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Elementary flux modes (EFMs) are an important concept in metabolic pathway analysis and for the
derivation of macroscopic dynamic models. However, the computation of elementary flux vectors is
facing combinatorial explosion with the size of the metabolic network, which hinders widespread
application. This study proposes a systematic elementary flux mode reduction procedure to derive
reduced-order dynamic models starting from an initial set of EFMs either generated by complete
enumeration or subset selection. The procedure proceeds in several steps, including geometric and
optimization-based criteria. The methodology ends up with a macroscopic bioreaction scheme with
a reaction number smaller than that of the measured species, and shows very satisfactory prediction
results, as illustrated with data of batch cultures of CHO-320 cells.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Therapeutic proteins, such as monoclonal antibodies, play a
key role for diagnosis purposes and in the treatment of genetic
diseases [1-3]. This explains the prominent place of mammalian
cell cultures in the healthcare sector. However, large-scale cell
cultures face some engineering challenges including high cell
densities and process reproducibility, among others [4]. In this
connection, the development of dynamic models of the biopro-
cesses, which could serve as a basis for the construction of dig-
ital twins, and the design of control strategies is of paramount
importance.

Mathematical models can be classified into structured mod-
els and unstructured models. While the first ones contain an
elaborate description of the cell and a precise depiction of the
interactions between intracellular compounds, the second neglect
the intracellular activity and describe only the evolution of extra-
cellular variables. Recent studies [5-8] emphasize the connection
between both approaches and several methods make use of the
intracellular information contained in a metabolic network to
develop small size macroscopic models. Some of these techniques
rely on the concept of elementary flux modes [9] or extreme
pathways [10] defining a set of vectors derived from the stoi-
chiometric matrix of the network by means of a convex analysis.
This approach exploits the biological knowledge about the organ-
ism [11] and enables obtaining a set of macroscopic bioreactions
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linking extracellular substrates/nutrients to products. However,
although the value of elementary modes for the development
of dynamical models is no longer questioned, the combinatorial
explosion in the number of modes with the size of the metabolic
network remains an issue and still a major research focus.

For metabolic networks of modest sizes, the elementary flux
modes can usually be enumerated (they can be computed us-
ing software tools such as MEeTaTooL [12] or EFMTooL [13]).
The underlying metabolic networks are obtained through re-
duction of detailed networks achieved through metabolic flux
analysis [11] or by removing all insignificant fluxes [14] yielding
small number of EFMs. Conversely, when the EFMs enumeration
becomes computationally prohibitive [15], pathway analysis is
still achievable by computing only a subset of EFMs. To this end,
several techniques have emerged in the last decades, including
the computation of the shortest elementary flux modes [16],
subsystem analysis [17], decomposition of the flux distribution
into a minimal number of elementary flux modes [18], random
sampling where random subsets of new combinations of modes
are selected on the basis of a given probability function [19,20], or
MFA-based optimization [21]. In the same context, for purposes
of reducing the dimensionality of the solution space and building
dynamic models, [22,23] add constraints related to cell-specific
uptake- or secretion rates. [24,25] develop an optimization crite-
rion compromising error, efficiency of the modes and model size
and the selection of the elementary flux vectors relies on ranking
or controlled random search. Subsequently, [26] makes use of
the cosine-similarity algorithm to reduce roughly the number
of pathways and a relevant set of EFMs is selected thanks to
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the definition of a multi-objective genetic algorithm. Methods
using dynamic metabolic flux analysis, flux balance analysis and
dynamical flux balance analysis are also proposed in [8]. Re-
cently, [21,27] have applied column generation techniques to
determine subsets of elementary flux modes in metabolic net-
works and [28] introduces the poly-pathway model approach
to account for the metabolic behavior of multiple experimental
conditions. Recently, our research group has developed two pro-
cedures, e.g., [29] picks the best EFMs candidates based on a linear
optimization problem, and [30] uses a two-step reduction based
on cosine-linearity and optimization, to identify and retain the
most informative EFMs to develop macroscopic models.

This study extends this latter work by proposing several sig-
nificant improvements to the original algorithm, which now pro-
ceeds in four steps, in order to tackle problems such as the
enumeration of the initial set of elementary flux modes, the
differentiate consideration of positivity constraints on the fluxes,
and the prediction error of reduced macroscopic reaction sets
(reduced below the number of measured components). The al-
gorithm is also tested with data of batch cultures of CHO-320
cells, on the basis of a larger metabolic network than the one
considered in [30]. Finally, a discussion about the construction
of dynamic macroscopic models including the prediction of the
biomass is included.

In contrast with recent algorithms such as [21,27,31], it is
difficult to claim that our algorithm would be presumably more
efficient, and we certainly do not want to make this claim. As a
matter of fact, benchmark comparisons are delicate to achieve in
view of the limited access to software packages implementing the
various approaches. Two comments can however be made:

e the approaches are different. For instance, the column gen-
eration algorithm aims at generating a set of basis vectors,
whereas our approach aims at reducing a large initial set of
EFMs in order to extract the most relevant vectors;

e our approach is modular, fast and simple as it combines
several pre-existing tools, making the methodology and the
code easy to understand and apply for non-expert users. The
Matlab code of our algorithm is available at www.umons.
ac.be/seco (at the time of publication of this article).

The paper is organized as follows. The next section introduces
the main concepts relative to metabolic network analysis. In
Section 3, the improved version of the reduction algorithm is
presented. Information about experimental data and the con-
sidered metabolic network are described in Section 4 as well
as different case studies according to the number of measured
extracellular species. Section 5 proposes a simple simulator to
provide a correct prediction of the data, following the method
used in [22]. Finally, conclusions are drawn in Section 6.

2. Metabolic network analysis

In metabolic engineering, a network is a matrix representation
of the intracellular reactions. In other words, this is a m x n sto-
ichiometric matrix, denoted N, where m represents the number
of internal metabolites and n stands for the number of reactions
taking place inside the cell. Accounting for the quasi steady-state
paradigm of metabolic flux analysis, the following homogeneous
system of linear equations can be stated:

Nv=0 (1)

where v € R" represents the vector of metabolic fluxes. The
latter are often subject to positivity constraints expressing that
the reactions have a net direction (resulting from the forward and
reverse reactions):

v>0

(2)
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Henceforth, the set of possible flux distributions is the set of
vectors v satisfying the linear equations in Eq. (1) under the
positivity constraint in Eq. (2). The solution space is a pointed
polyhedral cone, denoted ., in the positive orthant. The edges
of .7 are called elementary flux vectors and represent, from
a biochemical point of view, the simplest metabolic pathways
connecting extracellular substrates to final products.

To further constrain the solution space, an additional set of
linear constraints might be added by considering experimental
measurements of excretion and uptake rates v, :

()e= (2

under the same positivity constraint in Eq. (2). In the previous
relation, N, is the stoichiometric matrix of measured extracel-
lular species, a m, x n matrix where m, corresponds to the
number of extracellular measurements. In this case, the set of
solutions, denoted .#, is smaller than . (# C .#) and only certain
combinations of modes provide a solution.

(3)

3. EFM reduction algorithm

This section focuses on the reduction algorithm which starts
from a usually large number of EFMs to end up into a small set of
macroreactions which can be the basis for a macroscopic biore-
action model. The target is therefore a bioreaction scheme with
less reactions than components, i.e., measured species. Biomass is
included in the measured species so as to ensure that the reduced
macroreaction model can be used for process simulation.

3.1. Generation of EFMs

The first step consists in the generation of the elementary
flux modes on the basis of a metabolic network. As mentioned
in Section 1, depending on the size of the metabolic network,
two cases can be distinguished: on the one hand, when the
enumeration of all possible pathways is achievable and on the
other hand, the situation where only subsets of modes can be
identified.

3.1.1. Enumeration

When the enumeration of all the modes is possible, a matrix
of elementary flux modes, denoted E, can be obtained using
software tools such as EFMtooL. The matrix of EFMs is a n x
ngry Matrix where ngpy represents the number of modes. From a
geometrical point of view, elementary flux modes represent the
edges of a polyhedral cone .# constructed by the intersection of
the hyperplanes defined by the rows of the stoichiometric matrix
N. For the enumeration of all extreme rays of the polyhedral cone,
softwares such as EFMTooL make use of the double description
method [13] and requires only the definition of the matrix N as
input.

3.1.2. Generation of subsets

When the enumeration of EFMs becomes impossible or their
number difficult to handle, the use of alternative methods for
computing reduced sets, such as the ones reviewed in the intro-
duction section, is required. In our algorithm we have selected
the method proposed in [18], where a fast algorithm for com-
puting randomly a decomposition of admissible flux vectors in a
minimal number of elementary flux modes is proposed. Indeed,
it can be shown that the decomposition of any vector v, inside
the polytope .#, in the convex basis formed by elementary flux
vectors is not unique. The objective of the fast algorithm is to
determine one of the minimal decompositions, and to this end, it
requires the knowledge of the stoichiometric matrix N, the matrix



M. Maton, Ph. Bogaerts and A. Vande Wouwer

of extracellular measurements N, and the vector of excretion
and uptake rates v,. If the algorithm is used only one time,
a minimal set of EFMs (with a number of EFMs equal to the
number of measurements) is directly obtained, which can be
further reduced in the following steps of our algorithm to get a
number of macroreactions lower than the number of measured
species. However, it might be interesting to generate a larger pool
of candidate EFMs before proceeding to the reduction, and in this
case, the generation algorithm is executed a number of times
until the desired pool is built.

3.2. Biological interpretation of the EFMs

Although the reduction algorithm is applied to the matrix
of elementary flux modes E obtained in the previous step, the
stoichiometric matrix representing the macroreactions is given
by:

K = N,E (4)

which is a m, X nggy matrix, whose columns provide the sto-
ichiometry of each macroreaction. A biological interpretation of
this matrix, e.g., detecting macroreactions with no reactants or
no products, might be useful to reduce the matrix to a matrix K*,
corresponding to a reduced matrix of EFMs, denoted E*.

3.3. Main reduction of EFMs

The next step consists in drastically reducing the number of
modes, with a target number §2, which is generally set to a
number close (maybe slightly greater than) the number of extra-
cellular measurements. This reduction is an iterative procedure
based on the following optimization problem:

M T
(18, so i (18,501

53
S.t.

k=1

min =

o (5)

where v, , represents the vector of uptake and excretion rates
for every step-time k, ¢(t) corresponds to a time-varying decom-
position of the flux v, (t) into a reduced set of vectors stored
in K., and W is a weighting diagonal matrix whose diagonal
elements are (gm?,’j)z. Note that K, = N.E. where E, denotes a
reduced matrix of EFMs. The index & should be equal to zero
when the number of modes is greater or equal to the number
of extracellular measurements (nggy > me), Ke is full row rank
and there are no constraints on ¢(t). However, the positivity
constraints can be active on some time periods depending on the
compatibility of the measurements (which are always affected by
experimental errors) with the network. The index & therefore
indicates how well the positivity constraints are satisfied, and
the minimization of the index selects the flux values which are
achieving the best constraint satisfaction. This is illustrated in the
top part of Fig. 2 where the time evolution of one component of
the index is plotted, for the measurement of isoleucine (one of the
essential amino acids) in the experimental case study presented
in Section 4. This graph depicts the situation where the number
of elementary flux modes ngpy is equal to or greater than the
number of extracellular measurements m,, and it is apparent
that each time the index is non-zero, a positivity constraint is
active.

The reduction of EFMs can be split into two steps : (i) the
first is a pre-filtering of the set of modes relying on the concept
of cosine-similarity introduced in [26] and (ii) the second step
is based on the optimization problem in Eq. (5) and includes
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several checks where a user-defined tolerance value guides the
selection.

3.3.1. Cosine-similarity algorithm

This algorithm consists in computing the collinearity between
the elementary flux vectors and removing the collinear modes.
In other words, if the cosine of the angle between two extreme
rays is greater than a defined threshold x € [0,1], then the two
elementary flux vectors point in the same direction and one of
them can be removed. The reduction is a compromise between
the value of the indicator £ and the number of EFMs. Finally,
the remaining modes are stored in a reduced matrix E, and the
optimization problem in Eq. (5) can be formulated.

3.3.2. Optimization-based reduction

Although the previous step allows a significant cut in the
number of modes, especially when starting from the complete
set of elementary flux vectors, the cosine criterion alone does
not enable a reduction to the target number £2. For this purpose,
an optimization-based reduction is proposed, where a randomly
selected vector could be removed if the corresponding reduced
elementary flux vectors collection in E, satisfies the following
condition:

—~k
| E

(6)

Otherwise, the selected EFM is kept. In Eq. (6), &* is the perfor-
mance index for the candidate elimination whereas Z' is the prior
value of the performance index (prior to the random reduction),
and tol is a tolerance defined by the user.

Since the reduction is based on a random selection of the
modes, the reduced set with £2 EFMs is not unique and may not
be the best over all combinations but achieves nevertheless an
acceptable satisfaction of the positivity constraints.

— & | < tol

3.4. Generation of the final macroreaction set

The final step of the algorithm consists in reducing the number
of EFMs below the number of extracellular measurements from
the previous set containing 2 modes. To achieve this objective,
the choice of a target number A is necessary (A < m,) and the
reduction is still based on the value of the indicator Z (i.e. based
on the optimization problem in Eq. (5)), which however has now
another interpretation and can be seen as a sum of squared
residuals measuring the distance to the experimental data. This
is illustrated in the lower graph of Fig. 2. When the number
of EFMs is smaller than m,, the non-zero value of the indicator
corresponds to the combined impact of the positivity constraints
and of the fitting of the experimental measurements with a model
which has now a reduced number of degrees of freedom. Indeed,
with a set of EFMs smaller than the number of measured species,
it is no longer possible to explain all the variance in the data, but
a satisfactory model can be obtained in a classical least-squares
sense. As mentioned in the previous section, the set of retained
modes is not unique, leading to equivalent models. Indeed, as ex-
plained in [32], even when the number of EFMs is limited (either
initially or after the reduction), the resulting set of bioreactions
is usually redundant for the design of dynamic models that fully
explain the available experimental data. There exists a set of
equivalent bioreaction models because they all provide exactly
the same values of observed uptake and production rates. Our
reduction procedure aims at finding a minimal set of bioreactions,
but it is important to keep in mind that this set is not unique, both
regarding the number of bioreactions (a number of EFMs equal
to the number of measured species allows an exact representa-
tion of the fluxes, and a smaller number allows an approximate
representation) and regarding the equivalent selections of EFMs
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Fig. 1. The complete algorithm.

for a given number of them. In terms of input-output behavior,
these equivalent models will therefore lead to equivalent control
options. Some of the models might however be preferable in
terms of biological interpretability and exploitation, as discussed
in Section 3.2.

For the sake of clarity, it is worth noting that the optimization-
based reduction in Section 3.3.2 and the selection of the final
macroreaction set in Section 3.4 are different. While the first
is a reduction based on several random successive eliminations
of one mode so as to satisfy Eq. (6), the other selects the best
combination of A EFMs among the reduced set of 2 modes
according to the smallest value of the performance index. This
last step does no longer rely on random eliminations of modes
but on the selection of the best subset of EFMs. As a matter of
fact, the final set obtained in this way could differ from directly
choosing §2 equal to A in the previous step.

Furthermore, both steps are necessary as the enumeration of
all EFMs combinations may become computationally prohibitive,
their number being given by:

Q!
Al(2 — A)

Hence the importance of reducing first the number of modes to
a small value 2 before going through the final step.

(7)

Neomb =

4. Application to Chinese Hamster Ovary CHO-320 cells in
batch cultures

The reduction algorithm is now applied to experimental data
from batch cultures of a Chinese Hamster Ovary cell line CHO-
320. This section gives some information on the cell line, the life
phases of these cells, introduces the metabolic network under
consideration and addresses different case studies.
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Fig. 2. Time evolution of the index |K.¢p — v| (mM.h~') for the measurement
of isoleucine in the experimental case study—upper graph: positivity constraint
violation (orange curve) when ngpy > m, - lower graph: model discrepancy
when ngpy < Me.

4.1. Cell line and metabolic network

The CHO-320 cell line is one of the first mammalian cell lines
used in the production of therapeutically valuable proteins. The
experiments exploited in this paper have been performed by a
research team of UCLouvain, Belgium (courtesy of Prof. Yves-
Jacques Schneider) and information relative to the cell line, the
media, the bioreactor operation mode and the analysis methods
can be found in [22].

As depicted in Fig. 1, the reduction algorithm starts from the
definition of a metabolic network, which will depend on the
phase of the cell during its life cycle. In Fig. 3, the growth phase,
which corresponds to 80 h of culture, is used as data set. The
metabolic network corresponding to the growth phase of the
cells has been studied and developed in [23] and includes the
pathways of glycolysis, the tricarboxylic acid cycle, the pentose
phosphate pathways, the nucleotides synthesis pathways and
several amino acids synthesis routes. The network contains 100
reactions and 72 internal metabolites. It is necessary to include a
reaction of synthesis of the biomass in the metabolic network so
as to consider its measurement in the EFM reduction procedure.
According to [23], the cellular composition of the studied CHO
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Fig. 4. Time evolution of the measured concentrations in dataset # 1 - results for ngs = m, (red curves), for A; =5 (blue curves) and for A, = 4 (green curves).

cells is the following : 92.26% of proteins, 1.3% of RNA, 0.52% of
DNA and 2.97% of lipids.

4.2. Case studies: Different measurement scenarios

Two measurement scenarios will be considered in the EFM
reduction procedure, i.e., either 6 or 20 extracellular measure-
ments. Before going more into technical details related to the
two situations, a first insight consists in computing the number
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of elementary vectors on the basis of the metabolic network
definition. This can be done independently of the measurement
scenario using EFMTooL, which provides 993203 EFMs. This very
large number of EFMs is quite difficult to manipulate as such,
and a first approach would be to partition this initial set into
several smaller subsets and to apply the reduction procedure on
the subsets. This approach has been tested and validated and
gives good results in terms of reduction, but at the expense of
a high computation time.
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(blue circles).

An alternative approach is to generate a smaller initial set of
EFMs using a subset generation algorithm, and in our procedure
we have selected the fast algorithm introduced in [18]. This
algorithm can be executed an arbitrary number of times so as to
generate the desired initial number of EFMs.

4.3. 6-Measurement case

In this case, only six extracellular measurements are consid-
ered, i.e., the concentration profiles of glucose, lactate, glutamine,
ammonia, alanine and biomass.

The first step of the algorithm is the generation of an initial
set of elementary flux vectors using the above-mentioned fast
algorithm, which requires as inputs the stoichiometric matrix N,
the matrix of extracellular measurements N,, and the vector of
specific rates vy,. In first approximation, the specific uptake and
excretion rates can be assumed constant during the exponential
growth phase and are simply evaluated by linear interpolation
(using the linear least-square method). On this basis, the fast
generation algorithm allows obtaining m, = 6 EFMs at once.
Starting with this small initial set, the intermediate steps of the
reduction algorithm can be bypassed, and the final step imme-
diately applied to reduce the number of EFMs below m,. Two
target numbers are considered in what follows: (i) A; = 5 and
(ii) Ay = 4.

175

Table 1

Estimated value of the reaction rates (in mM.h~!) for dataset #1.
Vm Linear regression Ay =5 Ay =4
Vle —0.2072 -0.2054 -0.2075
Viae 0.4132 0.4168 0.4127
VGin —0.0511 -0.0510 -0.0464
VAmmonia 0.0449 0.0449 0.0485
Vaia 0.0117 0.0117 0.0117
vy 0.0278 0.0278 0.0277

A direct validation of the reduction can be achieved by com-
paring the constant reaction rates v, obtained by regression with
the product K,® deduced from the optimization problem, K,
corresponding to the reduced matrix of modes. The rates being
constant, this validation can be summarized in Table 1. This
validation can be pursued by a comparison of the evolution of
the concentrations by integration of the computed fluxes and
identification of the most likely initial conditions of the measured
species. This is illustrated in Fig. 4. The results are quite satisfac-
tory, despite the simplifying assumption of constant rates, and
even when the number of modes is reduced up to A = 4.

In a second evaluation, we now consider that the specific ex-
tracellular rates can vary along time, as it is usually the case dur-
ing a batch or fed-batch culture. These rates can be evaluated by
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applying smoothing splines to the measured concentration pro-
files and numerical differentiation. Based on these time-varying
rates, the execution of the fast generation algorithm produces an
initial set of 206 elementary flux vectors. The complete reduction
procedure can therefore now be applied. First, the test relative
to the interpretability of the stoichiometric matrix K yields a
reduced set of 173 modes. Second, the collinearity test could
be used to reduce further this set, but as the number of EFMs
is quite modest, it is preferable to use the optimization-based
reduction. Usually the collinearity test is reserved to situations
where the initial set is much larger and a preliminary, relatively
drastic (but unsupervised) reduction is required, as discussed
in [30]. The reduction is therefore continued using random elimi-
nation based on an optimization criterion ensuring the positivity
constraints, with a target value 2 10 (this latter number
can of course be chosen differently, but we recommend a target
slightly above m,). Finally, the last step consists in finding the
best combination of A; = 5 or A, = 4 modes among these 10
EFMs, minimizing a least-squares deviation from the measured
data. Figs. 5 and 6 show the time evolution of the reaction
rates and the concentrations, respectively, as predicted on the
basis of 173 elementary flux modes or £2 10 EFMs. Figs. 7
and 8 extend the illustration to the final sets of A; 5 or
Ay = 4 modes. For A; = 5, the results are very satisfactory,
whereas, for A, = 4, significant deviations appear in the reaction
rates, which however have limited impact on the prediction of
the time evolution of the concentrations. Mostly the prediction
of ammonia is adversely affected, but the results remain quite
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acceptable in view of establishing simple dynamic models for
bioprocess control purposes.

On the other hand, the reconstruction of the time evolution of
the concentrations in Fig. 8 is better than in Fig. 4, which high-
lights the benefit of computing the reaction rates from smoothing
splines and differentiation instead of the assumption of constant
rates.

4.4. 20-Measurement case

It is now considered that most of the amino acids can be
measured, leading to 20 extracellular measured species, including
the biomass measurement. As outlined previously, the initial set
of elementary flux modes is computed using the fast genera-
tion algorithm of [18], which yields 664 elementary flux modes
(considering time-varying specific uptake and excretion rates
obtained through smoothing splines and differentiation). The re-
duction procedure first analyses the biological interpretability of
the macro-reactions described by K. In the present application,
the modes leading to a macro-reaction where a product is gener-
ated without the consumption of any substrate are discarded. This
step allows a slight reduction to 620 EFMs. Then, a collinearity
test allowing a cut to 210 vectors is performed and an optimiza-
tion based reduction can be achieved with a target value 2 =
m, = 20. This value is fixed equal to the number of extracellular
measured species to avoid computational issues in the calculation
of all possible combinations during the last step of the procedure.
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Figs. 9 and 10 and Figs. 11 and 12 show the reconstruction of
the time-evolution of the reaction rates and the concentrations,
respectively.

Finally, the number of EFMs is reduced below the number
of extracellular measurements m,, e.g., (i) A; 19 and (ii)
A, = 16. The outcomes are given in Figs. 13 to 16. For most of
the measured species, the reproduction of the experimental data
remains quite acceptable. Small deviations can nonetheless be
highlighted for ammonia, and larger deviations for the biomass,
which are however acceptable.

5. Dynamical simulator

In order to assess the merits of the reduction, in addition to the
previous validations, it might be interesting to examine the set
of macro-reactions and to consider the following mass-balance
dynamic model:

” (8)
In this equation, & is the vector of concentrations of the extracel-
lular species in the culture medium, K represents the stoichiom-
etry of the reaction network built on the basis of the reduced
set of EFMs, @ is the vector of reaction rates computed in the
optimization problem solved in the reduction procedure, D is the
dilution rate and &;, denotes the inflow concentrations. In our

= K& + D(§in — §)
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case studies, the cultures operate in batch and the second term
on the RHS vanishes (D = 0).

As an illustration, the case of 6 extracellular measured species,
i.e., glucose, lactate, glutamine, ammonia, alanine and biomass, is
considered, with the resulting stoichiometric matrix K:

—0 0 —03 0
0 0 B 0
=1 =2 0 —w
K=119 s 0o s ®)
0 0 0 e
o 0 0 0

where «;, B, i, i, € and o; are the stoichiometric coefficients. K
has dimension m, x A with m, = 6 and A = 4. Equivalently, a
macro-reaction scheme can be drawn:

a1 Gle + y1 GIn — 01 X (10)
2, GIn — 6, N (11)
a3 Glc — B5 Lac (12)
y4 GIn — 64 N + €4 Ala (13)

This reaction scheme makes sense since glucose and glu-
tamine are consumed in the growth phase, while lactate, am-
monia, alanine and biomass are produced, as confirmed by the
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time evolution of these species. The first reaction translates the
growth of biomass by consumption of glucose and glutamine,
the second reaction indicates that the consumption of glutamine
leads to the production of ammonia, the third reaction shows that
lactate is produced from glucose and the last reaction involves the
consumption of glutamine to produce ammonia and alanine.

Without diving into the problem of the formulation of ki-
netic laws and the identification of their parameters, a basic
dynamic simulator is proposed based on the assumption that
the macro-reactions proceed at their maximal rate during the
exponential growth phase. The reaction rates are modeled using
Michaelis—-Menten kinetics :

Glc Gin

¢1 = Mmax, Glce+x Gln+x X (14)
Gln

¢ = Mmax, m X (15)
Glc

¢3 = HMmaxs m X (16)

é Gln (17)

4 = Mmaxy Gin+« X
The parameters (pq, can be obtained by selecting the maximum
entries in the vector @(t). On the other hand, the half-saturation
constants « (which would not be identifiable based on the limited
data at disposal) are taken as small numbers to ensure the pos-
itivity of the model, but not too small so as to avoid excessive
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Table 2
Parameters value.
Units Value

Mmaxq h! 0.06
Mmax, h! 0.1
Mmax, h™! 0.71
Hmaxs h! 0.05
K mM 0.01

stiffness of the system of ordinary differential equations. The
value of the parameters are given in Table 2.

Simulation results are shown in Fig. 17, which are very satis-
factory. Thus, we have demonstrated that the EFM reduction pro-
cedure opens the door to the fast development of dynamic macro-
scopic models. The estimation of kinetic laws requires larger
quantities of informative data and could follow the procedure
proposed in [33].

6. Conclusion

Starting from the preliminary work in [30], this study pro-
poses several significant improvements to a procedure aimed at
systematically reducing the number of elementary flux modes up
to a number chosen below the number of measured extracellular
species. Particularly, the situation of a detailed metabolic network
possibly leading to an intractable initial set of EFMs, is tackled
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by the use of an algorithm generating a minimal decomposi-
tion of a feasible solution. This algorithm can be applied once,
for a particular value of the extracellular fluxes, or repeatedly
following the time evolution of the extracellular fluxes, yielding
an initial set of EFMs of modest size but with sufficient variety
to represent the metabolic activity. Subsequently, the reduction
procedure is made of several steps, which can all be activated
or on the contrary bypassed: (a) the elimination of the modes
leading to a stoichiometric matrix with macro-reactions lacking
a biological interpretation, (b) the elimination of modes which
are close to collinearity based on a cosine-criterion and (c) an
optimization-based reduction, first targeting the positivity con-
straints and then the satisfaction of a least-squares deviation
from the experimental data. The procedure is further tested by
considering data collected in batch cultures of CHO cells, and two
different measurement configurations, showing very satisfactory
results. The generation of macroscopic bioreaction schemes is of
great importance for the development of simple dynamic mod-
els of bioprocesses. Further research entails the development of
systematic procedure for the identification of kinetic laws based
on the fluxes estimated in our reduction procedure and further
validation tests with different metabolic networks and data sets.
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