 still holds true if, in (2), V= is
rather normalized so that it has trace ?, or so that its upper-left entry is equal to one,
etc.
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The results in Theorem 1 allow one to build confidence zones for \\\1. Let us
start with regime (i). Since the sample eigenvalues _̂= 9 , 9 = 1, 2, are

√
=-consistent,

confidence zones for \\\1 with asymptotic confidence level 1 − U in this regime are
given by

�1−U
= :=

{
\\\1 ∈ S?−1 : =

(
1 + 2

?

)−1 (_̂1 − _̂2)2

_̂1_̂2
\̂\\
′
=1 (I? − \\\1\\\

′
1)\̂\\=1 ≤ j2

?−1,1−U

}
,

where j2
?−1,1−U denotes the upper-U quantile of the chi-square distribution with ?−1

degrees of freedom. Now, in regime (ii),

(_̂=1 − _̂=2)√
_̂=1_̂=2

√
=(\̂\\=1 − \\\1)

=

√
=(_̂=1 − _=1) −

√
=(_̂=2 − _=2) +

√
=(_=1 − _=2)√

_̂=1_̂=2
(\̂\\=1 − \\\1)

=

√
=(_=1 − _=2)√
_=1_=2

(\̂\\=1 − \\\1) + >P (1) = X=b (1 + >(1))
√
=(\̂\\=1 − \\\1) + >P (1)

→D N
(
0,

(
1 + 2

?

)
(I? − \\\1\\\

′
1)

)
,

where we used the fact that
√
=(_̂= 9 − _= 9 ), 9 = 1, 2, are still $P (1) in this regime

(Proposition 2). A direct consequence is that the asymptotic confidence zones �1−U
=

above are still valid in regime (ii).
To conclude this section, we turn to robustness issues by considering the influence

function of \̂\\=1 in regimes (i)–(ii). Using (27) (resp., (28)) in regime (i) (resp.,
regime (ii)), jointly with (20), (23) and the fact that �=,11 = 1+ >P (1) in regimes (i)–
(ii), we obtain
√
=X= (\̂\\=1 − \\\1) = (\\\2, . . . , \\\ ?)

√
=X=�=,11E′=,12 + >P (1)

= −(\\\2, . . . , \\\ ?)
√
=X=E′=,22E=,21 + >P (1)

= (\\\2, . . . , \\\ ?)b−1 (1 + X=b)1/? (\\\2, . . . , \\\ ?) ′
√
=(V̂= − V=)\\\1 + >P (1)

= b−1 (1 + X=b)1/? (I? − \\\1\\\
′
1)
√
=(V̂= − V=)\\\1 + >P (1). (10)

From (14) and (16) in the proof of Proposition 1, we have
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√
= vec

(
V−1/2
= V̂=V−1/2

= − I?
)

=

(
I?2 − 1

?
J?

)√
= vec

(
?V−1/2

= V̂=V−1/2
=

tr[V−1
= V̂=]

− I?
)
+ >P (1)

= (? + 2)
(
I?2 − 1

?
J?

)√
= vec

(
S= (V=) − 1

?
I?

)
+ >P (1),

which yields

√
= vec(V̂=−V=) = (?+2)

(
V1/2
= ⊗V1/2

=

) (
I?2− 1

?
J?

)√
= vec

(
S= (V=)− 1

?
I?

)
+>P (1).

Since

(\\\ ′1 ⊗ (I? − \\\1\\\
′
1))

(
V1/2
= ⊗ V1/2

=

)
=
(1 + X=b)1/2

(1 + X=b)1/?
(\\\ ′1 ⊗ (I? − \\\1\\\

′
1))

(which in particular entails that (\\\ ′1 ⊗ (I? − \\\1\\\
′
1))

(
V1/2
= ⊗ V1/2

=

)
(vec I?) = 0),

plugging this in (10) then provides

√
=X= (\̂\\=1 − \\\1) =

(? + 2) (1 + X=b)1/2
b

(\\\ ′1 ⊗ (I? − \\\1\\\
′
1))
√
= vec(S= (V=)) + >P (1)

=
(? + 2) (1 + X=b)1/2

b
√
=

(I? − \\\1\\\
′
1)

=∑
8=1

V−1/2
= X=8X′=8V

−1/2
=

‖V−1/2
= X=8 ‖2

\\\1 + >P (1).

By applying the multivariate central limit theorem (and (15)), it is readily checked
that this Bahadur representation result for

√
=X= (\̂\\=1 − \\\1) is compatible with the

asymptotic normality statements in Theorem 1(i)–(ii). More importantly, this Ba-
hadur representation result shows that the boundedness of the influence function
of \̂\\=1 does not only hold in the standard regime (i) but also in the weakly identifi-
able regime (ii).

4 Numerical illustration

In this section, we conduct Monte-Carlo simulation exercises to validate the various
asymptotic results in Theorem 1. For any ℓ ∈ {0, 1, . . . , 7}, we generated " =

10, 000 independent random samples of size = = 100, 000 from the bivariate (? = 2)
normal distribution with mean vector zero and covariance matrix

ΣΣΣ=,ℓ = I2 + X=,ℓb\\\1\\\
′
1, (11)
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with X=,ℓ = =−ℓ/8, b = 2 and \\\1 = e1 ∈ R2. In each of these samples, we computed
the leading eigenvector \̂\\=1 of Tyler’s estimator of scatter (still with respect to fixed
location at the origin of R?); evaluation of Tyler’s estimator of scatter was done by
using the function tyler.shape from the R package ICSNP ([12]). We first focus
on Theorem 1(i)–(ii), hence on the cases ℓ ∈ {0, 1, 2, 3}. For each such ℓ, we provide
in Figure 1 a histogram of the " corresponding values of

√
=X=,ℓe′2\̂\\=1 =

√
=X=,ℓe′2 (\̂\\=1 − \\\1). (12)

Clearly, the results nicely agree with the corresponding asymptotic distribution
of (12) in Theorem 1, namely N(0, 3

2 ) for ℓ = 0 (regime (i)) and N(0, 1
2 ) for ℓ =

1, 2, 3 (regime (ii)). We then turn to Theorem 1(iii)–(iv), hence to the cases ℓ ∈
{4, 5, 6, 7}. For these values of ℓ, Figure 2 reports histograms of

e′2\̂\\=1. (13)

Here, the asymptotic distributions of (13) in Theorem 1(iii)–(iv) do not have a closed
form density, and we are therefore plotting kernel density estimates obtained from
a random sample of size 106 from the weak limit of (13) in Theorem 1(iii)–(iv).
To avoid boundary effects (the support of this weak limit is of course [−1, 1]), we
employed the function kde.boundary from the R package ks ([3]) with default
parameters, which returns the kernel density estimate using the second form of the
Beta boundary kernel in [2]. Irrespective of ℓ ∈ {4, 5, 6, 7}, these empirical results
fully support the corresponding asymptotic results in Theorem 1.

Acknowledgements This research is supported by the Program of Concerted Research Actions
(ARC) of the Université libre de Bruxelles.

Appendix

The proof of Proposition 1 requires the following preliminary result, which follows
from (3.7)–(3.8) in [20].

Lemma 1 Fix a unit vector \\\1, a positive real number b and a sequence (X=) that
either is X= ≡ 1 or is >(1). Let (V=) be the resulting sequence of shape matrices
in (3). Let further (q=) be a sequence of characteristic generators. Then, letting

G? := I?2 − 1
?+2 (I?2 +K? − J?) and S= (V) :=

1
=

=∑
8=1

V−1/2X=8X′=8V
−1/2

‖V−1/2X=8 ‖2
,

we have that

G?

√
= vec

(
?V−1/2

= V̂=V−1/2
=

tr[V−1
= V̂=]

− I?
)
= ?
√
= vec

(
S= (V=) − 1

?
I?

)
+ >P (1),
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Fig. 1 For each ℓ ∈ {0, 1, 2, 3}, histograms of the quantities
√
=X=,ℓe′2 ( \̂\\=1 − \\\1) computed

from " = 10, 000 independent random samples of size = = 100, 000 from the bivariate normal
distribution with mean vector zero and the covariance matrix ΣΣΣ=,ℓ in (11), where \̂\\=1 denotes
the leading eigenvector of Tyler’s estimator of scatter (with respect to fixed location at the origin
of R2). In each panel, the solid curve is the density of the corresponding asymptotic distribution,
namely N(0, 3

2 ) for ℓ = 0 and N(0, 1
2 ) for ℓ = 1, 2, 3.
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Fig. 2 For each ℓ ∈ {4, 5, 6, 7}, histograms of the quantities e′2 \̂\\=1 computed from " = 10, 000
independent random samples of size = = 100, 000 from the bivariate normal distribution with mean
vector zero and the covariance matrix ΣΣΣ=,ℓ in (11), where \̂\\=1 still denotes the leading eigenvector
of Tyler’s estimator of scatter (with respect to fixed location at the origin of R2). In each panel,
the solid curve is a kernel estimate for the density of the corresponding weak limit obtained from
Theorem 1(iii)–(iv); see Section 4 for details.



12 Davy Paindaveine and Thomas Verdebout

under P\\\1 , X= , b ,q= as =→∞.

In all proofs below, stochastic convergences are as =→∞ under P\\\1 , X= , b ,q= .

Proof of Proposition 1. Letting H? := I?2 + K? − 2
?

J? , we have H?J? = 0
and H?K? (vec B) = H? (vec B) for any symmetric matrix B, so that

H?G? (vec B) = (H? − 2
?+2H?) (vec B) = ?

?+2H? (vec B)

for any symmetric matrix B. Lemma 1 thus yields that

?

?+2H?

√
= vec

(
?V−1/2

= V̂=V−1/2
=

tr[V−1
= V̂=]

− I?
)
= ?
√
=H?vec

(
S= (V=) − 1

?
I?

)
+ >P (1).

Using the fact that J? (vec B) = (tr[B]) (vec I: ) and K? (vec B) = vec B for any
symmetric matrix B, this rewrites

√
= vec

(
?V−1/2

= V̂=V−1/2
=

tr[V−1
= V̂=]

− I?
)
= (? + 2)

√
= vec

(
S= (V=) − 1

?
I?

)
+ >P (1). (14)

Now, Lemma A.3(ii) from [15] states that

√
= vec

(
S= (V=) − 1

?
I?

)
→D N

(
0,

1
?(? + 2)H?

)
, (15)

so that
√
= vec

(
?V−1/2

= V̂=V−1/2
=

tr[V−1
= V̂=]

− I?
)
→D N

(
0,

(
1 + 2

?

)
H?

)
.

Hence, the argument in the bottom of page 341 in [7] yields that

√
= vec

(
V−1/2
= V̂=V−1/2

=

(det(V−1/2
= V̂=V−1/2

= ))1/?
− I?

)
=

(
I?2 − 1

?
J?

)√
= vec

(
?V−1/2

= V̂=V−1/2
=

tr[V−1
= V̂=]

− I?
)
+ >P (1) (16)

→D N
(
0,

1
?(? + 2)H?

)
,

that is,
√
= vec

(
V−1/2
= V̂=V−1/2

= − I?
)
→D N

(
0,

1
?(? + 2)H?

)
.

Since this rewrites(
V−1/2
= ⊗ V−1/2

=

)√
= vec

(
V̂= − V=

)
→D N

(
0,

1
?(? + 2)H?

)
,
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we finally obtain that

√
= vec

(
V̂= − V=

)
→D N

(
0,

(
1 + 2

?

) {
(I?2 +K?) (V ⊗ V) − 2

?
vec(V)vec′(V)

} )
,

with V the limiting value of (V=). �

We do not prove Proposition 2 here since the proof follows along the exact same
lines as the proof of Lemma 2.2 in [16]. We thus turn to the proof of Proposition 3,
that requires the following linear algebra result.

Lemma 2 Let A be a ? × ? matrix. Assume that _ is an eigenvalue of A and that the
corresponding eigenspace+_ has dimension one. Denoting as� = (�8 9 ) the cofactor
matrix of A − _I? , assume that v := (�11, . . . , �1?) ′ ≠ 0. Then +_ = {Cv : C ∈ R}.

Proof of Lemma2. For any 9 = 1, . . . , ?, denote as (A−_I?) 9 the 9 th row ofA−_I? .
For 9 = 2, . . . , ?,

(A − _I?) 9E = det
©«
(A − _I?) 9
(A − _I?)2

...

(A − _I?)?

ª®®®®¬
= 0,

since this is the determinant of a matrix with (at least) twice the same row. Since _ is
an eigenvalue ofA, this determinant is also zero for 9 = 1. Therefore, (A−_I?)v = 0.
The non-zero vector v thus belongs to+_. Since+_ has dimension one by assumption,
the result follows. �

Proof of Proposition 3. In this proof, we put

Z= :=
√
=ΓΓΓ′(V̂= − V=)ΓΓΓ. (17)

andΛΛΛ= := ΓΓΓ′V=ΓΓΓ = diag(_=1, . . . , _=?). First note that since

E= = Γ̂ΓΓ
′
=ΓΓΓ =

(
�=,11 E=,12
E=,21 E=,22

)
is an orthogonal matrix, we easily obtain that

E=,21 = −
1

�=,11
E=,22E′=,12, (18)

E=,22E′=,22 = I?−1 − E=,21E′=,21 (19)

and
�=,11E′=,12 = −E′=,22E=,21. (20)

We start with the proof of (i)–(ii). The random matrix Y= :=
√
=ΓΓΓ′V̂=ΓΓΓ −

√
=_=1I?

admits the eigenvectors w= 9 := ΓΓΓ′\̂\\= 9 , 9 = 1, . . . , ?, with corresponding eigen-
values Z= 9 :=

√
=(_̂= 9 − _=1), 9 = 1, . . . , ?. Thus, with probability one, we
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have Z=1 > Z=2 > . . . > Z=? , and the eigenspace of

Y= = Z= +
√
=(ΛΛΛ= −_=1I?) = Z= − diag

(
0,

√
=X=b

(1 + X=b)1/?
, . . . ,

√
=X=b

(1 + X=b)1/?

)
(21)

associated with eigenvalue Z=1 is spanned by

w=1 = ΓΓΓ
′\̂\\=1 =

(
�=,11
E′
=,12

)
.

Partitioning Z= into

Z= =
(
/=,11 Z′

=,21
Z=,21 Z=,22

)
,

where /=,11 is a scalar and Z=,22 is a (? − 1) × (? − 1) matrix, Lemma 2 then yields
that w=1 is proportional to the vector of cofactors associated with the first row of

M=,1 := ©«
/=,11 − Z=1 Z′

=,21

Z=,21 Z=,22 −
√
=X= b

(1+X= b )1/?
I?−1 − Z=1I?−1

ª®¬ , (22)

or equivalently, that w=1 is proportional to the vector of cofactors associated with
the first row of(

/=,11 − Z=1 Z′
=,21

(1+X= b )1/?√
=X= b

Z=,21
(1+X= b )1/?√

=X= b
Z=,22 − I?−1 − (1+X= b )

1/?
√
=X= b

Z=1I?−1

)
.

Since Z=,21 and Z=,22 are $P (1) (Proposition 1) and so is Z=1 (Proposition 2), we
obtain that (

�=,11
E′
=,12

)
= e1 + >P (1)

(recall that �=,11 > 0 almost surely and that e1 is the first vector of the canonical
basis of R?) and that √

=X=E′=,12 = $P (1).

Using the fact that E= is orthogonal, it follows that

=X2
= (1 − �=,11) =

‖
√
=X=E′=,12‖

2

1 + �=,11
=

1
2
‖
√
=X=E′=,12‖

2 + >P (1) = $P (1).

Since E=,22 is bounded, it also directly follows from (18) that
√
=X=E=,21 = $P (1).

In view of (19), we then obtain that E=,22E′
=,22 − I?−1 is >P (1). Now, letting Λ̂ΛΛ= :=

Γ̂ΓΓ
′
=V̂=Γ̂ΓΓ= = diag(_̂=1, . . . , _̂=?), we have
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Z=,21 =
√
=(ΓΓΓ′V̂=ΓΓΓ)21 =

√
=(ΓΓΓ′Γ̂ΓΓ=Λ̂ΛΛ=Γ̂ΓΓ

′
=ΓΓΓ)21

=
√
=(E′=Λ̂ΛΛ=E=)21 =

√
=(E′=,12 E′=,22)Λ̂ΛΛ=

(
�=,11
E=,21

)
=
√
=_̂=1�=,11E′=,12 +

√
=E′=,22diag(_̂=2, . . . , _̂=?)E=,21.

Writing ℓ= 9 :=
√
=(_̂= 9−_= 9 ) for 9 = 1, . . . , ?, using (4)–(5), then (20), thus provides

Z=,21 = ℓ=1E′=,11E′=,12 + E′=,22diag(ℓ=2, . . . , ℓ=?)E=,21

+
√
=(1 + X=b) (?−1)/?�=,11E′=,12 +

√
=(1 + X=b)−1/?E′=,22E=,21

= E′=,22diag(ℓ=2 − ℓ=1, . . . , ℓ=? − ℓ=1)E=,21 −
√
=X=b (1 + X=b)−1/?E′=,22E=,21,

which, since the ℓ= 9 ’s are $P (1) (Proposition 2), yields

√
=X=E′=,22E=,21 = −

(1 + X=b)1/?
b

Z=,21 + >P (1). (23)

Now, Proposition 1 directly entails that vec Z= = (ΓΓΓ′ ⊗ ΓΓΓ′)
√
=vec (V̂= − V=) is

asymptotically

N
(
0,

(
1 + 2

?

) {
(I?2 +K?) (ΛΛΛ ⊗ΛΛΛ) −

2
?
(vecΛΛΛ) (vecΛΛΛ) ′

})
in case (i), whereΛΛΛ := diag((1 + b) (?−1)/? , (1 + b)−1/? . . . , (1 + b)−1/?) and

N
(
0,

(
1 + 2

?

) {
(I?2 +K?) −

2
?

J?
})

in case (ii). Therefore, straightforward computations yield

Z=,21 = (e2, . . . , e?) ′Z=e1 = (e′1 ⊗ (e2, . . . , e?) ′)vec Z= →D N(0,B),

where
B :=

(
1 + 2

?

)
(1 + b) (?−2)/?I?−1 and B :=

(
1 + 2

?

)
I?−1

in case (i) and in case (ii), respectively. In view of (23), the desired asymptotic
normality result for

√
=X=E′=,22E=,21 follows. The one for

√
=X=E′=,12 then follows

from (20) and the fact that �=,11 = 1 + >P (1).

We turn to the proof of (iii)–(iv). As above, w=1 = ΓΓΓ
′\̂\\=1 = E′=e1 is the unit

eigenvector associated with the eigenvalue Z=1 = ℓ=1 =
√
=(_̂=1 −_=1) of Y= in (21),

or equivalently, with the eigenvalue

ℓ̃=1 = ℓ=1 +
√
=X=b

(1 + X=b)1/?
=
√
=(_̂=1 − _=2)
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of
Y= +

√
=X=b

(1 + X=b)1/?
I? = Z= + diag

( √
=X=b

(1 + X=b)1/?
, 0, . . . , 0

)
. (24)

Similarly, w= 9 := ΓΓΓ′\̂\\= 9 = E′=e 9 , 9 = 2, . . . , ?, are the unit eigenvectors associated
with the ? − 1 smallest eigenvalues ℓ=2 =

√
=(_̂=2 − _=2), . . . , ℓ=? =

√
=(_̂=? − _=?)

of (24). Consequently, the joint distribution of w= 9 , 9 = 1, . . . , ?— that is, the joint
distribution of the columns of E′= — converges weakly to the joint distribution of
the unit eigenvectors (associated with eigenvalues in decreasing order, and with the
signs fixed as in the statement of the theorem) of

Z + lim
=→∞

diag
( √

=X=b

(1 + X=b)1/?
, 0, . . . , 0

)
(recall that, in cases (iii)–(iv), Z= converges weakly to the random matrix Z). This
establishes the result. �

Proof of Theorem 1. (i) In this regime, the eigenvalues _= 9 , 9 = 1, . . . , ?, are fixed
and given by

_1 := (1 + b) (?−1)/? and _ 9 := (1 + b)−1/? , 9 = 2, . . . , ?,

respectively; see (4)–(5). Since

1
b2 (1 + b) =

_1_2

(_1 − _2)2
,

Proposition 3(i) entails that

√
=E′=,12 →D N

(
0,

(
1 + 2

?

)
_1_2

(_1 − _2)2
I?−1

)
. (25)

Now, writing ggg= :=
√
=(\̂\\=1 − \\\1), we have

‖ggg=‖2

2
√
=
=
ggg′=ggg=

2
√
=
=

√
=

2
(\̂\\=1 − \\\1) ′(\̂\\=1 − \\\1) =

√
=(1 − \\\ ′1\̂\\=1) = −\\\ ′1ggg=, (26)

where we used the fact that \̂\\=1 and \\\1 are unit vectors. Since ggg= :=
√
=(\̂\\=1 − \\\1) is

$P (1), it follows that

(I? − \\\1\\\
′
1)ggg= = ggg= − (\\\

′
1ggg=)\\\1 = ggg= +

‖ggg=‖2

2
√
=
= ggg= + >P (1)

as =→∞. Therefore,



Asymptotic behavior of Tyler’s leading eigenvector under weak identifiability 17

√
=(\̂\\=1 − \\\1) = (I? − \\\1\\\

′
1)
√
=(\̂\\=1 − \\\1) + >P (1)

=

( ?∑
9=2
\\\ 9\\\

′
9

)√
=(\̂\\=1 − \\\1) + >P (1)

=
√
=

?∑
9=2
\\\ 9 (\̂\\

′
=1\\\ 9 ) + >P (1)

= (\\\2, . . . , \\\ ?)
√
=E′=,12 + >P (1), (27)

so that the asymptotic normality result in (25) entails that
√
=(\̂\\=1 − \\\1) is asymp-

totically normal with mean zero and covariance matrix(
1 + 2

?

)
_1_2

(_1 − _2)2
?∑
9=2
\\\ 9\\\

′
9 =

(
1 + 2

?

)
_1_2

(_1 − _2)2
(I? − \\\1\\\

′
1),

as was to be shown. (ii) In this regime, ggg= =
√
=(\̂\\=1 − \\\1) is $P (1/X=) (see (8)), so

that (26) yields

(I? − \\\1\\\
′
1)X=ggg= = X=ggg= +

X=‖ggg=‖2

2
√
=

= X=ggg= + >P (1).

Therefore,
√
=X= (\̂\\=1 − \\\1) = (I? − \\\1\\\

′
1)
√
=X= (\̂\\=1 − \\\1) + >P (1)

=

( ?∑
9=2
\\\ 9\\\

′
9

)√
=X= (\̂\\=1 − \\\1) + >P (1)

= (\\\2, . . . , \\\ ?)
√
=X=E′=,12 + >P (1), (28)

so that the result follows from the fact that

√
=X=E′=,12 →D N

(
0,

1
b2

(
1 + 2

?

)
I?−1

)
.

in this regime; see Proposition 3(ii).

(iii) LetZ be as in the statement of Proposition 3 andwrite againΓΓΓ = (\\\1, . . . , \\\ ?).
In the regimes (iii)–(iv),

ΓΓΓ′\̂\\=1 =

(
�=,11
E′
=,12

)
converges weakly to the unit eigenvector associated with the largest eigenvalue
of Z + diag(b, 0, . . . , 0) with b > 0 in regime (iii) and b = 0 in regime (iv). This
directly entails that
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\̂\\=1 = ΓΓΓ

(
�=,11
E′
=,12

)
converges weakly to the unit eigenvector associated with the largest eigenvalue of

ΓΓΓ(Z + diag(b, 0, . . . , 0))ΓΓΓ′ = ΓΓΓZΓΓΓ′ + b\\\1\\\
′
1. (29)

Part (iii) of the result then follows from the fact that the distribution of Z is invariant
with respect to orthogonal transformations, in the sense that OZO′ has the same
distribution as Z for any ? × ? orthogonal matrix O. (iv) The proof for b > 0 in (iii)
above applies for b and shows that, in regime (iv), \̂\\=1 converges weakly to the unit
eigenvector associated with the largest eigenvalue of Z = Z(0). Now, the orthogonal
invariance of the distribution of Z = Z(0) entails that the joint distribution of its
eigenvectors is the invariant Haar distribution on the group of ? × ? orthogonal
matrices, which implies in particular that each of these eigenvectors is uniformly
distributed over S?−1. This establishes Part (iv) of the result. �
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