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ABSTRACT
◥

The prolyl hydroxylase domain/hypoxia-inducible factor (PHD/
HIF) pathway has been implicated in a wide range of immune and
inflammatory processes, including in the oxygen-deprived tumor
microenvironment. To examine the effect of HIF stabilization in
antitumor immunity, we deleted Phd2 selectively in T lymphocytes
using the cre/lox system. We show that the deletion of PHD2 in
lymphocytes resulted in enhanced regression of EG7-OVA tumors,

in a HIF-1a–dependent manner. The enhanced control of neo-
plastic growth correlated with increased polyfunctionality of CD8þ

tumor-infiltrating lymphocytes, as indicated by enhanced expres-
sion of IFNg , TNFa, and granzyme B. Phenotypic and transcrip-
tomic analyses pointed to a key role of glycolysis in sustaining CTL
activity in the tumor bed and identified the PHD2/HIF-1 pathway
as a potential target for cancer immunotherapy.

Introduction
Since the discovery of tumor-specific and tumor-associated anti-

gens in the nineties (1), numerous studies (2) have demonstrated that
the immune system can constrain tumor development in humans and
rodents. However, several sequential steps are required for effective
tumor control in vivo, and these are subject to negative feedback
mechanisms. These steps include priming in the draining lymph
nodes, migration to the tumor bed, reactivation in the tumor micro-
environment, and tumor lysis. It is clearly established that the tumor
microenvironment displays several features that determine the out-
come of immune reactivity to tumor cells. Among them, hypoxia (low
oxygen tension) is a common characteristic of most solid tumors and
may impede antitumor immunity by regulating the function and/or
recruitment of various immune cell types.

Cell adaptation to hypoxia is regulated via a set of oxygen sensors,
among which members of the oxygen-dependent prolyl hydroxylase
family [prolyl hydroxylase domain (PHD) or EGLN], comprising 3
members, play a major role. Hypoxia-inducible factors (HIF), of
which there are three (HIF-1a, HIF-2a, and HIF-3a), are a set of
evolutionary conserved transcriptional regulators that represent the
best-characterized substrates of PHDs (3). These transcription factors
are active as heterodimers consisting of a cytoplasmic HIF (mostly
HIF-1a and/or HIF-2a) subunit and a nuclear HIF-1b subunit also

known as ARNT (aryl hydrocarbon receptor nuclear translocator).
Both subunits are constitutively expressed by all mammalian cells
studied to date. Under normoxic conditions, HIFa is hydroxylated on
two prolines by one of the 3 members of the PHD family, leading to its
poly-ubiquitination by the E3 ubiquitin ligase complex VHL (com-
posed of Von Hippel-Lindau protein, elongin B and C, Cullin 2 and
Rbx1) and in its degradation by the proteasome (4). Under hypoxic
conditions, PHD enzymes are inhibited and unable to hydroxylate the
HIFa subunit, which can then bind to the HIFb subunit and activate
and/or inhibit the expression of over 1,000 genes (3).

The impact of hypoxia on immune reactivity in the tumor micro-
environment has been studied using direct and indirect (through
stabilization of HIF) approaches. A number of reports suggest that
hypoxia may sustain tumor progression by (i) triggering the protu-
moral function of macrophages entrapped in hypoxic niches (5); (ii)
recruiting other immunosuppressive cell types, such as myeloid-
derived suppressor cells and regulatory T cells (Treg; ref. 6); (iii)
downregulating Th1-type cell activation (7–10); and (iv) favoring
Th17 differentiation (11, 12). The effect of hypoxia on Treg remains
controversial: depending on the study andmodel considered, HIF-1a,
the major oxygen sensor stabilized during hypoxia, has been shown to
repress the Treg transcriptional program in vitro by inducing the
degradation of Foxp3 (11, 12), or to favor their differentiation and
function in a murine model of inflammatory bowel disease (13).
Hypoxia may also promote immune evasion by inducing HIF-
1a�dependent expression of immune checkpoint proteins (14, 15).
In addition, hypoxia displays intrinsic effects on tumor cells, promot-
ing the expression of genes that induce epithelial–mesenchymal
transition, affect cell adhesion, and drive cancer development in the
case of long-lasting HIF signaling (16–19). By contrast, there is
increasing evidence that enhanced HIF activity may potentiate the
cytotoxic activity of CD8þ T lymphocytes, which are major actors of
antitumor immunity. Doedens and colleagues showed that loss of VHL
(the main regulator of HIF stability) led to enhanced control of
persistent viral infection in vivo and that VHL-deficient OT-I CTLs
displayed a superior capacity to control ovalbumin (OVA)-expressing
melanoma upon transfer (20). Hypoxic conditions in vitro increase the
production of the cytolytic molecule granzyme B in a HIF-1a–
dependent manner (21, 22).

These observations highlight the contrasting role of proteins
involved in hypoxia sensing in the regulation of immunity/tolerance
in the tumor microenvironment and raise the question of its global
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pro- or antitumoral role. In this study, we used mice genetically
deficient for PHD2 (a proline-hydroxylase that mediates control of
HIF activity) selectively in T lymphocytes (PHD2DT) to characterize
the phenotype and function of tumor-infiltrating CD8þ T lympho-
cytes in mice displaying elevated HIF-1 activity selectively in T
lymphocytes.

Materials and Methods
Mice

C57BL/6 mice were purchased from Envigo (Horst, the Nether-
lands). C57BL/6 Phd2flox/flox mice were generated as previously
described (23, 24) and kindly provided by Dr. Bart Lambrecht (Ghent
University). C57BL/6 Hif1aflox/flox (B6.129-Hif1atm3Rsjo/J) mice
were kindly provided by Dr. F. Bureau (Universit�e de Li�ege) and CD4
Cre (B6.Cg-Tg(Cd4-cre)1Cwi/BfluJ) mice by Dr. G. Van Loo (Ghent
University).Mice carryingHif1a andEgln1 (Phd2) loxP-flanked alleles
were crossedwithCD4Cremice to obtainT cell–specific gene deletion.
Mice were housed in individual ventilated cages and used at 6 to
9 weeks of age. The experiments were performed in compliance with
the relevant laws and institutional guidelines and were approved by
the Animal Care and Use Committee of the Institute for Molecular
Biology and Medicine (protocol numbers: CEBEA-IBMM-2017–
22–01 and 03).

Tumor inoculation and in vivo treatment
EG7-OVA (source: ATCC CRL-2113) T lymphoblasts are

derived from the C57BL/6 (H-2b) mouse lymphoma cell line EL4,
which was transfected by electroporation with the plasmid pAc-
neo-OVA which carries a complete copy of chicken OVA mRNA
and the neomycin (G418) resistance gene. B16-OVA (clone MO4,
kindly provided by Kris Thielemans, VUB, Belgium) is a cell line
that was isolated from skin tissue of a mouse with melanoma
and was transfected with chicken OVA cDNA. It exhibits a mor-
phology of spindle-shaped and epithelial-like cells. No full authen-
tication was carried out, but the EG7-OVA cell line was charac-
terized by T-cell markers; the B16-OVA cell line displays morpho-
logic characteristics (see above), both cell lines were evaluated for
SIINFEKL OVA/Kb expression using 25-D1.16 mAb (eBioscience
17–5743–82).

EG7-OVA and B16-OVA tumor cell lines were cultured in DMEM
(Lonza 12–741F) containing 10% heat-inactivated FCS (Gibco 10270–
106), sodium pyruvate 1 mmol/L (Lonza 13–115E), 1% nonessential
aminoacid mixture (Lonza 13–114E), L-glutamine 2 mmol/L (Lonza
BE17–605E), penicillin–streptomycin 100 units/mL (Lonza DE17–
6025E), b-mercaptoethanol 50 mmol/L (Sigma-Aldrich M-7522) and
G418 400 mg/mL (Sigma-Aldrich A1720). Tumor cell medium was
changed every 2 days and a new cell line was regenerated every month.
Cell lines were treated every 6 months with Mycoplasma Removal
Reagent (Millipore 30–500–44).

106 EG7-OVA tumor cells were injected subcutaneously in the
right flank. Mice were monitored every 2 days for tumor growth and
survival. The tumor volume (mm3) is expressed as (A � B2)/2,
where A and B are tumor length and width, respectively. Some mice
were injected intraperitoneally with 1-mg anti-CD8b (53–5.8,
BioXCell BE0223) or IgG from rat serum (Sigma-Aldrich I8015)
5 days after tumor inoculation, and further treated with 250 mg
antibodies weekly.

5�105 B16-OVA tumor cells were injected subcutaneously in the
right flank. Somemicewere injected intraperitoneally with 200–280mg
anti–programmed cell death protein 1 (PD-1; RMP1–14, BioXCell

BP0146) or isotype control (rat IgG2a, 2A3, BioXCell BE0089) 7, 9, 11,
and 13 days after tumor inoculation.

Cell culture
CD8þ T lymphocytes were positively selected from spleen suspen-

sions by magnetic-activated cell sorting using CD8 beads (Miltenyi
130–117–044) according to the manufacturer’s protocol.

For transcriptomic analysis, enriched CD8þ T lymphocytes were
stained with anti-TCRb and anti-CD8 mAbs and further purified
using a BDFACSAria III Cell Sorter. SortedCD8þT lymphocytes were
activated with plate-bound anti-CD3 (2 mg/mL; clone: 145–2C11;
BioXCell) and soluble anti-CD28 (1 mg/mL, clone: 37.51; BioXCell)
in RPMI1640 medium (Gibco 31870–025) containing 10% FCS,
sodium pyruvate, nonessential amino acid mixture, L-glutamine,
penicillin–streptomycin, and b-mercaptoethanol.

To measure glucose dependency, MACS-enriched CD8þ T lym-
phocytes were cultured with DMEM medium without glucose
(Life Technologies 11–9660–25) supplemented with 10 mmol/L glu-
cose (Sigma-Aldrich G8270) or galactose (Sigma-Aldrich G5388) and
10% dialyzed FCS, sodium pyruvate, nonessential amino acidmixture,
L-glutamine, penicillin–streptomycin, and b-mercaptoethanol.

Flow cytometry
EG7-OVA tumorswere treatedwithDNAse I (Roche 10104159001)

and Liberase (Roche 05401020001) to generate a single-cell suspension
and viable cells were enriched on density gradient Lymphoprep
(Stemcell Technologies 07851). Tumor-infiltrating cells were incubat-
ed with monoclonal antibodies conjugated to fluorochrome or biotin:
TCRb (H57–597), CD8a (53–6.7), CD44 (IM7), CD62 L (MEL-14),
TIGIT (1G9), CD279/PD-1 (J43), TIM-3 (5D12) fromBDBiosciences.
Streptavidin was purchased from BD Bioscience (557598). Dead cells
were excluded by LIVE/DEAD (Invitrogen L34976) staining and
nonspecific Fc-mediated interactions were blocked by anti-mouse
CD16/CD32 (2.4G2, BioXCell). To evaluate the functional status
of tumor-infiltrating T lymphocytes, cells were stimulated in vitro
for 3 hours with pharmacologic agents bypassing TCR signaling
(50 ng/mL PMA (Sigma P8139) and 1 mg/mL ionomycin (Sigma I
0634) in the presence of a protein trafficking inhibitor allowing
the intracellular retention of activation-induced cytokines (brefel-
din A from Invitrogen 00–4506–51). Cells were subsequently fixed
with BD cytofix/cytoperm kit (51–2090KZ), permeabilized with BD
Perm/Wash (51–2091KZ) and stained with conjugated monoclonal
antibodies directed at IFNg (XMG1.2, Biolegend), Granzyme B
(NGZB, Thermo Fisher), TNFa (MP6-XT22, Life Technologies),
Ki67 (B56, BD Bioscience), T-bet (4B10, Thermo Fisher), Eomes
(DAN11MAG, Thermo Fisher), Glut-1 (SPM498, Abcam), TOX
(TXRX10, Thermo Fisher), and/or TCF1/TCF7 S33–966, BD Phar-
mingen). The expression of a transcription factor cascade (Tox,
TCF1, T-bet, Eomes) was used to define four exhausted PD-
1þCD8þ T lymphocyte subsets, in particular the terminally
exhausted subset TCF1–T-betloToxhiEomeshi (25).

Flow cytometry analysis was performed on a Canto II (BD Bios-
ciences) or CytoFLEX (Beckman Coulter) and the data generated were
analyzed using the FlowJo software (Tree Star) and the FlowSOM
technique. This visualization technique analyzes flow or mass cyto-
metry data using a self-organizing map (26).

In vivo CTL assay
C57BL/6micewere immunized by injection of dendritic cells pulsed

with SIINFEKL peptide (synthesized by PEPTIDE.2). Spleen cells were
digested with collagenase type 3 (Gestimed LS004183) for 30 minutes
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at 37�C, further dissociated in Ca2þ-free medium, and separated into
low and high density fraction on a Nycodenz gradient (LUCRON
1002424). CD11cþ cells were enriched from low-density spleen cells by
magnetic positive selection using anti-CD11c (N418) Microbeads
(Miltenyi 130–108–338). Dendritic cells were incubated for 1 hour
at 37�Cwith SIINFEKL peptide, washed and suspended in 200mL PBS.
5�105 SIINFEKL-pulsed dendritic cells were injected into the hind
and fore footpads. Mice were tested 5 days later.

For the in vivo CTL assay, na€�ve or immunized mice were injected
intravenously with target cells. Target cells were splenocytes from
C56BL/6 mice pulsed or not with 5 mg/mL SIINFEKL peptide and
further labeled with 5,6-carboxyfluorescein diacetate succinimidyl
ester (CFSE, Molecular Probes C-1157) at a concentration of 10
mmol/L (pulsed) and 1 mmol/L (unpulsed) for 15 minutes at 37�C.
Target cells were washed and injected intravenously at 1:1 ratio (total
of 4�105 cells). Draining lymph nodes were harvested 6 hours later
and analyzed by flow cytometry to determine the number and pro-
portion of CFSEþ cells. The percentage of antigen-specific lysis in vivo
was calculated as follows:

1�
# cells CFSE high
# cells CFSE low

� �

# cells CFSE high from naive mice
# cells CFSE low from naive mice

� �
0
@

1
A � 100

Quantitative RT-PCR
RNA was extracted from CD8þ T lymphocytes (purified by

cell sorting) using TRIzol method (Sigma-Aldrich T9424) and reverse
transcribed with Superscript II reverse transcriptase (Invitrogen
18064–014) according to the manufacturer’s instructions. Quantita-
tive real-time RT-PCR was performed using the SYBR Green
Master mix kit (Thermo Fisher, K1082) and StepOne Plus system
(Applied Biosystems). Amplification reactions were conducted for
40 PCR cycles (each cycle: 95C for 15 seconds, 60C for 1 hour)
in duplicates. The following RT PCR primers were used: Ubiq-Fw:
cgtctgaggggtggctatta; Ubiq-Rev: taaattggggcaagtggcta; Glut-1-Fw:
caaacttcattgtgggcatg; Glut-1-Rev: agcaccgtgaagatgatgaa; Sprouty
2-Fw: cgatcacggagttcagatgt; Sprouty 2-Rev: agctctggcctccatcag.
Transcript amounts were calculated by using a standard curve and
normalized to Ubiquitin-transcripts, which was used as the house-
keeping gene.

RNA sequencing and analysis
CD8þ T lymphocytes, purified as indicated in the “cell culture”

section of themethods, were stimulated with anti-CD3 and anti-CD28
antibodies for 15 hours. RNA extraction was performed using a
RNeasy kit (Qiagen, 74004) and sample quality was tested on a
2100 Bioanalyzer (Agilent). Total RNA underwent paired-end
sequencing by using a TruSeq Stranded mRNA kit (25�106 paired-
end reads/sample, Novaseq 6000 platform) performed by BRIGHT-
core ULB-VUB, Belgium (http://www.brightcore.be). Adapters were
removed with Trimmomatic-0.36 (with the following parameters:
Truseq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWIN-
DOW:4:15 MINLEN:36 HEADCROP:4). Reads were then mapped
to the reference genome mm10 by using STAR_2.5.3 a software with
default parameters. Reads were then sorted from the alignment
according to chromosome positions and index the resulting BAM-
files. Read counts in the alignment BAM-files that overlapped with the
gene features were obtained using HTSeq-0.9.1 with “–nonunique all”
option (if the read pair aligns tomore than one location in the reference
genome, it was counted in all features to which it was assigned and
scored multiple times). Genes with no raw read count greater or equal

to 20 in at least 1 sample were filtered out with an R script, raw read
counts were normalized and a differential expression analysis was
performed with DESeq2 by applying an adjusted P value < 0.05 and an
absolute log2-ratio larger than 0.5.

Statistical analysis
All statistical analyses were conducted using GraphPad Prism

(GraphPad Software, version 6). Statistical difference between two
groups was determined by unpaired, two-tailed Student t tests. A one-
way or two-way ANOVA was used for multigroup comparisons
together with Tukey multiple comparisons post hoc tests.

Survival significance in tumor bearing mice was determined by a
Log-rank Mantel–Cox test. Data are judged to be statistically signif-
icant when P value < 0.05. In figures, asterisks denote statistical
significance (�, P < 0.05; ��, P < 0.01; ���, P < 0.001; ����, P <0.0001).

Data availability
The RNA sequencing (RNA-seq) data reported in this study have

been deposited in the Gene Expression Omnibus repository with the
accession code no. GSE216536. All other data are available in themain
text or the Supplementary Materials or are available from the corre-
sponding author on reasonable request.

Results
Genetic deletion of phd2 in T lymphocytes results in enhanced
tumor rejection

To explore the role of the HIF pathway in the adaptive response
to tumor in vivo, we deleted the gene encoding PHD2 selectively in
T cells and monitored the growth of EG7-OVA lymphoma cells. Mice
with loxP-flanked Egln1 (Phd2) alleles [generated as previously
described (23, 24)] were crossed onto CD4 Cre mice, giving rise to
the Egln1fl/fl CD4CRE (named PHD2DT) mouse strain harboring a
selective deletion of Egln1 (Phd2) in T lymphocytes. Expression of
HIF-1a was increased in CD8þ T cells upon 24h in vitro stimulation
with anti-CD3/CD28 (Supplementary Fig. S1A). We subcutaneously
injected EG7-OVA lymphoma cells into PHD2DT mice and compared
tumor growth with that seen in wild-type (WT) mice and control
littermates (CD4 Cre� Phd2fl/fl). The data in Fig. 1A indicate that a
significant proportion of PHD2DT mice (mean ¼ 67% in all experi-
ments performed) rejected the tumor and survived at endpoint, as
compared with 2.6% in WT mice. The tumor growth in Phd2fl/fl was
slower than in WT mice, presumably due to altered, hypomorphic
expression of the floxed Phd2 allele (Fig. 1S, panel B). Of note, deletion
of HIF-1a in otherwise PHD2-deficient mice (HIF-1a PHD2DT)
reverted the phenotype, as assessed by the control-like survival rate
of these mice upon tumor inoculation (Fig. 1A and B). The control of
tumor growthwas dependent onCD8þT lymphocytes, as the injection
of depleting anti-CD8 increased mortality in both WT and PHD2DT

mice (Fig. 1C andD). Administration of anti-CD4 resulted in reduced
tumor growth and death, presumably because of Treg depletion
(Supplementary Fig. S2). Similar results, i.e., enhanced tumor regres-
sion, were observed in PHD2DT mice injected with B16-OVA mela-
noma (Fig. 2, see isotype-treated groups). Thus, stabilization of HIF-
1a resulted in increased control of tumor growth in two murine
models.

Genetic deletion of Phd2 favors the development of effector
CD8� T cells

To examinewhether thePhd2 deletion affected the differentiation of
CD8þ T lymphocytes into effector and/or memory cells, we used flow

HIF-1a and T-Cell Function
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cytometry to monitor the capacity (upon PMA/ionomycin restimu-
lation) of tumor-infiltrating CD8þ T lymphocytes to express IFNg ,
TNFa, and Granzyme B as well as the glucose transporter GLUT-1, a
direct target of HIF-1a. We used FlowSOM (self-organizing map) as a
starting point for an analysis of a pool of cells from 4 experimental

groups. Sixmajor clusters were identified, fromwhich two populations
(identified as POP 1 and 2) were strongly enriched selectively in
PHD2DT mice (Supplementary Fig. S3). We split the data set to
visualize the proportion of the populations in the four experimental
groups (Fig. 3A and B). The expression of IFNg , TNFa, and GLUT-1
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Figure 1.

Enhanced tumor regression in PHD2DT mice.A–D, Mice were injected subcutaneously with 106 EG7-OVA tumor cells. C andD, Some groupswere treated 5 days later
with rat depleting anti-CD8 or isotype control IgG. Tumor growth (A,C) and survival (B,D) weremonitored daily. Data are representative of two (n¼ 3–6;A); at least
three (n ¼ 3–8) for WT, CD4 Cre� PHD2f/f, PHD2DT groups and two (n ¼ 3–8) for HIF-1a PHD2DT and HIF-1aDT groups (B); one (C); two (n ¼ 5–6; D)
independent experiments. A, C, Bars represent mean � SD. Statistical significance was determined by the Mann–Whitney test. � , P < 0.05; �� , P < 0.01;
��� , P < 0.001; ���� , P < 0.0001; ns, not significant.
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Enhanced tumor regression in PHD2DT

mice treated with anti–PD-1 mAb. WT,
CD4 Cre� PHD2f/f, and PHD2DT mice
were injected subcutaneously with
5�105 B16-OVA tumor cells. Micewere
treated with 200–280 mg anti–PD-1 or
isotype control once each 2 days for
8 days. Tumor growth (top) and sur-
vival (bottom) were monitored each
3 days. Survival and growth data
are from (n ¼ 16) mice per group.
Bars represent mean � SD. Statistical
significance for survival was deter-
mined by Log-rank (Mantel–Cox) test,
and Wilcoxon test for tumor growth.
�, P < 0.05; �� , P < 0.01; ��� , P < 0.001;
���� , P < 0.0001; ns, not significant.
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was strongly increased in tumor-infiltrating CD8þ T cells from
PHD2DT mice, reaching about 40% of CD8þ T cells (POP 1 and 2),
as compared with 10% to 22% in other groups, whereas Granzyme B
was overexpressed in POP 2 only, representing 15% of CD8þ

T lymphocytes (Fig. 3B and C). Concomitantly, the proportion of
CD8þ T lymphocytes expressing lower levels of four genes (POP 6)
was strongly decreased. The absolute number of polyfunctional CD8þ

T lymphocytes per gram of tumor reached 41,000 in PHD2DT mice,

a 2-fold increase, as compared with 19,000 and 21,000 cells in WT
and CD4 Cre� PHD2fl/fl mice, respectively (Fig. 3D).

A summary of all experiments performed (Fig. 4A) revealed that
36% of tumor-infiltrating CD8þ T lymphocytes had the capacity to
express IFNg , TNFa, and Granzyme B in PHD2DT mice, a more than
2-fold increase as compared with other groups. The calculation of the
absolute numbers of cells showed a 6-fold selective increase in the
number of CD8þ T lymphocytes expressing these three cytotoxic-

Figure 3.

Increased infiltration of polyfunctional CD8þ T cells in tumors of PHD2DT mice. WT, CD4 Cre� PHD2f/f, PHD2DT, and HIF-1a PHD2DT mice were injected
subcutaneously with 106 EG7-OVA tumor cells. Tumors were harvested 13 to 14 days later and analyzed by flow cytometry. Unsupervised analysis of
tumor-infiltrating CD8þ T cells from 4 to 5 concatenated mice per group, using nonlinear dimensionality reduction in conjunction with t-distributed stochastic
neighbor embedding (t-SNE) axes as inputs for clustering and FlowSOM cluster analysis. A, Heat map of the median fluorescence intensity (MFI) of IFNg ,
TNFa, granzyme B, and GLUT1 for the 6 clusters; pie representation of the relative proportion of each cluster in each group (B); t-SNE graphs with the
six clusters found by FlowSOM algorithm for each group (C) and absolute number per gram of tumor of each cluster of CD8þ T cells infiltrating EG7-OVA
tumor (D). Data are representative of three independent experiments with 3 to 6 mice per group.

HIF-1a and T-Cell Function

AACRJournals.org Cancer Immunol Res; 11(3) March 2023 343

D
ow

nloaded from
 http://aacrjournals.org/cancerim

m
unolres/article-pdf/11/3/339/3271323/339.pdf by Fred H

utchinson C
ancer C

enter user on 10 M
arch 2023



associated factors in the same mice, reaching a mean of 65�103 per
gram of tumor (Fig. 4B). The proportion of some cells expressing a
single functional marker (TNFa) as well as dual expressors
(IFNgþTNFaþ and IFNgþGranzyme Bþ) was also significantly
increased in PHD2-deficient cells (Supplementary Fig. S4).

The glucose transporter GLUT-1 was expressed by 65% (mean of all
experiments) of tumor-infiltrating CD8þ T cells in PHD2DT mice, as
compared with 17% to 32% in other groups (Fig. 4C) and the absolute
number of polyfunctional CD8þ T lymphocytes expressing GLUT-1
was significantly increased in PHD2DTmice, suggesting a potential role
for glucose-dependent metabolism (Fig. 4D). In addition, the pro-
portion of polyfunctional tumor-infiltrating CD8þT lymphocytes was
higher among GLUT-1þ than among GLUT-1– cells in PHD2DT mice
(Fig. 4E).

PHD2 regulates the exhaustion programof CD8� T lymphocytes
FACS analyses of tumor-infiltrating CD8þ lymphocytes revealed a

slight increase in KI67 expression in PHD2DT mice, as compared with
WT (Supplementary Fig. S5A) despite a similar effector memory
phenotype, as assessed by CD44 and CD62 L expression (Supplemen-
tary Fig. S5B). However, expression of the transcription factor Eomes
(as assessed by its relative frequency andmean fluorescence signal) was
downregulated in PHD2-deficient cells (Supplementary Fig. S6A), an

observation in line with a potential role for this transcription factor in
cell exhaustion. RNA-seq data confirmed a 1.3-fold decrease in Eomes
mRNA levels (see later discussion). The expression of Tbx21 was not
significantly different between groups.

We next used flow cytometry to examine the differentiation pro-
gram of tumor-infiltrating CD8þ T cells in PHD2DT mice and CD4
Cre� Phd2fl/fl mice. The expression of several markers of differenti-
ation/exhaustion revealed a change in the exhaustion program in
PHD2DT mice, i.e., an increased proportion of effector cells relative to
“terminally exhausted” CD8þ lymphocytes (Fig. 5A; ref. 25). Indeed,
the major populations infiltrating the tumor in both strains of mice
differed by their expression of PD-1, Tox, and Eomes, with amore than
2-fold decrease in the proportion of PD-1þ cells among CD8þ TILs
(Fig. 5B). Among these PD-1þ cells, we observed a decreased expres-
sion of the exhaustion-associated transcription factor TOX and a
nonsignificant trend for increased proportion of TCF1þTIM3lo pro-
genitor cells in PHD2DT mice (Fig. 5C).

Finally, we evaluated the capacity of lymphocytes from PHD2DT

mice to acquire cytolytic activity independently of tumor growth. WT
and PHD2DT mice were primed by injection of OVA peptide–pulsed
splenic dendritic cells and tested for cytotoxic activity in vivo 5 days
later. The data in Supplementary Fig. S6B show a significant increase
in the lysis of OVA-pulsed targets in PHD2DT mice, as compared

Figure 4.

Enhanced proportion of polyfunctional CD8þ T cells in PHD2DTmice.WT, CD4 Cre� PHD2f/f, PHD2DT, and HIF-1a PHD2DTmice were injected subcutaneously with 106

EG7-OVA tumor cells. Tumors were harvested 13 to 14 days later and analyzed by flow cytometry. A–C, Proportion (A), absolute number per tumor (B, left), or per
gram of tumor (B, right) of IFNgþTNFaþGranzyme Bþ cells infiltrating tumors. C, Proportion of GLUT1 expression among tumor-infiltrating CD8þ T cells.D,Absolute
number per gram of tumor of IFNgþTNF-aþGranzyme BþGLUT1þ CD8þ T cells. E, Proportion of polyfunctional cells among GLUT1þ or GLUT1– CD8þ T cells. Data are
pooled from four (n ¼ 1–6; A and B); six (n ¼ 3–6; C); three (n ¼ 3–6; D and E) independent experiments (each data point represents one mouse). Bars represent
mean � SD. Statistical significance was determined by Kruskal–Wallis multiple comparisons test. � , P < 0.05; �� , P < 0.01; ��� , P < 0.001; ���� , P < 0.0001; ns, not
significant.
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with WT mice, suggesting that HIF-1a stabilization resulted in
increased lytic activity of CD8þ T cells even upon transient antigenic
stimulation.

Collectively, these observations suggest that the stabilization ofHIF-
1a in T lymphocytes inhibits their differentiation from effector into
terminally exhausted TOXhiPD-1hi cells, thereby favoring the recruit-

ment, survival, and/or differentiation of polyfunctional CD8þ

T lymphocytes into the tumor bed.

Transcriptomic analysis
To gain insight into the mechanism underlying increased CD8þ T-

cell polyfunctionality in the context of PHD2 deficiency, we performed

PHD2DT  CD4 Cre-  PHD2f/f B 

UMAP1 

U
M

A
P

2 

PD-1 TOX TCF1 TIGIT TIM-3 EOMES 

P
H

D
2DT

 
C

D
4 

C
re

-  
P

H
D

2f
/f
 

Low 

High 

E
xp

re
ss

io
n

 

A 

PD-1 

CD8 

PD-1 

TOX 

PHD2
ΔT

0

20

40

60

80

100

%
P

D
-1

+
am

o
n

g
C

D
8+

in
tu

m
o

r

*

0

25,000

50,000

M
ed

ia
n

P
D

-1
am

o
n

g
C

D
8+

in
tu

m
o

r

*

C 

PHD2
ΔT

0

20

40

60

80

100

%
T

O
X

am
o

n
g

P
D

-1
+

C
D

8+

in
tu

m
o

r

*

PHD2
ΔT

0

20

40

60

80

%
T

C
F

-1
am

o
n

g
P

D
-1

+
C

D
8+

in
tu

m
o

r

ns

CD4 Cre
− PHD2

f/f

PHD2
ΔT

CD4 Cre
− PHD2

f/f

PHD2
ΔT

CD4 Cre
− PHD2

f/f

PHD2
ΔT

CD4 Cre
− PHD2

f/f

PHD2
ΔT

CD4 Cre
− PHD2

f/f

CD4 Cre
− PHD2

f/f

CD4 Cre
− PHD2

f/f
0

20

40

60

80

100

%
T

IM
-3

am
o

n
g

P
D

-1
+

C
D

8+

in
tu

m
o

r

ns

0

10

20

30

40

50

%
T

IG
IT

am
o

n
g

P
D

-1
+

C
D

8+

in
tu

m
o

r

ns

0

5,000

10,000

15,000

M
ed

ia
n

T
O

X
am

o
n

g
P

D
-1

+
C

D
8+

in
tu

m
o

r

*

Figure 5.

Altered exhaustion program inTILs fromPHD2DTmice. CD4Cre�PHD2f/f andPHD2DTmicewere injected subcutaneouslywith 106 EG7-OVA tumor cells. Tumorswere
harvested 10 days later and analyzed by flow cytometry. A, UniformManifold Approximation and Projection (UMAP) projection of data from CD8þ T cells infiltrating
tumors in CD4 Cre�PHD2f/f and PHD2DTmice. The expression of each indicatedmarker is shown. Red indicates higher expression, blue indicates lower expression.B,
Representative flow cytometry plots of indicatedmarkers (left) and intensity (MFI) of PD-1 among tumor-infiltrating CD8þ T cells and TOX among tumor-infiltrating
CD8þ T PD-1þ cells (right). C, Percentage of PD-1þ cells among tumor-infiltrating CD8þ T cells, TOX, TCF-1, TIM-3, and TIGIT among PD-1þ. B and C, Data are pooled
from two independent experiments (n¼ 4–5). Bars represent mean� SD. Statistical significance was determined by unpaired t test. �, P < 0.05; ns, not significant.
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RNA-seq analysis on CD8þ T lymphocytes from WT and PHD2DT

mice 16 hours after anti-CD3 and anti-CD28 activation in vitro. We
validated the PHD2 inactivation, as shown by the reduced frequen-
cy of reads coverage around exon 2 of the Egln1 gene (Fig. 6A).
Analysis of the dataset identified 19 downregulated genes and 132
upregulated upon PHD2 deletion (Fig. 6B). Among upregulated
genes, were Slc2a1 and Slc2a3, which encode for proteins (GLUT1
and GLUT3 respectively) that facilitate the transport of glucose. The
representation analysis for pathways enriched from genes that were
upregulated in activated CD8þ T lymphocytes from PHD2ΔT mice

showed a specific enrichment of terms related to metabolism
and energy (Fig. 6C and D). Several genes were involved in
carbohydrate catabolic processes that generate pyruvate important
for glycogenesis such as Ldha, Aldoa, Pdk1, and Pgk1. In addition,
cytokine activity and regulation of immune effector process were
strongly enriched implicating genes such as Tbx21, Ifng, Irf7,
and Bcl3. Finally, genes such as Vegfa, Rora, and Pdk1 enriched
pathways related to hypoxia. These observations suggest a link
between increased ability of tumor rejection and enhanced
glycogenesis.
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Figure 6.

Transcriptomic analysis of in vitro activated CD8þ T cells. RNA-seq of CD8þ T cells purified from WT and PHD2DT spleen and activated in vitro with anti-CD3
plus anti-CD28 for 15 hours. A, Integrative Genomics Viewer tracks showing read coverage for RNA expression of Egln1 gene in WT (blue) and EglnDT (red).
Gene position is indicated at the top of the panel. B, MA plot shows the fold change (log2) versus average of read counts (log2) (up in PHD2DT, red; up in WT,
blue). C, Heat map representation of expression of transcripts involved in the glycolytic pathway, HIF-1a stabilization network, cytokine activity and immune
effector function. The numbers of differentially expressed RNA are indicated. RNA-seq data were analyzed in triplicates for PHD2DT and duplicate for WT.
D, Gene ontology enrichment analysis of differentiated genes expressed in PHD2DT CD8þ T cells showing the enrichment P value expressed as –log10.
E, CiiiDER analysis of putative transcription factors motifs in promoter regions of glycolysis pathway shown in the heat map. Transcription factors are colored
according to the P value of their gene coverage in CD8þ T cells. The size of each point is also proportional to log10 P value.
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To extend our understanding of PHD2 deletion on glycogenesis,
we performed a motif enrichment analysis for transcription factors
on the promoter of genes upregulated in CD8þ T lymphocytes from
PHD2ΔT mice and associated with the glycogenesis process. We
noticed a strong enrichment for HIF-1a motifs suggesting the
involvement of this protein in the increased glycogenesis activity
in these cells (Fig. 6E).

Aerobic glycolysis is required for enhanced differentiation of
polyfunctional CD8� T lymphocytes in culture

On the basis of our observations and a previous report showing that
aerobic glycolysis was required for cytokine production (but not
activation and proliferation) by CD4þ T lymphocytes (27), we com-
pared the expression of cytokines in CD8þ T lymphocytes cultured in
either glucose (to engage aerobic glycolysis) or galactose (to enforce
respiration). The data in Fig. 7 indicate that the proportion of CD8þ T
lymphocytes expressing IFNg and Granzyme B was higher in PHD2DT

mice than in WT or CD4 Cre� PHD2DT counterparts, when activated
in classical media (including glucose). Of note, culture in galactose-
supplemented media led to a strong reduction in cytokine production
and abrogated the difference among groups of mice. These data
support the hypothesis that the increased function of CD8þ T lym-
phocytes from PHD2DTmice upon in vitro stimulation was dependent
on glucose metabolism.

Genetic deletion of phd2 in T lymphocytes improves PD-1
blockade immunotherapy

There is increasing evidence that cells expressing intermediate levels
of PD-1 preferentially expand upon PD-1 blockade (28). We therefore
explored the role of PHD2 in T lymphocytes in response to immu-

notherapy in the B16-OVA melanoma tumor model. We subcutane-
ously injected WT, control littermates (CD4 Cre� Phd2fl/fl) and
PHD2DT mice with B16-OVA melanoma and treated them or not
with anti–PD-1 at days 7, 9, 11, and 13. In WT mice, treatment with
anti–PD-1 had aminor effect on tumor growth and survival (Fig. 2). In
sharp contrast, tumors were completely rejected in PHD2DT and CD4
Cre� Phd2fl/fl mice treated with anti–PD-1, indicating a strong syn-
ergism between PHD2 genetic deletion or hypomorphism and check-
point blockade.

Discussion
In this study, we show that the stabilization of HIF-1a in T

lymphocytes (through genetic ablation of PHD2) enhanced the rejec-
tion of OVA-expressing tumors and altered the differentiation of
CD8þ T cells, preventing their progressive dysfunction. In particular,
a larger number of effector/memory T lymphocytes, characterized by
an increased capacity to express IFNg , TNFa, and Granzyme B,
infiltrated the regressing tumors in PHD2DT mice. Of note, the
stabilization of HIF-1a, even partial as in CD4 Cre� PHD2fl/fl mice,
had a synergistic effect with anti–PD-1 therapy to control tumor
growth and survival.

Our observations point to an elevated glycolytic metabolism
induced by sustained HIF-1a signaling as a molecular mechanism
by which HIF-1a yields more protective effector/memory CD8þ T
lymphocytes. Indeed, our data show: (i) an increased expression of the
glucose transporter GLUT-1 by tumor-infiltrating CD8þ T lympho-
cytes in PHD2DT mice; (ii) a potent induction of genes related to
glycolytic metabolism (glucose transporters GLUT-1/3 and rate lim-
iting glycolytic enzymes) in PHD2-deficient CD8þ T lymphocytes
activated in vitro; (iii) the glucose dependency of the polyfunctional
capacity (IFNg , TNFa, and granzyme B production) of anti-CD3/
CD28-stimulated PHD2-deficient CD8þT lymphocytes. This hypoth-
esis is in line with data in the literature showing that oxidative
phosphorylation (OXPHOS) and aerobic glycolysis interchangeably
support T-cell proliferation/survival but that aerobic glycolysis is
required for optimal IFNg production in mice (27, 29) and
humans (30). Accordingly, glucose deprivation was shown to limit
the cytolytic function of effector CTL in vitro (31–33). Two in vivo
studies have shown that constitutive HIF-dependent glycolytic metab-
olism (through conditional deletion of Vhl in T lymphocytes)
enhances the effector responses of CD8þ T lymphocytes and prevents
exhaustion during chronic viral infection (20, 34). T-cell intrinsic
deletion of PHD proteins was found to limit tumor colonization in the
lung and improve adoptive cell transfer immunotherapy (35). Our data
confirm these findings and further show that HIF-1a stabilization
enhances the differentiation/recruitment of polyfunctional CD8þ T
lymphocytes in vivo, resulting in increased tumor rejection and
cytotoxicity. In contrast, Mamlouk and colleagues (36) reported that
loss of PHD2 in both T lymphocytes andmyeloid cells was required for
tumor regression, possibly due to macrophage-mediated immune
subversion in their tumor model.

Our study may also explain the apparently paradoxical observation
of a better survival rate in groups of patients with glioma and acute
myeloid leukemia (AML) bearing tumors expressing a mutated allele
of the gene encoding isocitrate dehydrogenase 1 [referred to as
IDHmut tumors, see (37)]. Differential impact of IDH1/2 mutational
subclasses on outcome in adult AML results from a large multicenter
study (38). Although mutations in IDH1 are often perceived as
an immune evasion mechanism, it is noteworthy that gain-of-
function mutations in this enzyme can lead to the accumulation of

Figure 7.

Polyfunctionality is dependent on glucose metabolism. Splenic CD8þ T cells
were purified from WT, CD4 Cre� PHD2f/f, and PHD2DT mice and activated
in vitro with anti-CD3 plus anti-CD28 in medium supplemented either with
glucose (Glu) or galactose (Gal) for 15 hours and analyzed by flow cytometry.
Data are pooled from three independent experiments (n ¼ 2). Bars represent
mean � SD. Statistical significance was determined by two-way Anova with
Dunnett multiple comparisons post hoc test. ��� , P < 0.001; ����, P < 0.0001; ns,
not significant.
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2-hydroxyglutarate (2HG), a metabolite that can be produced as an L
or a D enantiomer (39). Although both enantiomers can be considered
as oncometabolites, their effect on immune cells are clearly distin-
guishable. In addition to promoting tumor development and fit-
ness (39), D-2HG exerts potent immunosuppressive properties,
notably by lowering the NAD/NADH ratio of tumor infiltrating CD8þ

T cells (40). Oncometabolite D-2HG alters T-cell metabolism to
impair CD8þ T-cell function (40). In marked contrast, L-2HG is
known to inhibit PHD proteins leading to the stabilization of HIF-
1a (41). S-2-hydroxyglutarate regulates CD8þ T-lymphocyte
fate (40, 41), leading to enhanced tumor infiltration and effector
function, further confirming, in a clinical setting, the beneficial
effect of HIF-1 stabilization during an antitumor response. In
conclusion, whereas the hypoxia-derived L-2HG has been shown
to affect PHD2 enzymatic activity, oncometabolites produced by
IDHmut tumors appear to dysregulate the epigenetic program of
both tumor and tumor-infiltrating cells independently of the
PHD2–HIF-1a signaling pathway.

It is likely that the increased glucose transport in tumor-
infiltrating CD8þ T lymphocytes is of critical importance because
of the metabolic competition in the tumor microenvironment
(42, 43). Chang and colleagues have reported (44) that tumors
may directly dampen the effector function of T lymphocytes by
consuming glucose. They further show that programmed death-
ligand 1 not only inhibits T lymphocytes via PD-1, but may also
enhance tumor-cell glycolysis, thereby limiting glucose availability.
Checkpoint blockade may therefore directly and indirectly poten-
tiate T-cell function by increasing the level of available glucose in
the tumor milieu. Of note, a recent report (45) confirmed that
prolonged glucose restriction contributed to hyporesponsiveness of
tumor-infiltrating CD8þ T lymphocytes and further showed that
acetate may restore IFNg production in glucose-deprived T lym-
phocytes in vitro and in vivo.

We found a correlation between the superior tumor control and
increased numbers of tumor-infiltrating CD8þ T lymphocytes
endowed with the capacity to produce IFNg , TNFa, and granzyme
B in PHD2DT mice. These observations are consistent with several
reports showing that polyfunctional CD8þ T lymphocytes display a
superior ability to reject tumor cells or control viral infections (46–51),
a property lost by “exhausted” T cells. Among the mechanisms known
to induce/maintain T-cell exhaustion during chronic infection, Eomes,
a paralog of T-bet, and Sprouty 2 (SPRY2), a negative regulator of the
MAPK/ERK pathway, may be of interest in our setting as they were
decreased in PHD2-deficient CD8þ T lymphocytes. The role of Eomes
is complex, as it regulates both T-cell full differentiation and exhaus-
tion, possibly depending on its level of expression (52). Li and
colleagues reported that Eomes expression by tumor-infiltrating lym-
phocytes increased when tumor progressed and that Eomes was
required for the development of antitumor effector cells. However,
high levels of Eomes drove T lymphocyte unresponsiveness by induc-
ing expression of T-cell exhaustion genes, such as Havcr2 (which
encodes TIM-3; ref. 52). Another study emphasized the complemen-
tary role of progenitor (T-betþ) and terminal (Eomesþ) subsets of
CD8þ T lymphocytes to control viral infection (53). Accordingly,
tumor-infiltrating CD8þ T lymphocytes in PHD2DT and control
littermates differed by their expression of PD-1 and TOX. Further-
more, the decrease in SPRY2 expression in PHD2-deficient CD8þ T
lymphocytes (activated in vitro) may be relevant to the increased
tumor control, as the lack of SPRY2 has been shown to enhance

survival and T-cell polyfunctionality of effector CD8þ T lymphocytes
inmice (54, 55) and humans (56). This hypothesis is further supported
by a report showing that HIF-1a and HIF-2a increased the methyl-
ation of the SPRY2 promoter, leading to decreased SPRY2 mRNA
levels in a hepatoma cell line (57). Finally, our data show that
neuropilin 1, a potential biomarker for dysfunctional T lymphocytes,
was downregulated in PHD2DT mice, suggesting a potential role as
immune memory checkpoint (58, 59). Additional experiments will be
required to clarify the role of these genes in the antitumor response of
PHD2DT mice.

Broadly, we conclude that the stabilization of HIF-1a in T lym-
phocytes regulates the metabolic balance within the tumor niche,
favoring the differentiation of polyfunctional CTLs. In addition to a
direct effect on aerobic glycolysis, the HIF complex has been shown to
control expression of CTL effector molecules, trafficking (HIF-null
cells retain the expression of lymph-node-homing receptors; ref. 32)
and regulation of TCR signaling, suggesting that several mechanisms
may contribute to the control of tumor growth in PHD2-deficient
mice. There is now increasing evidence that hypoxia may have a
beneficial effect on the antitumor function of CD8þ T lymphocytes,
thereby providing novel potential targets for cancer immunotherapy,
eventually in association with currently available immune checkpoint
blockers.
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