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Léopold Simar‡

leopold.simar@uclouvain.be

Ariane Szafarz§

ariane.Szafarz@ulb.be

Anne Vanhems¶

a.vanhems@tbs-education.fr

May 5, 2023

Abstract

This paper builds confidence intervals for the distance in the mean-variance plan

between any portfolio and the Markowitz efficient frontier. The distance can be calcu-

lated in any risk-return direction chosen by the investor. To do so, we introduce random

variations of inputs and outputs and estimate the frontier. We then use subsampling

approximations to derive confidence intervals around the distance of portfolios to the

efficient frontier. This methodology offers a novel statistical approach to mean-variance

portfolio choice, which is key for asset management. We apply this approach to show

that the distance between the S&P 500 index and the efficient frontier made up of

all the shares in the index is significantly different from zero in all testable directions.

This result adds robustness to the still controversial Roll critique of the Capital Asset

Pricing Model (CAPM). In the general setup of production theory, our paper addresses

the sensitivity of the estimated efficiency scores to random variations in the original

inputs-outputs.
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1 Introduction

In modern portfolio theory (Markowitz 1952), the investor selects an optimal portfolio based

on an expected utility function that depends positively on the expected return and negatively

on the risk. The efficient frontier is the curve in the mean-variance plan that includes

all non-dominated portfolios. Equivalently, in the mean-variance framework, any portfolio

located at a significantly non-zero distance to the efficient frontier cannot be optimal for any

investor. This fundamental property highlights the need for developing tests with the null

hypothesis that a given portfolio belongs (i.e., is at zero distance) to the efficient frontier.

Even though previous work has addressed this testing problem for specific—vertical and

horizontal—distances (Basak et al. 2002, Brière et al. 2013), this paper is the first, to our

knowledge, to offer a general solution applicable to any risk-return direction chosen by the

investor depending on her level of risk aversion.

We start by embedding the testing problem in the larger setting of input-output spaces

and taking advantage of the algorithm developed by Nalpas et al. (2017). For any given

set of observed inputs and outputs, this efficient and numerically robust algorithm evaluates

the financial performances of risky portfolios with nonparametric efficiency measurements.

Inputs can include variance and kurtosis, while outputs can include mean, return, and skew-

ness. In practice, portfolio characteristics are empirical estimates derived from a sample of

historical returns observed over a long period, which introduces randomness in the original

data. Our paper develops a convenient method to analyze variations, with confidence in-

tervals, in performance measures relative to this randomness. The methodology is based on

subsampling approximations, adapted by Politis et al. (1997) to heteroskedastic time series,

having inherent time dependence.

Next, we apply the new algorithm to the portfolio selection problem and the Markowitz

mean-variance efficiency frontier, where we only have empirical (random) estimators of the

mean and the variance. Mean-variance efficiency is the key criterion used for testing whether

a portfolio is optimal in a given investment universe. In this setting, optimality means that

the distance to the efficiency frontier is not significantly different from zero, suggesting that

one cannot reject that the portfolio of interest belongs to the frontier. Running tests along

this line can be particularly tricky for investment universes with no risk-free asset, so that

the efficient frontier is nonlinear. This situation is arguably the most realistic one, given

the liquidity risks associated with cash investments during crises (Acharya et al. 2011).

Several approaches have been proposed for testing mean-variance efficiency in a universe

with risky assets only (Kandel 1984, Levy and Roll 2010) by adapting the tests based on

a risk-free asset. Alternatively, Basak et al. (2002) suggest using the (horizontal) distance
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between any portfolio and its same-return counterpart on the efficient frontier, while Brière

et al. (2013) exploit the Kandel and Stambaugh (1995) measure of the portfolio inefficiency

to develop a test for the (vertical) distance between any portfolio and its same-volatility

counterpart on the frontier. While the two tests provide complementary views on directional

efficiency, their conclusions are contingent on specific (horizontal and vertical) distances.

Results obtained with other directional distances might therefore challenge the generality of

these conclusions. Moreover, not all portfolios of interest possess a horizontal counterpart

on the efficient frontier.

Testing the mean-variance efficiency of actual portfolios in any risk-return direction is

of considerable use for portfolio managers willing to a) assess the financial performance of

their portfolio, and b) check their alignment with the investor’s risk aversion. Our novel

approach addresses both concerns. Yet there is a special portfolio, namely the market

portfolio, for which the test has deep implications for finance theory. The mean-variance

efficiency of the market portfolio lies indeed at the heart of the Capital asset pricing model

(CAPM), the foundational pricing model of financial theory. In the CAPM framework, asset

pricing crucially relies on the efficiency of the market portfolio. Despite the centrality of this

theoretical result, the efficiency of the real-life proxies of the market portfolio, such as large

stock market indices, is still controversial. Diverging views have been voiced since at least the

Roll (1977) critique, and no consensus has emerged yet. For this reason, the application of

our theoretical framework to the market portfolio goes beyond a simple numerical example as

it can yield important financial implications. Testing whether the S&P 500 index corresponds

to an efficient portfolio is a fundamental question in finance that touches both asset pricing

and portfolio management.

Beyond theoretical concerns, the lack of options to assess the statistical significance of

directional distances from a given portfolio to the efficient frontier represents a serious limita-

tion for asset-management professionals. The new tool we propose fills the gap by informing

investment advisors and fund managers on how to fine-tune portfolio mean-variance efficiency

in directions corresponding to the risk-return trade-offs defined by investors.

Section 2 presents the problem and describes the statistical setting. Section 3 shows how

we use subsampling to build confidence intervals for the distance to the efficient frontier.

Section 4 applies the method to assess the distance between the S&P 500 stock index and the

efficient frontier derived from the corresponding investment universe. Section 5 concludes.
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2 Estimating the distance to the efficient frontier

2.1 Portfolio selection and production theory

Consider the problem of an investor selecting a portfolio made up of n risky assets. Under the

assumption that no risk-free asset is available and short sales are forbidden, the investment

opportunity set consists of all linear combinations of the n initial assets:

F = {w ∈ Rn
+|w′in = 1}, (2.1)

where in is a vector (n × 1) of ones. In the classical mean-variance setting, the objectives

of the investor can be split into x ∈ R and y ∈ R, which relate in the production theory

to the input to be minimized (the variance of the portfolio return) and the output to the

maximized (the mean of the portfolio return), respectively. We then define the set Xn =

{(xi, yi) | i = 1, . . . , n} representing the input/output of the original data set (the n risky

assets). For a given portfolio, w ∈ F , we compute its input and output, (xw, yw) from the

previous set. In this setting, the objective of any investor is characterized by a vector of

weights.

The input/output representation of the investment opportunity set is given by:

N = {(xw, yw) ∈ R2|w ∈ F}. (2.2)

It refers to all the portfolios generated by linear combinations in F . Note that Xn ⊂ N ,

which corresponds to {(xei , yei) | i = 1, . . . , n}, where ei is the ith column of In, the identity

matrix of order n.

Under the free-disposability assumption stating that it is always possible to achieve lower

outputs with more inputs, we can define the Free Disposal Hull (FDH) of N by:

Ψ =
⋃

(xw,yw)∈N

{
(x, y) ∈ R2 | x ≥ xw, y ≤ yw

}
, (2.3)

and the efficient frontier is then characterized as:

Ψ∂ = {(x, y) ∈ Ψ | for any (x̃, ỹ) such that x̃ < x, ỹ > y, (x̃, ỹ) /∈ Ψ} . (2.4)

Any efficient portfolios belongs to the efficient frontier and is identified by a specific value

of (x, y).

Next, let us consider portfolio (x, y) ∈ Ψ. We characterize the efficient frontier using

a flexible approach based on directional distance functions introduced by Chambers et al.

(1998). These functions generalize the traditional radial measures provided by both input

and output distance functions. Given a direction vector (−gx, gy) where (gx, gy) ∈ R2
+, the
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directional distance function projects portfolio (x, y) onto the efficient frontier in the chosen

direction:

δ(x, y; gx, gy) = sup{β | (x− βgx, y + βgy) ∈ Ψ}. (2.5)

By definition δ(x, y; gx, gy) ≥ 0 if and only if (x, y) ∈ Ψ and the points belonging to Ψ∂

are characterized by δ(x, y; gx, gy) = 0. Since the measure is additive, it allows to han-

dle jointly any positive or negative values of the input and output. The measure is also

translation-invariant and independent from the measurement units provided that the units

of the direction vector and of the input and output are the same.

Nalpas et al. (2017) propose a simple and fast methodology to evaluate the frontier of

Ψ, as described in (2.4). In a nutshell, their algorithm involves Monte-Carlo simulations for

covering the set of possible portfolios in (2.3) in an iterative and efficient way using only enu-

merative techniques (in computing at each step FDH estimators). Remarkably, this method

can be extended to more complex settings, including additional inputs/outputs, like skew-

ness and kurtosis, without increasing the level of computational complexity. This possibility

confers on users a significant advantage because the theoretical optimization problem hidden

in searching the characterization of Ψ∂ is typically much harder, as in Briec et al. (2007),

Jurczenko et al. (2012), and the discussion in Nalpas et al. (2017).

2.2 Statistical framework

The FDH estimator of Ψ was introduced in production efficiency analysis by Deprins et al.

(1984) allowing the estimation of non-convex attainable sets. Suppose we consider a set

of N random weights wj, each of size n, j = 1, . . . , N , so that we can build a sample of

size N of inputs and outputs (xwj
, ywj

). The asymptotic properties of the FDH estimator

derived in Korostelëv et al. (1995) and Park et al. (2000), indicate that, under mild regularity

conditions, the rate of convergence of the resulting estimator isN1/(p+q) where p is the number

of inputs and q the number of outputs.

In our case, since p = q = 1, we achieve the rate N1/2 and the corresponding estimator

of the distance between a given asset (x, y) and the efficient frontier converges at this rate

to a limiting Weibull distribution. So, in theory, if N is large enough, we can estimate, at

any desired level of statistical accuracy, the distance from a given portfolio to the efficient

frontier. In practice however, memory limitations make the direct generation of the N

random weights numerically intractable for huge values of N (say, above 106).

Drawing on this, the algorithm of Nalpas et al. (2017), hereafter the NSV algorithm,

avoids direct evaluation of a huge number of weights. It generates iteratively and selectively

a limited number of random weights, which are numerically easy to handle at each step
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using FDM estimators. The iteration process is shown to converge to the true value. Its

simple stopping rule is comparable to any stopping rule or tolerance level used in nonlinear

optimization routines (for details, see Nalpas et al. 2017). Ultimately, the algorithm produces

several thousands of weights, and the error associated with the FDH estimator is negligible.

In the general setup of production theory, our methodology addresses the sensitivity of

estimated efficiency scores of a given production unit (x, y) to input and output variations

from the original sample Xn. Precisely, we use the NSV algorithm to evaluate the distance

function for a (x, y) in (2.5) with a negligible error, under the assumption that the (xi, yi)’s

in the original dataset Xn are measured without statistical error. Transposed to the financial

context, our objective is to produce a sensitivity analysis in the performance of a portfolio

(x, y), measured by δ(x, y; gx, gy), given that the original data (xi, yi) in Xn are estimated

from time series of asset returns. The problem is however complicated by the fact that the

original dataset, made up of financial returns, includes time series with time dependence.

Consider a sample of n historical returns, Rit, i = 1, ..., n, observed over a given period

of time t = 1, ..., T . From this sample, we derive the empirical counterparts ÊT and V̂T of

the unknown (n×1) vector of means E and the unknown (n×n) variance-covariance matrix

V. Element by element, for i, j = 1, . . . , n, we have:

Êi,T =
1

T

T∑
t=1

Rit,

V̂ij,T =
1

T

T∑
t=1

(Rit − ÊiT )(Rjt − ÊjT ). (2.6)

For any portfolio w ∈ F , we have the corresponding moments:

ÊT (w) := ŷwT = w′ÊT ,

V̂T (w) := x̂wT = w′V̂Tw. (2.7)

These equations provide the input/output representation of the opportunity set N defined

in (2.2) given the information on the mean ÊT and the covariance matrix V̂T of the n original

assets.1

In practice, the original dataset Xn we use to apply the NSV algorithm is:

Xn,T := {(x̂iT , ŷiT ) | i = 1, . . . , n}, (2.8)

where x̂iT := x̂eiT = V̂ii,T and ŷiT := ŷeiT = Êi,T , depend on the realized time series Rit,

i = 1, ..., n, and t = 1, ..., T . As a consequence, the evaluation of the efficient frontier and

1Nalpas et al. (2017) give similar relations for skewness and kurtosis.
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the distance measures depend on the empirical estimates we use. For example, changing

the observation period affects Xn,T , and so the efficient frontier. As any procedure solving

(2.5)), the NSV algorithm produces point estimates of δ(·), denoted δ̂T (·).
In sum, our objective is to use the NSV algorithm to analyze, for any given portfolio

(x, y), the sensitivity of directional distances to the efficient frontier δ̂T (x, y; gx, gy) to random

changes in Xn,T . From there, we will derive confidence intervals for δ(x, y; gx, gy). In the

Markowitz mean-variance setting, these confidence intervals will allow us to test directional

efficiencies of selected portfolios of interest.

3 Sensitivity analysis through subsampling

A natural way to meet our objective is to simulate random variations of the initial dataset

Xn,T in an appropriate way and analyze how the efficient frontier, and the derived distance

measures, are sensitive to these random variations. Resampling and bootstrap techniques

are often appropriate but the returns are time series data having potential time dependence.

Two main techniques have been adapted to time series, the moving block bootstrap developed

and analyzed, e.g., by Hall et al. (1995), Lahiri (2002), Lahiri (2003), Lahiri et al. (2007),

and the subsampling methodology proposed by Politis et al. (1997), Politis et al. (1999) and

Politis et al. (2001). We adopt the subsampling approach for its simplicity and because it

is consistent under very mild conditions (Politis et al. 2001). In addition, this approach is

relevant for time series with heteroskedasticity (see Politis et al. 1997, and Chapter 4 in

Politis et al. 1999).

Consider the infinite sequence of random returns of n risky assets {Rt}+∞
t=−∞ where Rt ∈

Rn and denote by P its joint probability distribution. We impose on {Rt} a weak-dependence
condition. Precisely, we assume that the sequence is α-mixing, which intuitively means that

the future of the variables of interest tends to be independent from its past when the time

lag between the two periods goes to infinity (see e.g. Politis et al. (1997) for a more formal

presentation).

3.1 Variations in expected return and volatility

The subsampling proposed by Politis et al. (1997) can be summarized as follows. We are

interested in a real-valued or vector-valued parameter θ(P ) ∈ Rk estimated from the sample

{R1, . . . , RT}. Let θ̂T = θ̂T (R1, . . . , RT ) be the estimator of θ(P ). Our goal is to build

confidence regions for θ(P ). In our setup, the initial ingredients for the NSV algorithm

are the vector of means and the covariance matrix of the returns. We thus have: θ(P ) =
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(E,V) ∈ Rn×Rn(n+1)/2, where the variances and covariances are stacked in a vector of length

n(n+ 1)/2. So, we have θ̂T = (ÊT , V̂T ) and k = n(n+ 3)/2 .

From the full series (R1, . . . , RT ), we consider all the subsamples of size b starting succes-

sively at date a, where a = 1, . . . , T − b+1. The resulting series are denoted Ra, . . . , Ra+b−1.

Next, we define θ̂b,a = θ̂b(Ra, . . . , Ra+b−1), the estimator of θ(P ) based on these subsamples

of size b. We denote Jb,a(P ) the sampling distribution of
√
b(θ̂b,a − θ(P )) (we use the rate√

b since our estimators are empirical means and covariances). Hence, for any Borel set A

defined on Rk we may define:

Jb,a(A,P ) = ProbP

[√
b(θ̂b,a − θ(P )) ∈ A

]
(3.1)

Our object of interest is the sampling distribution of the estimator over the full set of data,

θ̂T = θ̂T,1. It can be characterized by the asymptotic distribution of
√
T (θ̂T − θ(P )), i.e., for

any Borel set A

JT,1(A,P ) = ProbP

[√
T (θ̂T,1 − θ(P )) ∈ A

]
. (3.2)

The idea is that if, under workable assumptions, b/T → 0 and b → ∞ as T → ∞, then

the empirical distribution of the T − b + 1 values of
√
b(θ̂b,a − θ(P )) can serve as a good

approximation of our object of interest JT,1(P ). Moreover, to get a feasible estimator, we

can replace the unknown θ(P ) by θ̂T because
√
b(θ̂T − θ(P )) is of order

√
b/T in probability

and we have b/T → 0.

Formally, Politis et al. (1997) define the following approximation of JT,1(P ):

LT (A) =
1

T − b+ 1

T−b+1∑
a=1

1I
[√

b(θ̂b,a − θ̂T ) ∈ A
]

(3.3)

The regularity conditions state that (i) JT,1(P ) converges weakly to some limiting law J(P ),

as T → ∞ and (ii) the distribution functions of the normalized estimator based on the

subsamples are close on average to the normalized estimator of the full sample, i.e., (T −
b+ 1)−1

∑T−b+1
a=1 Jb,a(A,P ) → J(A,P ), if b/T → 0 and b → ∞ and T → ∞. Theorem 2.1 in

Politis et al. (2001) establishes the validity of the approximation and explains how to build

asymptotic confidence regions for θ(P ) ∈ Rk.

In practice, the confidence regions are obtained as follows. Consider the Euclidean norm

||·|| on Rk and build, as an analog to (3.3), the univariate empirical distribution of ||
√
b(θ̂b,a−

θ̂T )||:

FT,b(w) =
1

T − b+ 1

T−b+1∑
a=1

1I
[
||
√
b(θ̂b,a − θ̂T )|| ≤ x

]
. (3.4)
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This is an approximation of the sampling distribution of the univariate ||
√
T (θ̂T − θ(P ))||.

With the (1− α)-quantile of the distribution FT,b, denoted by:

wT,b,α = inf{w | FT,b(w) ≥ (1− α)}, (3.5)

the region {θ ∈ Rk | ||
√
T (θ − θ̂T )|| ≤ wT,b,α} has the asymptotic coverage level of (1− α).

Selecting an appropriate subsample size b

Theorem 2.1 in Politis et al. (2001) requires that as T → ∞, b → ∞ with b/T → 0, but

finding an optimal subsample size can be delicate in practice. For the moving block boot-

strap, prevailing calibration methods involve numerical burdens (with double bootstrap), as

discussed in Section 9.3.1 of Politis et al. (1999). A simpler approach to select a suitable sub-

sample size is provided by the minimum volatility method presented in Politis et al. (2001).

It is based on the fact that the asymptotic validity of the subsampling approximations holds

for a broad range of choice of the subsample size b. In this range, the confidence regions

considered as a functions of the subsample size b should be stable. The minimum volatility

method exploits this stability by using a volatility measure described below.

The algorithm goes as follows (see Algorithm 6.1 in Politis et al. 2001). Define bmin and

bmax as the range where we will seek a value for b. We may choose these numbers as small

(close to 0) and large (close to 1) powers of T .

[1] For each value of b in a grid a values in [bmin, bmax], compute the subsampling confidence

region for θ(P ) at a given level (1− α), having the endpoints Ib,low and Ib,up;

[2] For a small integer m, let the volatility index V Ib be measured by the standard de-

viation of the endpoints {Ib−m,low, . . . , Ib+m,low} plus the standard deviation of the

endpoints {Ib−m,up, . . . , Ib+m,up};

[3] The selected value of b is the one having the smallest volatility index V Ib.

Politis et al. (1999) mention that other measures can be used for the volatility index, like the

volume of the confidence region. In any case, the idea is to obtain a stable behavior around

the selected value of b.

3.2 Confidence interval for the distance

We use the subsampling algorithm to analyze for any given (x, y) the sensitivity of δ̂T (x, y; gx, gy)

to random changes in Xn,T , which in turn depend on variations of ÊT and V̂T . To avoid the

numerical burden of running the NSV algorithm for many values of b, we select a value of b
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that stabilizes the variations in the components of Xn,T . To do so, we apply the methodology

described in the previous section to θ1(P ) = (E, diag(V)), representing the 2n-vector of the

n means and of the n variances. Together with the selected value of b, we obtain the T−b+1

subsamples of size b of the n returns: Ra, . . . , Ra+b−1 for a = 1, . . . , T − b+ 1, providing the

estimators Êa,b and V̂a,b.

In the next step, thanks to the NSV algorithm, Êa,b and V̂a,b lead to the estimator

δ̂a,b(x, y; gx, gy) of δ(x, y; gx, gy). As in (3.4), the sampling distribution of the normalized

error |
√
T (δ̂T (x, y; gx, gy)− δ(x, y; gx, gy))|, is then approximated by

F
δx,y
T,b (w) =

1

T − b+ 1

T−b+1∑
a=1

1I
{
|
√
b
[
δ̂a,b(x, y; gx, gy)− δ̂T (x, y; gx, gy)

]
| ≤ x

}
, (3.6)

where we use simple absolute value because δ is a scalar. Therefore, the confidence interval

for δ(x, y; gx, gy) with asymptotic coverage level (1− α) is given by:

Iδx,y(1− α) = {δ such that |
√
T (δ − δ̂T (x, y; gx, gy))| ≤ w

δx,y
T,b,α}, (3.7)

where w
δx,y
T,b,α is the (1− α) quantile of F

δx,y
T,b (·).

Finally, this results in a symmetric two-sided interval:

δ(x, y; gx, gy) ∈

[
δ̂T (x, y; gx, gy)−

w
δx,y
T,b,α√
T

, δ̂T (x, y; gx, gy) +
w

δx,y
T,b,α√
T

]
. (3.8)

Depending on the context, we may also derive one-sided confidence intervals and two-sided

equal tailed intervals.

4 Application: Is the S&P 500 index efficient?

This section uses our new method to revisit a long-standing controversy located at the heart

of portfolio theory and having significant consequences for portfolio management. The debate

about the efficiency of index investing – i.e., holding portfolios mimicking large and diversified

financial indexes – is almost as old as the Markowitz approach to portfolio selection. Under

the assumptions of the CAPM developed in the 1960s (see Perold (2004) for a historical

perspective), the market portfolio, defined as the portfolio composed of all the capitalization-

weighted assets in the market under consideration, is proven mathematically to be efficient.

Shortly after this theoretical result was established, finance practitioners and scholars started

raising critical issues about its practical implications for optimal diversification and passive

investment strategies. The controversy culminated with the Roll (1977) critique stating that

market indices, arguably the best proxies of true market portfolios, fail to reach optimal
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diversification and can therefore be located away from the efficient frontier. As a consequence,

the CAPM appeared to some as an essentially untestable theoretical construct, distant from

the everyday functioning of actual financial markets.

As a matter of facts, both the Markowitz portfolio selection theory and the CAPM

survived the controversies. Textbooks still introduce these contributions as core building

blocks of market finance. Even more so, passive index investing has gained traction, notably

with the development of the Exchange Traded Funds (ETFs) favoring easy access to index

investment. Besides diversification benefits, index investing is associated with reduced man-

agement fees and transaction costs (Gârleanu and Pedersen 2022). In sum, the question of

whether (the proxy of) the market portfolio is efficient is still topical.

This section contributes to the conversation by examining whether 1) the distance from

the S&P 500 index to its efficient frontier depends on the direction used to reach the frontier,

and 2) the corresponding directional distances are significantly different from zero. It shows

that the directional distances slightly vary according to the direction chosen, but all are

significant, suggesting that Roll’s critique is robust.

4.1 Tuning the parameters of the FDH estimation

In this part, we focus on the practical aspects of estimating the efficiency frontier: 1) defining

the relevant direction vectors (gx, gy); 2) estimating the directional distance between from

given portfolio to the frontier with the FDH algorithm.

Direction vectors. Let us consider a portfolio characterised by its mean return yM

and its variance xM , which are its coordinates in the mean-variance plan. Segments linking

this point to a point of the efficient frontier have a large spectrum of possible directions

(gxM
, gyM ). However, some directions are unachievable because they do not correspond to

any point of the efficient frontier.

In practice, the decision of choosing the direction belongs to the investor holding the

portfolio of interest. Therefore, our approach applies to any achievable direction. The only

constraint we impose is is that gxM
and gyM have to be positive. In the mean-volatility plan,

we define direction vectors of norm 1, which have the same unit as input-output vectors.

Our efficiency measure is the Euclidean distance δ from the portfolio to the frontier along

the chosen direction.

In this section, we consider several direction vectors, all of norm 1. In polar coordinates,

each vector can be characterized by its angle with the horizontal axis. In our application,

we rely on visual intuition by mentioning the angle rather than the vector.

FDH approximation of the efficient frontier. We use the NSV algorithm proposed
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by Nalpas et al. (2017) to generate an approximation of the efficient frontier. At each step,

we iterate portfolios made up of a linear combination of initial assets and estimate their

FDH efficiency performances. The last iteration produces reference portfolios for building

the efficient frontier. The FDH approximation of the efficient frontier is thus computed as a

step function where each step corresponds to a reference portfolio.

To estimate the distance from a given portfolio to the frontier in a given direction, we can

compute both the distance to the approximated FDH frontier in the chosen direction (with

the exactly corresponding angle) and the distance to the closest achievable efficient reference

portfolio (with a slightly different angle). Both distances (and angles) are very close to each

other for a sufficiently large number of iterations. In the application below, we use 100,000

iterations (kmax in Nalpas et al. 2017) and 100 portfolios generated at each iteration (Nc in

Nalpas et al. 2017).

4.2 Results

We collected the daily returns of the S&P 500 stock index and of all the stocks covering the

index, from January 2015 to May 2022. The FDH approximation of the efficient frontier

represented in Figure 1 is obtained after 100,000 iterations of the NSV algorithm. In the

mean-volatility plan, the figure shows the frontier, the S&P 500 index, and the directions

of interest. The achievable directions from the index to the efficient frontier correspond to

efficient portfolios with volatility taking values between the minimal volatility on the frontier

(utmost left point) and the same volatility as the index (on the vertical segment). Only this

portion of the frontier is composed of portfolios that can dominate the S&P 500 portfolio in

the mean-variance setting. Angles of more than 90 degrees (measured from the horizontal

axis on the left) lead to efficient portfolios riskier than the index, which is incompatible with

these portfolios dominating the index in the mean-variance setting.

The efficient portfolios in Figure 1 are presented with angles varying from 0 to 90 degrees.

Actually, the efficient portfolios obtained with the FDH algorithm correspond to angles from

around 20 degrees up to 90 degrees. Below 20 degrees, the FDH method does not identify

efficient portfolios anymore and conventionally terminates the frontier with a vertical line.

Therefore, we restrict our directions of interest between 20 degrees and 90 degrees, with

steps of 10 degrees. Table 1 provides descriptive statistics for the returns of the 8 efficient

portfolios located at the intersections of the efficient frontier and the directional segments

from the S&P 500 index. As Figure 1 suggests, Table 1 shows that the S&P 500 index

is dominated by the every reference efficient portfolios (i.e., smaller annualized return and

larger or equal volatility). The main question is thus whether the observed dominance is

associated with directional distances significantly different from zero.
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Note that the graph in Figure 1 might lead to believe that the distance to the frontier

increases systematically with portfolio volatility. This is not necessarily the case in general.

With the same frontier, the distance would not be monotonic for some portfolios with an

expected return (and/or a volatility) larger than that of the S&P 500 index.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

annualized volatility

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

a
n

n
u

a
liz

e
d

 e
x
p

e
c
te

d
 r

e
tu

rn

Figure 1: Efficient frontier estimation.

The horizontal axis gives the volatility and the vertical axis the annualized return. The

symbol o represents the S&P500 market index, and * the reference efficient portfolios for

various angles.

S&P 500 Ptf 1 Ptf 2 Ptf 3 Ptf 4 Ptf 5 Ptf 6 Ptf 7 Ptf 8

Chosen angle (degree) 90 80 70 60 50 40 30 20

Annualized return 0.136 0.329 0.278 0.239 0.213 0.194 0.178 0.166 0.158

Volatility 0.181 0.181 0.157 0.144 0.138 0.134 0.132 0.131 0.131

Table 1: Mean-variance characteristics of the S&P 500 index and reference port-

folios on the efficient frontier
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Chosen

angle

Approx.

angle

Distance

(chosen

angle)

Distance

(approx.

angle) Confidence interval (α = 5%)

Pft1 90 89.812 0.193 0.193 0.1382 0.2478

Pft2 80 80.043 0.143 0.144 0.1174 0.1686

Pft3 70 69.755 0.109 0.109 0.0968 0.1212

Pft4 60 59.948 0.088 0.088 0.0826 0.0934

Pft5 50 50.681 0.074 0.075 0.0717 0.0763

Pft6 40 40.015 0.065 0.065 0.0649 0.0651

Pft7 30 30.265 0.059 0.060 0.0588 0.0592

Pft8 20 22.595 0.055 0.056 0.0549 0.0551

Table 2: Directional distances between the S&P 500 index and the efficient fron-

tier, with confidence intervals (at 5%)

Columns 1 and 3 give the angle chosen (in degrees) and the corresponding distance of the

S&P 500 index to the frontier, respectively. Columns 2 and 4 show their respective proxies

obtained after 100,000 iterations of the NSV algorithm. The last two columns delineate the

confidence intervals.

In Table 2, we run the tests for directional efficiency of the market portfolio. Comparing

columns 1 and 2 in the table shows that the proxies for the angles delivered by our algorithm

after 100,000 iterations are, except for Portfolio 8, in a range of less than one degree away from

the original angle. Likewise, the directional distance to the frontier with the approximate

angle is very close to the corresponding distance with the chosen angle. The proxies we

compute allow building confidence intervals. The last two columns of Table 2 show that

none of the confidence intervals obtained at the 5% level includes zero, leading us to reject

the null that the proxy for the market portfolio belongs to the efficient frontier along the

chosen direction. Our testing method is the first to bring such a uniform rejection in all

achievable directions, thereby substantiating the doubts expressed in the profession about

the optimality of index investing. Using our directional approach therefore reinforces the

validity of Roll’s critique stating that even large and well-diversified financial indices, meant

to proxy the theoretical market portfolio, mostly fail being efficient portfolios.

5 Conclusions

To our knowledge, this paper is the first to address the impact of random variations in inputs

and outputs on efficiency scores. The originality of our approach stems from combining the

NSV algorithm and the subsampling method to build confidence intervals around the scores

of interest. We target key applications in portfolio management since our approach offers an
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original way to assess the distance between a given portfolio and the efficient frontier, while

controlling for the direction used to reach the frontier.

The statistical tool to assess any directional distance between a given portfolio and the

efficient frontier overcome the restrictions of existing tests for mean-variance efficiency to

the horizontal and vertical directions, so opening new perspectives for asset management.

Identifying and parametrizing the direction of the straight line between the portfolio of

interest and the efficient frontier may provide additional flexibility to portfolio managers

willing to increase the efficiency of their portfolio while maintaining a given risk-return trade-

off. It can also help them address investors’ changes in risk/return sensitivity in portfolio

updates.

The empirical exercise in this paper contributes to a long-standing debate taking place in

finance about the optimality of index investing. It is however fair to say that our approach

is based on in-sample optimal portfolios (out of sample, the gains from optimal diversifi-

cation can be offset by estimation errors, as shown for example by DeMiguel et al. 2009)

and excludes any transaction costs, which are notoriously difficult to assess. Our findings

emphasize the robustness of previous evidence suggesting that the empirical counterpart of

the market portfolio - here, the S&P 500 stock index - is not efficient. This, still contro-

versial, result is typically used to question the empirical relevance of the CAPM’s original

formulation.

A promising avenue for future research stems from determining the smallest number

of changes in a portfolio composition needed to transform an inefficient portfolio into an

efficient one along a given direction (at a fixed confidence level). Our innovative method can

also help design portfolios constrained by social and environmental criteria with minimal

loss of financial efficiency along the risk/return direction chosen by the investor.
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