
Model-based Fault Detection and Isolation for a Class of
Discrete-Time Systems

Thesis presented by Silvane Cristina DE MELO SCHONS
in fulfilment of the requirements of the PhD Degree in Engineering
Sciences and Technology (“Docteur en Sciences de l’Ingénieur et Techno-
logie”)
Academic year 2022-2023

Supervisor : Professor Daniel F. COUTINHO
Co-supervisor : Professor Michel KINNAERT

Department of Control Engineering and System Analysis

Thesis jury :

Philippe BOGAERTS (Université libre de Bruxelles, Chair)
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ABSTRACT

During the last decades, robust model-based fault detection and isolation (FDI) has received
increasing interest in the literature. It is a fact that FDI methods can provide fault indicators
for predictive maintenance and, consequently, preventing significant damages to the system
components. Following this route, this doctorate thesis develops model-based fault detection
and isolation techniques for linear discrete-time systems as well as for linear discrete-time
descriptor systems. The proposed approach is based on the design of observer-based residual
generators in order to detect and isolate actuator and/or sensor faults. Besides, a reference
model is considered to describe the desired behavior from faults to residual, which allows for
including requirements on fault decoupling as well as performance issues regarding robustness
related to the optimization problem. Therefore, the residual generator is designed such that the
system-filter connection approximately follows the fault to residual behavior provided by the
reference model. A multi-objective optimization is designed involving different system criteria,
such as H∞/H– and peak-norm/H– , which depends on the class of inputs of the system
(respectively, `2 or `∞ signals). The design conditions based on modified Lyapunov dissipation
inequalities are cast in terms of Linear Matrix Inequalities (LMI) constraints. In order to illustrate
the theoretical developments, numerical examples are provided as well as the application of
the method to a simulated lithium-ion battery pack. There are four main contributions for this
thesis. The design of FDI techniques integrated with a triangular reference model structure
allows the fault detection and isolation when the faults do not occur simultaneously. Besides,
the residual generator design conditions described in terms of LMI constraints made possible
to consider mixed performance specifications and different classes of systems in a unified
mathematical formalism. From a model transformation, the proposed method can also be
applied to discrete-time descriptor systems. Finally, the proposed solution in this thesis can be
successfully considered for practical-oriented applications, such as Li-ion battery packs.
Keywords: Fault detection and isolation. Linear Matrix Inequalities. Reference model. Robust-
ness.
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1 CONTEXT AND MOTIVATION

For safety-critical systems such as energy storage systems, robotic systems or nuclear
reactors, the occurrence of faults can have serious consequences in terms of human life,
environmental impact and economic loss (CHEN, Ji; PATTON, R. J., 1999). There are many
examples in terms of the effects caused by a fault that can be highlighted such as:

• the Boeing 737 max crashes in November 2010, originally due to sensor malfunction
and the lack of exploitation of sensor redundancy;

• the disaster that occurred on 26th April 1986 at Chernobyl nuclear power plant, Ukraine.
The accident had a huge impact on the workers and local residents, causing health
problems to thousands of people due to radiation exposure;

• the blaze on board a parked Boeing 787 Dreamliner at Heathrow Airport in July 2013,
which was caused by the lithium battery-powered emergency locator transmitter of the
plane. Due to the fact that its location is of difficult access, the passengers would not
instantly notice the fire in the case of the aircraft being in flight which would eventually
lead to an enormous tragedy;

• the explosion of an unmanned Ariane 5 rocket in French Guiana on 4th June 1996, which
happened less than one minute after its launch. A software error in the flight control
system, more specifically in the inertial reference system, was the cause of the failure,
resulting in an economic loss of $7 billion due to the costs regarding its development;

• overheating and burning of certain Samsung mobile phones, in particular the Note 7,
due to faults occurring in their batteries. The main causes were insufficient insulation
material within the battery, and lack of room to safely accommodate the electrodes,
which could lead to a short circuit in case of improper manufacturing, and consequently a
fire. After replacement of many mobile phones, which ended up having the same problem,
the company permanently stopped the production of the Note 7.

While in most of the cases the occurrence of a fault cannot be prevented, analyses carried
out subsequently reveal that the outcome caused by a fault could be avoided or, at least,
minimized (KANEV, 2004). Hence, a process monitoring is fundamental in order to decrease
the probability of having catastrophic events as those summarized above. In addition, a system
capable of detecting and localizing faults is essential in order to prevent significant damages
to other system components.

Another issue related to fault detection and isolation is the maintenance. Maintenance
can be classified in three main categories: reactive, proactive and predictive. The first one is
defined by the repair or the replacement of the equipment only when it stops working. This
strategy minimizes the number of maintenance operations during its lifetime. However, this
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type of scheme makes the system to be unpredictable, and it can increase the maintenance
costs in case of a bigger failure of the system caused by adopting the reactive maintenance
strategy (SWANSON, 2001). A solution for this problem is to adopt a proactive maintenance,
which is based on preventive actions with the view of monitoring the equipment and making
minor repairs in order to prevent failure. According to (SWANSON, 2001), this kind of strategy
can increase equipment lifetime, however the proactive maintenance requires interruption
of production in order to perform the repair and, consequently, delaying the work. Hence,
the predictive maintenance focuses on monitoring the equipment condition and its operation
efficiency in order to provide enough information to maximize the interval between repairs as
well as to minimize the occurrence and costs of equipment failures. This maintenance method
is able to improve production effectiveness along with product quality (MOBLEY, 2002). The
monitoring system that provides regular information on the state of health of the process is
also called a fault diagnosis (FD) system.

As an example, wind turbines are often located in remote areas and hard-to-access
structures, increasing the cost of operation and maintenance of the system. One way of
dealing with wind turbines is the reactive maintenance, where the turbines work until a fault
occurs, however this method considerably decreases the safety of the system. On the other
hand, FD techniques can provide fault indicators for predictive maintenance, consequently
avoiding faults that could occur due to the lack of maintenance in the wind turbines (LU
et al., 2009). In this way, FD can help reducing maintenance costs by allowing the planning
of maintenance operations in due time and hence avoiding costly unexpected plant shutdown
and costly repair actions due to failure of some plant parts. In addition, a system capable of
detecting and localizing faults is essential in order to prevent significant damages to other
system components due to fault propagation.

Let us now provide some background on fault diagnosis in order to position the work
and the contributions of this thesis.

1.1 BACKGROUND ON FAULT DIAGNOSIS AND PROBLEM STATEMENT

Modern control systems are becoming more complex and more automated since the
demand for reliability, efficiency and operating safety in real processes is continuously growing
(CHEN, Ji; PATTON, R. J., 1999). In a reliable system, the individual components, such as
actuators, sensors and controllers, have a high probability of working properly over a specified
time period. However, even in these conditions, we cannot avoid faults (DING, S. X., 2008).
A fault can be defined as an unexpected change in the system parameters so its behavior does
no longer correspond to the intended purpose. According to (BLANKE et al., 2006), from a
physical viewpoint, a fault may represent an internal event in the system, a wrong control
action or measurement, an error in the system design (the error is detected only in specific
operation conditions, where the performance of the system is considerably reduced), among
others. In terms of its general location, a fault can be classified into three types (BLANKE
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et al., 2006):

• plant faults – the dynamical properties of the system are changed;

• actuator faults – the influence of the manipulated input on the system is modified; and

• sensor faults – the measurement from the sensors may present inconsistency.

This work will be focused on the latter two types of faults, that is, actuator and sensor faults.
Process monitoring is important considering that, even if the occurrence of a fault may

not induce a failure or a breakdown, it can change the performance of the system components
and, consequently, cause the loss of system functionality (NOURA et al., 2009). The field of
Fault Diagnosis (FD) has attracted recurring interest during the last decades, both in a research
context and in the application on real processes, in order to ensure a safe and reliable system
operation (ZHANG, Z.; JAIMOUKHA, 2014; JAIMOUKHA et al., 2006). Fault Diagnosis
systems comprehend three main levels (BLANKE et al., 2006; NOBREGA, E. G. et al., 2000):

• fault detection: determines whether a fault has occurred or not;

• fault isolation: determines the location of the fault, that is, which component is faulty;

• fault identification: estimates the magnitude of the fault.

In most cases, FD systems are referred to as Fault Detection and Isolation (FDI) systems since
fault identification is not necessarily required (MONTEIRO, 2015). In the present work, the
FD system to be studied will embrace only the detection and isolation levels.

Regarding the way faults are modeled, a distinction is made between additive faults,
and multiplicative faults. The first ones correspond to an unknown input in the system model,
like a sensor bias. On the other hand, multiplicative faults are associated to changes in some
model parameters which multiply the system input or state (BLANKE et al., 2006; KANEV,
2004).

Fault diagnosis systems rely on different approaches broadly classified into data-driven
and model based methods (ZHONG, M. et al., 2018). The data-driven approaches address
the FDI problem by analyzing historical records and online data. They rely on large data bases
and learning methods to determine the system state of health. Broadly speaking they consist
in determining a mapping between some data features and the different health states (healthy
mode, fault 1 mode, fault 2 mode, ...). As faults have to be distinguished from changes in
operating conditions, sufficient data must be available to cover all operating modes. When a
process model is available it can be exploited to filter out operating mode changes automatically.
Hence less data are required to design and tune model-based FDI systems. Besides, model-
based methods are able to mathematically describe the process dynamics while keeping a
physical meaning (often quite important on practical applications). Furthermore, there exist
several mature results available in control theory providing powerful tools for model-based fault
diagnosis.
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Most model-based methods rely on the concept of analytical redundancy (BLANKE
et al., 2006; GERTLER, 1991). The latter amounts to check whether the mathematical model
of the system is consistent with the actual system behavior characterized by the recorded
measurements (BLANKE et al., 2006). A discrepancy is an indication of a fault, disturbances,
noises or modeling errors (GERTLER, 1997). According to (FRISK; NIELSEN, 2006), a central
concept in FDI is the residual, which is a signal that verifies the consistency of the system at
every time t based on the difference:

r (t) = f (y (t)) – f (ŷ (t)) , (1)

where r is the residual vector, f (y ) is a function of the measured output vector of the system,
and f (ŷ ) represents its estimation. In the fault-free case, the residual signal is zero (or close
to zero), on the other hand, when a fault occurs the residual significantly (BLANKE et al.,
2006) departs from zero. The residual generation can be accomplished for systems described
in continuous- and discrete-time. This work will concentrate on discrete-time models.

According to (MONTEIRO, 2015), there are three main model-based approaches for
residual generation: parity relations, parameter estimation, and observer-based methods. The
first method checks the consistency between the data recorded on the process over a finite mov-
ing horizon and an input/output model of this process over that horizon; for more information,
see (GERTLER, 1997). The parameter estimation approach looks for changes in the parameters
of the system dynamics via a system identification strategy (MONTEIRO, 2015). Lastly, the
observer-based method is based on a mathematical model of the system and the development
of an observer in order to estimate the states of interest (ZHANG, Z.; JAIMOUKHA, 2014).
It is important to emphasize that the parity relations and the observer-based methods are
designed to deal with additive faults primarily, while the parameter estimation method focuses
on multiplicative faults.

Systems are generally influenced by unknown and unpredictable disturbances and noises.
Moreover, there always exists a mismatch between the real process and its mathematical model
(FRISK; NIELSEN, 2006). Hence, the main goal in the design of a residual generator is to
increase the residual sensitivity to faults and simultaneously minimize the influence of non-fault
signals such as disturbances and model uncertainties (NOBREGA, Euripedes G. et al., 2005).
Since it is difficult to achieve a perfect disturbance decoupling, H∞ techniques have been
widely investigated in order to transform the decoupling problem into a sensitivity optimization
problem (JAIMOUKHA et al., 2006). The solution to the FDI problem can be formulated
based on different H∞ methods such as Ricatti equation based techniques (MARCOS et al.,
2005) and Linear Matrix Inequalities (LMIs) (NOBREGA, E. G. et al., 2000), (WANG, J. L.
et al., 2007), (ZHONG, Maiying et al., 2003). When compared with Ricatti equation based
approaches, LMI methods have some advantages, for instance, they are less restrictive in the
design conditions, and the solutions for robust problems are less conservative (NOBREGA,
E. G. et al., 2000). In addition, it is relatively easy to incorporate additional constraints into
the formulation of LMIs (WANG, J. L. et al., 2007).
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This present work aims to develop FDI schemes for discrete-time systems targeting the
application in energy storage systems based on lithium-ion battery packs. More specifically,
this thesis presents a novel robust observer-based FDI design technique for linear discrete-time
systems as well as for a class of discrete-time descriptor systems, for which the design conditions
are cast in terms of a convex optimization problem subject to LMI constraints. The results
to be presented in this document consider mixed sensitivity specifications (either H∞/H– or
Hpeak /H–) guaranteeing sensitivity to fault detection and isolation while mitigating the effects
of unknown inputs.

1.2 PROPOSED APPROACH

The focus will be on observer-based residual generation because of the flexibility such
schemes provide when accounting for multiple criteria as indicated above. Fault detection and
isolation requires the definition of a coding set that characterizes how faults will affect the set of
residuals. This information is typically specified in a so-called incidence matrix as illustrated in
Table 1. Three residual and three faults are considered in the example. The crosses correspond
to significantly non zero entries while the zero entries indicate faults that should affect the
corresponding residual as little as possible. Once that matrix is defined the design of residual
generator can be performed by stating a fault detection problem associated to each row of
the incidence matrix. There is however no systematic way to choose the incidence matrix or
to possibly optimize its structure; see, e.g., (MASSOUMNIA et al., 1989), (GERTLER, 1997)
and (PATTON, R.; CHEN, J., 1997).

Table 1 – Incidence matrix.
Font: Own authorship.

f1 f2 f3
r1 0 X X
r2 X 0 X
r3 X X 0

Fault isolation can be enforced in a more direct way by designing a filter that estimates
the fault vector from the measured process input and output. However, this amounts to
inverting the plant model to recover the fault input, which is a non-causal operation and hence
cannot be achieved in practice. Therefore, to state a realistic problem, a reference model is
introduced. According to (FRISK; NIELSEN, 2006), the reference model allows for including
requirements on fault decoupling as well as performance issues regarding the transfer function
from faults to the residual. This means that the use of a reference model contributes for a
consistent optimization problem, ensuring good robustness properties and fulfillment of the
structural constraints for fault isolation purposes. Hence, in this work, the residual reference
model will be considered to describe the desired behavior from faults to residual of the residual
generator with respect to faults as illustrated in Fig. 1, where u(k ) is the measured input, w(k )
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is the disturbance input, f (k ) is the fault vector, y (k ) is the measured output, r (k ) represents
the residual vector, r̆ (k ) is the desired residual, and er (k ) stands for a mismatch between r (k )
and r̆ (k ).

Figure 1 – Proposed setting for residual generation design.
Font: Own authorship.

In the setting shown in Fig. 1, the residual generator (i.e., an observer-based filter)
should be designed such that the system-filter connection approximately follows the fault to
residual behavior provided by the reference model. In order to properly establish tractable
design conditions, measures of the input-to-output mappings (i.e., from w to r and from f
and er ) such as the H∞ norm should be considered. In addition, if it is desirable to have a
degree of freedom when defining the residual reference model a measure of the sensitivity from
f to r̆ will play an important role when designing the FDI scheme. Hence, a multi-objective
optimization involving different system norms will be necessary (LI, Z. et al., 2011). For
instance, in specialized literature, the H– index (i.e., the minimum singular value of the matrix
transfer function from fault to residual) is applied to measure the worst-case sensitivity from f
to r , while the H∞ norm is considered as a worst-case robustness measure (WANG, J. L. et al.,
2007). If the residual generator can be designed in such a way that the series arrangement
of the process and the residual generator has a behavior close to a diagonal reference model,
then each residual is only sensitive to a single fault and simultaneous faults can be detected
and isolated. However, this situation requires that the number of measurements is larger than
or equal to the number of faults and disturbances. This condition is in general not fulfilled. In
particular, if faults can affect each actuator and each sensor of a monitored process, a diagonal
reference model cannot be considered. That is why other structures need to be considered for
the reference model. The only condition to impose for fault isolation is that each column of the
model transfer matrix is different from the others in terms of zero and non-zero components.
In this way, each residual is expected to react only to certain faults and not to others, and the
pattern of zero and non-zero residuals allows for fault isolation. To account for this observation
while keeping mathematically tractable problems, a triangular reference model is chosen in the
present work.

In this study, which applies a residual reference model approach with one degree of
freedom (precisely, the reference model output gain), multi criteria constraints are considered
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to ensure: (i) low sensitivity to disturbances; (ii) low sensitivity from f to er (to yield an approx-
imate model following); and (iii) a minimum sensitivity from f to r̆ . In particular, the design
conditions are established in terms of either H∞/H– or peak-norm/H– mixed specifications de-
pending on the class of inputs (respectively, `2 or `∞ signals). Moreover, the design conditions
based on modified Lyapunov dissipation inequalities are cast in terms of LMI constraints which
are numerically solved utilizing well-established SDP solvers.

In order to illustrate the theoretical developments, numerical examples are provided as
well as the application of the method to a simulated lithium-ion battery pack. Particularly for
the latter case study, the implementation of FDI systems based on state observers is important
due to the fact that the estimation of system states that cannot be measured results in increased
safety and reliability. When considering single a battery cell, for instance, only voltage, current
and surface temperature can be measured using standard sensors, while the internal states of
the battery, such as the state of charge (SOC) and critical surface concentration (CSC), cannot
be measured (COUTO, 2018). In fact, the CSC directly affects the battery performance. For
this reason, the measurement of the surface temperature (as well as current and cell voltage)
is not sufficient and it is fundamental to estimate the battery internal state in order to increase
the system reliability (ZHANG, C. et al., 2016).

1.3 THESIS STRUCTURE

The remaining of this thesis is divided into six chapters describing the proposed solution
to address the FDI problem for linear discrete-time systems considering either a standard
or descriptor state-space representation. Chapter 2.1 presents the state of the art of several
approaches which are somehow related to the results covered by this doctorate thesis. Some key
linear algebra results related to (LMI-based) robust control theory are presented in Chapter 3,
which will be instrumental to derive the main results of this doctorate thesis. In Chapter 4,
mixed H∞/H– and peak-norm/H– reference model-based FDI methods are designed for linear
discrete-time systems and they are applied to numerical examples to certify the effectiveness
of the proposed techniques. Following the same route, Chapter 5 proposes two reference
model-based FDI approaches targeted to linear discrete-time descriptor systems along with
a numerical example demonstrating the efficiency of the proposed results. In Chapter 6, the
performance of the FDI methodology proposed in the latter chapter is assessed considering
a linear approximate model of a Li-Ion battery pack (precisely, two battery cells in series).
The conclusions, contributions and future research of this doctorate thesis are discussed in
Chapter 7. This thesis also contains four appendices. The first ones, Appendices A and B,
present the proofs of the main theorems proposed throughout this work, while Appendices C
and D summarize some proposed results on observer design for a class of nonlinear discrete-time
systems, which can be in the future adopted to develop FDI systems for nonlinear systems.
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2 STATE OF THE ART

The topic of FDI has been studied both in a research context and industry applications,
in particular, in those looking for safety and reliability for the solution of control schemes
(see (PATTON, R. J., 1994), (WANG, J. L. et al., 2007), (ZHONG, Maiying et al., 2003)
and references therein). In (ISERMANN, 2005), for instance, an introduction for FDI is given
and some results from different case studies are presented, such as a cabin pressure outflow
valve actuator of a passenger aircraft, monitoring of the lateral driving behavior of passenger
cars, and combustion engines. In a theoretical point of view, survey papers such as (HWANG
et al., 2010) present an overview of recent works on FDI, for instance, methods to generate
and test residuals for faults, as well as techniques to improve the robustness against unknown
disturbances, noise, and model uncertainties. In (PATTON, R. J., 1994), the state of the art
for robust fault diagnosis is reviewed with the main focus on residual generation and fault
isolation. The paper (ISERMANN, 1997) introduces a general survey of supervision, fault
detection and diagnosis approaches, such as parameter estimation, observer-based and parity
equations, focusing on model-based fault detection methods.

Model-based FDI techniques focused in residual generation have been the object of
numerous research works. In (GERTLER, 1997), the design of parity relations for fault detection
and isolation is described, including decoupling from disturbance and some types of model
uncertainties. A new kind of parity relation to solve the optimization problem for residual
generation is proposed by (YE et al., 2004), which results showed a satisfactory and suitable
fault detection when compared with other parity relation based approaches existing in the
literature. Regarding the parameter estimation approach, (ISERMANN, 1993) provides an
overview on fault diagnosis methods applied to machines, for example, a motor, a drive chain
and a working process or load. However, the most widespread FDI approach is based on the use
of observers to generate residual signals (see (CHEN, Ji; PATTON, R. J., 1999), (PATTON,
R. J., 1994), and references therein).

In recent years, the application of observer techniques has been studied to deal with
FDI issues. For instance, in (YANG et al., 2015) the analysis and design of observer-based fault
detection for nonlinear systems is addressed. In addition, a scheme is proposed for a class of
nonlinear systems, as well as different cases of application are discussed. The paper (MEYNEN
et al., 2020) proposes a FDI strategy applied to distributed and decentralized systems. The
main idea is to design a robust observer-based fault detection and isolation, where the last
one was performed separately in order to decrease computational time. Simulation results on
a three tanks system illustrated the effectiveness of the approach by uniquely detecting and
isolating each fault. Differently, (HAES ALHELOU et al., 2020) proposes robust FDI schemes
based on unknown input observer method applied to isolate faulty sensors on a micro-grid
system, which simulation results show the effectiveness of the technique by considering cases
of simultaneous faults. Other approaches can be referred for observer-based FDI systems, such
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as (COMMAULT et al., 2000) and references therein.
Following the trend in control system theory, H∞ optimization methods have been

applied due to the issue of robustness of the FDI schemes. An H∞ Ricatti-based FDI technique
is applied to a nonlinear system (the Boeing 747-100/200) in (MARCOS et al., 2005). Five
H∞ filters are designed at five different equilibrium points using the same interconnection
and weights in order to study possible strategies to cover the entire flight envelope, where
disturbances and model uncertainties are taken into account to provide robustness to the FDI
scheme. Results show that the H∞ FDI filters are capable of detecting and isolating faults for
a determined neighborhood of the equilibrium points, on the other hand, the authors concluded
that the filter performance and robustness properties can be improved by an adequate selection
of the filter inputs, for instance.

Even though Ricatti-based techniques have been adopted for the design of H∞ FDI
filters, methods based on LMIs have proven to be very efficient to deal with robustness issues.
In (NOBREGA, E. G. et al., 2000), an H∞ FDI filtering approach is proposed to be designed
for both the continuous-time and the discrete-time. The problem is cast in terms of an H∞
LMI-based formulation with the view to minimize the worst-case estimation error over all
bounded energy generalized disturbance (which includes disturbances and faults). A simulation
example of a spring-mass-damper model is used to demonstrate the applicability of the method.
Also considering an LMI-based formulation, the design of a bank of nonlinear H∞ observers
for sensor FDI is studied in (MATTEI et al., 2005). Taking into account that the system may
have significant nonlinearities, the number of observers is determined to be the same as the
number of faults due to the fact that faults may occur on different sensors (which makes the
fault isolation hard to achieve in this case). A numerical example is presented in order to show
the effectiveness of the proposed method in a large operation region by using a multi-model
approach. This method ensures a low number of false alarms as well as detecting and isolating
most of the sensor faults.

Since FDI systems seek for minimizing unknown input effects while the sensitivity to
faults is maximized in the residual vector, a single H∞ norm is not sufficient. For this reason,
multi-objective approaches, such as H–/H∞, have been developed recently. In (WANG, J. L. et
al., 2007), the H– index and multi-objective H–/H∞ fault detection observer design problems
are addressed in terms of LMI constraints, where both the infinite frequency range case and
the finite frequency range case are considered. The proposed methods provide only an indirect
approach to the H– index and H–/H∞ observer problems for strictly proper systems, letting
the development of a more direct approach for further research. In (LIANG et al., 2021), the
focus is on FDI for a network of discrete-time multi-agent systems with disturbances. A bank
of unknown input observers is proposed, where the optimization problem is cast in terms of
LMI constraints, in order to guarantee sensitivity to faults while robust against non-decoupled
unknown inputs. Another example is given by (HENRY, David, 2008), where a study is carried
out to compare two model-based H∞/H– FDI filter schemes. The main idea is to apply the
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proposed approaches in the Microscope satellite thrusters in order to detect and isolate faults
despite the presence of disturbances and noises. Simulation results are presented with the view
to show that the faults are successfully detected and isolated.

Additionally, observer-based FDI approaches considering different system criteria have
been applied to several classes of systems recently. In (SCHONS et al., 2020b), a robust filter
is designed considering a mixed H–/H∞ fault sensitivity and disturbance measure. The paper
considers a triangular reference model structure with partially fixed dynamics with the view of
approximating the behavior from faults to residual despite the presence of disturbances. The
filter design is cast in terms of LMI constraints. Other works can be mentioned regarding the
application of H–/H∞ schemes, such as (NOBREGA, Euripedes G. et al., 2005), (AOUAOUDA
et al., 2013), (JAIMOUKHA et al., 2006), (LIU, Nike; ZHOU, Kemin, 2007) and references
therein.

Considering a class of nonlinear Lipschitz systems with unknown inputs, (KAMEL et al.,
2009) proposes two approaches based on unknown input observer design to study the FDI
problem. Both approaches are cast in terms of LMI constraints, where the first one makes
use of residual techniques dedicated to FDI of actuator faults while the second approach is
concerned with detecting and estimating an additive fault. In (PERTEW et al., 2005), where
the design of an unknown input observer for nonlinear Lipschitz systems is addressed, the
proposed method is equivalent to an H∞ optimization problem considering the same sufficient
conditions as well as satisfying all the assumptions. Considering this Lipschitz observer design,
the problem of sensor fault diagnosis for the class of nonlinear Lipschitz systems is studied
in (PERTEW et al., 2007). The main idea is to build an observer based on an LMI design
procedure to maximize the faults effect on the estimation error of the observer.

The H∞ observers design has also been extended for Lipschitz nonlinear descriptor
systems in several research works. For instance, (ABBASZADEH, Masoud; MARQUEZ, Horacio
J., 2012) proposes a robust LMI-based H∞ filtering method for continuous-time Lipschitz
descriptor systems in the presence of norm-bounded uncertainties and disturbances. Simulation
results show that the proposed H∞ filter guarantees the robustness against Lipschitz nonlinear
uncertainties as well as asymptotic stability of the estimation error dynamics. An observer
design in the LMI framework is also considered for discrete-time descriptor systems in (WANG,
Zhenhua et al., 2012), which addresses the problem for the linear and nonlinear cases. In
(SAHEREH et al., 2017), both continuous-time and discrete-time descriptor systems are
considered for the design of H∞ filters in strict LMI formulations. The problem of designing
a robust H–/H∞ fault detection filter for a class of Lipschitz nonlinear descriptor systems is
addressed in (BOULKROUNE et al., 2013). The idea is to minimize the effect of unknown
inputs on the residual vector by using the H∞ norm while the sensitivity to faults is ensuring
by the H– index, in the LMI framework.

The main concern of FDI schemes is to derive a solution for the residuals such that the
system is sensitive to faults while remaining insensitive to unknown inputs, such as disturbances,
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noises, and model uncertainties. Besides, the pattern of the residual upon occurrence of each
fault should be different in order to ensure fault isolation. The design of robust FDI approaches
using a reference model of the difference between the inputs and the residuals has been the
object of several research works. For instance, (JAIMOUKHA et al., 2006) design an FDI
observer such that the transfer matrix from faults to the residual is as close as possible to a
diagonal transfer matrix, while minimizing the effects of disturbances in the residual vector. In
order to illustrate the application of its algorithm, a jet engine example is considered, where
results show that the proposed scheme can achieve fault isolation and provide disturbance
decoupling. In (MAZARS et al., 2008), a reference model is designed for robust FDI residual
generation using the H∞ norm as a measure for the fault isolation and disturbance rejection
performances. The solution is given by solving an LMI optimization problem. A numerical
example considering a jet engine state-space model is given to illustrate the effectiveness of
the proposed method. Other research methods can be referred for FDI approaches including a
reference model, such as (FRISK; NIELSEN, 2006) and (ABDALLA et al., 2001).

2.1 A CONCISE REVIEW ON OBSERVER-BASED METHODS

Observer-based methods consider the output estimation error (or some function of
this error) as residual. This error is built as the difference between the measured system
output and its estimate provided by a state observer. Examples of such state observers are:
Luenberger observer (REINELT; LUNDQUIST, 2005), Kalman filter (HEREDIA; OLLERO,
2009), unknown input observers (CHEN, W.; SAIF, 2006), H∞ observers (MARCOS et al.,
2005), among others.

As already pointed out in Section 1, even though there is an equivalence between the
parity relations and the observer-based methods due to the fact that, under some hypothesis,
observer-based approaches can be particularized to parity space regarding the detection and
isolation of actuator and sensor faults, there are advantages related to the application of
observer-based methods (MAGNI; MOUYON, 1994). Although the parity space approach is
able to handle disturbances in the system with the addition of a filter to this end, the design
of observer-based residual generators can be constrained in such a way that attenuation of
disturbances and the rejection of unknown inputs is included in their design, making easy to
handle noise in the system as well as multiple faults if the number of measurements is sufficient.
From the implementation point of view for residual generation, parity relations approaches
make use of a non-recursive form considering a finite sliding window. On the other hand,
observer-based methods represents a recursive form corresponding most often to an infinite
time horizon (DING, S. X., 2008), (CHOW; WILLSKY, 1984). The applicability of observer-
based approaches is also large such as its implementation to nonlinear systems considering
particular classes of nonlinearities (CHEN, Ji; PATTON, R. J., 1999).

For detecting a fault, a single residual is sufficient, however, the isolation of faults is
only achieved with a set of residuals (GERTLER, 1991). Observer-based approaches can be



2.1. A Concise Review on Observer-based Methods 27

used in order to design two different classes of residual sets, such as:

• fixed direction residuals: the residual vector has a fault specific direction in response to
the occurrence of a single fault (GERTLER, 1991);

• structured residuals: only a specific subset of residuals is sensitive to a subset of faults
while staying insensitive to the remaining faults (FRISK; NIELSEN, 2006), (PATTON,
R. J., 1994).

The focus of this work is fault detection and isolation for linear discrete-time systems
subject to additive (actuator and sensor) faults and disturbances. The main goal is to generate
residuals that achieve a suitable trade-off between sensitivity to the faults and insensitivity to
disturbances. Following this route, the H– index is usually introduced to describe the worst-case
sensitivity of the residual to the fault, as it is presented in (HOU; PATTON, R., 1996) and
further developed in (LIU, J. et al., 2005), (LI, X.; LIU, H., 2013). On the other hand, the
H∞ norm is used for evaluating the (worst-case) disturbance effect on the residual. Solutions
to the FDI problem based on H∞ techniques have been proposed in numerous papers. For
instance, in (JAIMOUKHA et al., 2006) the design of an H∞ filter is developed such that the
transfer matrix from faults to residual approximates a given diagonal transfer matrix including
the minimization of disturbance effects. The authors in (MARCOS et al., 2005) develop H∞
Ricatti-based FDI filters applied to a linearized model of an aircraft. The efficiency of these
approaches has lead to the design of H–/H∞ fault detection observers or filters (DING, S.
et al., 2000), (HOU; PATTON, R., 1996). Linear Matrix Inequality (LMI) approaches have
also been proposed to solve multi-objectives optimization problems involving H– and H∞ type
criteria (HENRY, D.; ZOLGHADRI, 2005), (WANG, J. L. et al., 2007), (JEE et al., 2012),
and the present work also follows this route.

In the most line of research above mentioned, fault isolation is not considered explicitly.
Even though residuals can be determined by solving successively fault detection problems in
order to enforce the structure (MASSOUMNIA et al., 1989),(GERTLER, 1997),(PATTON,
R.; CHEN, J., 1997), there is no systematic way to choose this structure. Fault isolation can
be enforced in a more direct way by designing a filter that estimates the fault vector. This
problem has been addressed, e.g., in (STOUSTRUP; NIEMANN, 2002), (MANGOUBI, 1998).
A series of multi-objective FDI problems were considered using a reference model and taking
into account the effect of disturbances and/or modelling uncertainties on the FDI filter output.
The solutions were devised either in the form of observer-based residual generators (LI, Z.;
JAIMOUKHA, 2009), (JAIMOUKHA et al., 2006) or residual generators with a general linear
filter structure (CASAVOLA et al., 2005), (MARCOS et al., 2005), (MAZARS et al., 2008),
(NOBREGA, E. G. et al., 2000). In most of the cases, the reference model is given a priori, often
in the form of a diagonal transfer matrix. However, the determination of a reference model
for fault detection has been addressed in (FRISK; NIELSEN, 2006) and (ZHONG, Maiying
et al., 2003). In (MAZARS et al., 2008), the determination of the residual generator as well
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as the reference model is sought for FDI. The problem is recast in terms of quadratic matrix
inequalities (QMIs) which cannot be solved exactly. Hence, an upper bound on the solution is
achieved by linearizing the QMIs, leading to an algorithm cast in terms of a set of LMIs. This
gives a valid solution for any structure of the reference model, even though the authors focus
on a diagonal structure. Yet, this is restrictive as such a structure cannot be enforced as soon
as the number of faults is larger than the number of measured outputs. The latter situation
occurs frequently: it suffices to consider possible occurrence of faults on all the actuator and
the sensors for a given plant (KINNAERT; PENG, 1995).

This doctorate thesis follows the same line of thought as presented in (MAZARS et
al., 2008). However, in this work, a discrete-time setting is considered. Moreover, a triangular
reference model structure with fixed dynamics is designed, which lends itself to an LMI approach.
Therefore, the focus of the present work is on the automated determination of the residual
generator structure with a view to fault detection and isolation.
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3 INSTRUMENTAL TOOLS

This chapter introduces some results from control and systems theory of LTI discrete-
times systems which will be instrumental to derive FDI methods for LTI discrete-time systems. In
the sequel, the main mathematical tool (i.e., linear matrix inequality constraints) for numerically
solving FDI design conditions is presented. Next, the two concepts of system norms (i.e., H∞
and peak-norm) and a sensitivity index (i.e., H– to be considered in this doctorate thesis are
presented in order to ensure some performance specifications for FDI systems. This chapter
ends by introducing LMI conditions for the computation of H∞ and peak norms and the H–

sensitivity index.

3.1 LINEAR MATRIX INEQUALITIES

Linear matrix inequalities (LMIs) have been widely recognized and accepted nowadays.
A basic definition for LMIs is that they are matrix inequalities that are linear in the matrix
variables (YU; DUAN, 2013).

LMIs may arise in a wide diversity of mathematical problems. In control systems area,
one of the most well-known LMIs is the continuous-time Lyapunov matrix inequality, which is
described by

L(P) = AT P + PA + Q < 0, (2)

where A ∈ Rn×n and Q ∈ Sn, with Q > 0, are given matrices, and P ∈ Sn is a positive
definite matrix to be determined. In (2), the notation L(P) < 0 states that all eigenvalues of
L(P) are negative or, equivalently, that L(P) is negative definite.

Now, the general form of an LMI will be defined. To this end, let Q ∈ Sn, Gi ∈ Rn×n,
and R, Hi ∈ Rm×n, i = 1, 2, . . . , p, be given and consider the following symmetric matrix:

M(X ) = RT X + XT R + Q +
p∑

i=1
(Hi

T XGi + Gi
T XT Hi ), (3)

with X ∈ Rm×n. Notice thatM(X ) is linear with respect to X . Hence, the general form of
an LMI in X can be defined as

M(X ) < 0, (4)

with X to be determined.
In particular, this doctorate thesis is concerned with linear discrete-time systems and

the discrete-time Lyapunov matrix inequality is given:

AT PA – P + Q < 0, (5)

with A and Q being given and P > 0 to be determined, which can be viewed as a particular
form of (4).

The analytical expression of the solution of an LMI is almost impossible to be obtained
for more than 2 scalar decision variables. However, there exist several computational packages
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dedicated to derive a numerical solution to LMIs. Normally, LMI solvers work with scalar
decision variables and there are applicatives (called parsers) which translate the general form in
(3) to specific representations utilized by solvers. In particular, the solution of LMIs considered
in this doctorate thesis were obtained considering the parser YALMIP (LÖFBERG, 2004) and
solver MOSEK (APS, 2019) both running over MATLAB.

3.2 SOME USEFUL LINEAR ALGEBRA TOOLS

Typically, control related problems are not directly described in terms of LMI constraints.
In this sense, there exist linear algebra tools that are used to overcome this issue by rewriting
the problem of interest in terms of LMIs.

In the following, three results will be presented which are instrumental to derive LMI
constraints in this doctorate thesis. The first one is the Schur’s complement which will be
largely utilized to turn a matrix inequality linear with respect to decision variables (YU; DUAN,
2013).

Lemma 1 (Schur’s complement) Let X ∈ S(n+m) and consider the following partition:

X =

X11 XT
21

X21 X22

 , X11 ∈ Sn, X21 ∈ Rm×n, X22 ∈ Sm.

Hence, the following statements hold:

1. If X11 is nonsingular, then X > 0 if and only if

X11 > 0, X22 – X21X–1
11 XT

21 > 0.

2. If X22 is nonsingular, then X > 0 if and only if

X22 > 0, X11 – XT
21X–1

22 X21 > 0.

Proof 1 Consider the first statement of Lemma 1 and let the following matrix:

T =

 In 0
9X21X11

91 Im

 .

Now, pre- and post-multiplying X > 0 by T and its transpose, respectively, yields In 0
9X21X11

91 Im

X11 X12
X21 X22

In 9X11
91XT

21
0 Im

 > 0

X11 0
0 X22 9 X21X11

91XT
21

 > 0

Therefore, statement 1 holds. The second statement of Lemma 1 can be similarly derived,
which completes the proof.
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Subsequently, the following lemma is largely utilized in control and optimization prob-
lems. This is an important LMI-based tool, since it makes it possible to deal with LMIs coupled
to equality constraints (OLIVEIRA; SKELTON, 2001; KUSSABA et al., 2015; BRIAT, 2015).

Lemma 2 (Finsler) Let y ∈ Rn, Q ∈ Sn and B ∈ Rm×n, with rank(B) = q, q ≤ n, and let
B⊥ denote a basis for the null space of B. Then, the following statements hold:

(i) yT Q y > 0, for all By = 0, y 6= 0;

(ii)
(
B⊥

)T
Q B⊥ < 0;

(iii) There exists µ ∈ R such that Q – µBT B < 0;

(iv ) There exists K ∈ Rn×m such that Q + KB + BT K T < 0.

The complete proof of Lemma 2 can be found in (OLIVEIRA; SKELTON, 2001). Notice
that statement (i) is a constrained quadratic form, where the vector y is constrained to be in
the null space of B, which can be parameterized by the vector w = B⊥y , with w ∈ Rq . Then,
if the statement (ii) is pre- and post-multiplied by wT and w , respectively, the statement (i)
is recovered. In addition, if statements (iii) and (iv ) are pre- and post-multiplied by yT and y ,
hence yT Qy > 0 for all y satisfying By = 0.

To end this section, the “S-Procedure", which allows to concatenate several scalar
inequality constraints into a single one, is presented in the following (GHAOUI et al., 1994).

Lemma 3 (S-Procedure) Let ζ ∈ Rn and Fi ∈ Sn, i = 0, 1, . . . , m. Then, the following
condition:

ζT F0ζ ≥ 0, ∀ ζ such that ζT Fiζ ≥ 0, ∀ i = 1, . . . , m, (6)

holds if there exist positive scalars τ1, . . . , τm such that

F0 9
m∑

i=1
τiFi ≥ 0. (7)

Proof 2 Pre- and post-multiplying (7) by ζT and ζ, respectively, leads to

ζT F0ζ ≥
m∑

i=1
τiζ

T F0 ≥ 0,

since ζT Fiζ ≥ 0 and τi > 0, which completes the proof.

Despite of its potential conservatism, the S-Procedure is a very useful tool in LMI-based
robust analysis and control (YU; DUAN, 2013). When m = 1, the matrix inequality in (7) is a
necessary and sufficient condition for the constrained quadratic form in (6); see, e.g., (GHAOUI
et al., 1994).
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3.3 SYSTEM INDEXES AND NORMS

In many control problems, it is of interest to measure the sensitivity of the system
output with respect to input signals. For instance, for FDI systems, the residuals should have
low (large) sensitivity to disturbance (fault) inputs. There are several ways to quantify the
input-to-output gain of LTI systems which depend on the class of input signals (e.g., stochastic,
`2 or `∞ signals) or the application itself (e.g., low or large sensitivity). When the considered
input-to-output gain measure also implies that the system is stable, this measure is called a
system norm. Otherwise, the input-to-output gain measure is only referred as a performance
index.

Originally, most of system norms (and indexes) are defined in terms of the system matrix
transfer function. However, this doctorate thesis considers the time-domain counterparts of
H∞ and peak norms as well as the H– index of discrete-time LTI systems, which are more
indicated to derive LMI-based conditions.

Before introducing the system norms (and index) to be considered in this doctorate
thesis, let the following minimal realization of an LTI system

Guy :

 x(k +1) = Ax(k ) + Bu(k )
y (k ) = Cx(k ) + Du(k )

(8)

where x ∈ Rnx is the state; u ∈ U ⊂ Rnu is the input; y ∈ Rny is the output; A, B, C and D
are real matrices having appropriate dimensions with A being Schur stable; and U represents
the class of input signals (which will be defined later in this section).

Definition 1 (H∞-norm of systems) Consider the system in (8) with U representing the (nu-
dimensional) space of square summable vector sequences. Then, the H∞-norm of system (8),
or simply ‖Guy‖∞, is defined as

‖Guy‖∞ := sup
u 6= 0

‖y‖`2
‖u‖`2

(9)

Definition 2 (Peak-norm of systems) Consider the system in (8) and let

U :=
{
u ∈ Rnu : uT u ≤ 1, u 6= 0

}
(10)

Then, the peak-norm of system (8), or simply ‖Guy‖peak , is defined as

‖Guy‖peak := sup
u ∈ U

‖y‖`∞ (11)

Either H∞ or peak-norm will be considered in this doctorate thesis to measure the
worst case system sensitivity to disturbances depending on the class of input signals. Notice
that both system norms will be finite (i.e., well defined) when the system output is bounded,
which is ensured if system (8) is asymptotically stable.
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Definition 3 (H – index of systems) Consider the system in (8) with U representing the (nu-
dimensional) space of square summable vector sequences. Then, the H–-index of system (8),
or simply ‖Guy‖–, is defined as

‖Guy‖– := inf
u 6= 0, x(0)=0

‖y‖`2
‖u‖`2

(12)

In contrast to H∞ and peak-norm, the H– index does not necessarily implies that
system (8) is stable and for this reason is not a system norm (DING, S. X., 2008). In addition,
since H– index is utilized to measure the sensitivity of y with respect to u, the class of input
signals will not play an important role. For instance, to handle amplitude bounded signals, it
can be considered an `2 signal in a finite horizon.

Remark 1 Let Guy (z) be matrix transfer function of system (8), i.e.,

Guy (z) = C(zI – A)–1B + D.

Then, the H∞ norm and H– index are respectively equal to the largest and smallest singular
values of Guy (ejω) over ω ∈ [0, 2π) (LIU, N.; ZHOU, K., 2007).

3.4 DETERMINING BOUNDS ON SYSTEM INDEXES

Bounds on the performance indexes ‖Guy‖∞, ‖Guy‖peak and ‖Guy‖– can be com-
puted utilizing modified Lyapunov inequalities. For instance, let

V (k ) = x(k )T Px(k ), P ∈ Snx , P > 0, (13)

and the following dissipation inequality:

∆V (k ) + y (k )T y (k ) – γu(k )T u(k ) < 0 (14)

where γ is a positive scalar and

∆V (k ) := V (k + 1) – V (k ). (15)

Assuming that u ∈ `2, notice that system Guy in (8) will be asymptotically stable if
(14) holds, since u(k ) will eventually vanishes to zero implying that ∆V (k ) < 0. In addition,
for zero initial conditions, summing up (14) from k = 0 to k →∞ yields:

∞∑
k=0

∆V (k ) +
∞∑

k=0
y (k )T y (k ) < γ

∞∑
k=0

u(k )T u(k )

V (∞) – V (0) + ‖y‖2`2 < γ‖u‖2`2
‖y‖2`2 < γ‖u‖2`2 (16)

since V (∞) = V (0) = 0. That is, γ is an upper-bound on ‖Guy‖2∞.
The next result, known as the bounded real lemma (GHAOUI et al., 1994), provides

an LMI-based constraint to determines the stability of system (8) while guaranteeing an upper
bound γ on ‖Guy‖2∞.
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Lemma 4 (Bounded Real Lemma:) Let γ be a given positive scalar. Then, the system defined
in (8) is asymptotically stable and ‖Guy‖2∞ ≤ γ if there exists a P ∈ Snx such that P > 0
and 

AT PA 9 P AT PB CT

∗ BT PB 9 γInu DT

∗ ∗ 9Iny

 < 0. (17)

Proof 3 Firstly, suppose that (17) holds for some P > 0. Hence, notice that the block (1,1)
of (17) implies that AT PA – P < 0 which implies that the unforced system is asymptotically
stable. Next, applying the Schur’s complement to (17) yieldsAT PA 9 P AT PB

∗ BT PB 9 γInu

 +

CT

DT

 [C D
]

< 0.

Thus, pre- and post multiplying the above matrix inequality by
[
xT uT

]
and its

transpose leads to:

xT (AT PA – P + CT C)x + 2xT (AT PB + CT D)u + uT BT PBu – γuT u < 0

xT AT PAx + 2xT (AT PB)u + uT BT PBu – xT Px + yT y – γuT u < 0

(x+)T Px+ – xT Px + yT y – γuT u < 0

∆V (k ) + yT y – γuT u < 0,

which completes the proof taking (14), (15) and (16) into account.

When system (8) is subject to non-vanishing input signals, one can consider the notion
of input-to-state stability which basically guarantees that ‖x‖`∞ is bounded for bounded inputs
in the `∞ sense. Before introducing a Lyapunov inequality ensuring the system input-to-state
stability, consider the following definition adapted from (DE SOUZA et al., 2015) to our
context.

Definition 4 (Input-to-state stability) The system in (8) is said to be input-to-state stable
(or simply ISS) if there exist a class KL-function a1(‖x0‖, k ), a class K-function a2(‖u(k )‖)
and a positive scalar ρ such that the following holds

‖x(k )‖ ≤ a1(‖x(0)‖, k ) + a2(‖u(k )‖), ∀ k ≥ 0, ‖x(0)‖ ≤ ρ, ‖u(k )‖ ≤ 1. (18)

Remark 2 Let s ∈ R≥, t ∈ R≥ and ρ ∈ R>. A function a(s) is said to be a class K-function
if it is continuous, strictly increasing and a(0) = 0. A function b(s, t) is said to be a class
KL-function if it is a class K function for each fixed t ≥ 0 and decreasing with respect to t
with b(s, t)→ 0 as t → 0.
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The following result will be instrumental to assess the input-to-state stability of a
discrete-time system, which is a version of the Lyapunov characterization of ISS as proposed
in (Z. P. JIANG; Y. WANG, 2001).

Lemma 5 (Lyapunov characterization of ISS) Consider the system in (8) with U as defined
in (10). The system is ISS if there exists a continuous function V : Rnx → R≥ and positive
scalars ε1, ε2, ε3 and ε4 such that the following holds

ε1‖x‖2 ≤ V (k ) ≤ ε2‖x‖2 (19)
∆V (k ) ≤ –ε3‖x‖2 + ε4‖u‖2 (20)

for all x ∈ Rnx and u ∈ U .

Besides the characterization of ISS for discrete-time system, it is often of interest to
estimate a state trajectory bounding set – sometimes referred in the literature as the system
reachable set (GHAOUI et al., 1994). In other words, determine a set X such that x(k ), driven
by x(0) ∈ X and u(k ) ∈ U , belongs to X for all k > 0. To this end, let V (k ) as defined in
(13) and

X := {x ∈ Rnx : V (k ) ≤ 1}, (21)

and consider the following Lyapunov-like inequality:

∆V (k ) ≤ τ
(
uT u – V (k )

)
, x(k ) ∈ X , u ∈ U , k ≥ 0, (22)

where τ ∈ (0, 1).
Following the reasoning established in (DE SOUZA et al., 2015), the condition in (22)

implies that:

V (k1 + 1) ≤ (1 – τ)V (k1) + τu(k1)T u(k1) ≤ 1 – τ + τ = 1 ⇒ x(k1 + 1) ∈ X , (23)

for any k1 ≥ 0, since V (k1) ≤ 1.
Next, in order to compute a bound on the system peak-norm, notice that the following

constrained inequality

γ – y (k )T y (k ) ≥ 0, ∀ (x , u) : x(k )T Px(k ) ≤ 1, u(k )T u(k ) ≤ 1, (24)

implies ‖y (k )‖2`∞ ≤ γ assuming that (22) holds.
Hence, by applying the S-Procedure, (24) holds if there exist positive scalars β1 and

β2 such that γ – β1 – β2 ≥ 0 and:

β1u(k )T u(k ) + β2x(k )T Px(k ) – y (k )T y (k ) ≥ 0. (25)

The above developments can be summarized in the following result.
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Lemma 6 (Guaranteed peak-norm) Let γ, τ,β1 and β2 be given positive scalars such that
τ ∈ (0, 1) and γ 9 β1 9 β2 ≥ 0. Then, the system defined in (8) is ISS and ‖Guy‖2peak ≤ γ
if there exists a P ∈ Snx satisfying the following LMIs:

β2P 0 CT

∗ β1Inu DT

∗ ∗ Iny

 > 0, (26)

AT PA 9 (1 9 τ)P AT PB

∗ BT PB 9 τInu

 < 0. (27)

Moreover, for any x(0) ∈ X and u(k ) ∈ U , the state trajectory x(k ) ∈ X for all k ≥ 0, with
X being as defined in (21).

Proof 4 Assume there is a solution P = PT to (26) and (27). First, notice from the (1, 1)
block of (26) that P > 0, since β2 > 0.

Next, pre- post-multiplying (27) by
[
xT uT

]
and its transpose, respectively, yields

∆V (k ) ≤ –τV (k ) + τ‖u(k )‖2 ≤ –τλ‖x(k )‖2 + τ‖u(k )‖2 (28)

where λ is the largest eigenvalue of P. Then, by the virtue of Lemma 5, the system is ISS.
Now, applying the Schur’s complement to (26), and pre- and post-multiplying the

resulting matrix inequality by
[
xT uT

]
and its transpose, respectively, leads to (25). Hence,

it follows that ‖Guy‖2peak ≤ γ, since ‖y (k )‖2 ≤ γ for all k ≥ 0.
The proof is completed by noting that (28) implies that X is a positively invariant set

from the fact that (23) holds for all k ≥ 0.

Before ending this chapter, the LMI characterization of the H– index has been proposed
in (LI, X.; LIU, H., 2013). For completeness, the latter result, which establishes a necessary
and sufficient condition to ensure a bound on ‖Guy‖–, is presented in the following.

Lemma 7 (Guaranteed system sensitivity) Assume that system (8) is asymptotically stable
for u(k ) ≡ 0. Let γ be a positive scalar. Then, ‖Guy‖– > γ if and only if there exists P ∈ Snx

such that AT PA – P + CT C AT PB + CT D

∗ BT PB + DT D – γ2Inu

 > 0 (29)

Proof 5 Pre- and post multiplying (29) by
[
xT uT

]
and its transpose, respectively, yields

(Ax + Bu)T P(Ax + Bu) – xT Px + (Cx + Du)T (Cx + Du) – γ2uT u > 0

V (k + 1) – V (k ) + yT y – γ2uT u > 0 (30)

where V (k ) = x(k )T Px(k ).
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Next, summing (30) up from k = 0 to k →∞, it follows that

‖y‖2`2 – γ2‖u‖2`2 > –V (∞) (31)

for zero initial conditions.
Assuming that the system is internally stable and u ∈ `2, the condition in (31) implies

that
‖y‖`2 > γ‖u‖`2,

which completes the proof.
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4 REFERENCE MODEL-BASED FDI FOR LDTS

This chapter presents a reference model-based solution for the FDI problem applied
to linear discrete-time systems. The chapter is divided in two solutions: while the first one is
based on the H∞ norm, the second approach takes into account the Peak norm. The goal is
to guarantee fault detection and isolation taking into account the desired behavior given by
a reference model despite the presence of disturbances.The filter design is cast as a convex
optimization problem involving a set of LMI constraints. Hence, to this end, firstly the class of
systems considered here is defined in Section 4.1, followed by the proposed observer-like filter,
the residual generator, the reference model and the augmented system. Subsequently, Section
4.2 presents the design of an H∞ reference model-based FDI for linear discrete-time systems,
whereas Section 4.3 demonstrates the Peak norm solution for the same class of systems. The
effectiveness of the proposed designs is illustrated by numerical examples.

4.1 PROBLEM OF INTEREST

Consider the following class of linear discrete-time systems:

x(k + 1) = Ax(k ) + Buu(k ) + Bww(k ) + Bf f (k ), (32a)
y (k ) = Cx(k ) + Duu(k ) + Dww(k ) + Df f (k ), (32b)

where x(k ) ∈ Rnx is the state vector, u(k ) ∈ Rnu is a measured input, w(k ) ∈ W ⊂ Rnw is an
exogenous input, y (k ) ∈ Rny is the measured output, f (k ) ∈ F ⊂ Rnf is a vector containing
actuator and/or sensor faults, and A, Bu, Bw , Bf , C, Du, Dw , Df are given real matrices with
appropriate dimensions. The class of signals defined by the setsW and F will be later specified
in this chapter. The following conditions are assumed with respect to system (32):

A1 The number of measured inputs and outputs is equal to n, i.e., ny = nu = n.

A2 The number of faults is equal or smaller than the number of measurements, i.e., nf ≤ 2n.

Assumption A1 imposes, for simplicity, that the system input-to-ouput map is square, whereas
assumption A2 establishes that the number of the system faults is smaller or equal to twice
the number of the system inputs to ensure the well-posedness of the FDI problem.

Associate to system (32), consider the following observer-like filter:

x̂(k + 1) = Ax̂(k ) + Buu(k ) + L(y (k ) 9 ŷ (k )), (33a)
ŷ (k ) = Cx̂(k ) + Duu(k ), (33b)

where x̂(k ) ∈ Rnx and ŷ (k ) ∈ Rny are estimations of the state and output vectors, respectively,
with the observer gain matrix L ∈ Rnx×ny to be designed.

In addition, let
x̃(k ) := x(k ) 9 x̂(k ), x̃(k ) ∈ Rnx , (34)
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be the estimation error vector and consider the following residual generator:

x̃(k + 1) = (A 9 LC)x̃(k ) + (Bw 9 LDw )w(k ) + (Bf 9 LDf )f (k ), (35a)
r (k ) = QCr (y (k ) 9 ŷ (k )), (35b)

where r (k ) ∈ Rnf is the residual vector, with Cr ∈ Rnf×n and Q ∈ Rnf×nf to be designed
such that the residual is sensitive to faults regardless the presence of exogenous disturbances.

In order to enforce sensitivity to faults occurring in system (32), consider the following
reference model:

x̆(k + 1) = Ăx̆(k ) + B̆f (k ), (36a)
r̆ (k ) = Q(C̆x̆(k ) + D̆f (k )), (36b)

where x̆(k ) ∈ Rnq and r̆ (k ) ∈ Rnf are the reference model state and residual, respectively, and
Ă, B̆, C̆ and D̆ are given matrices with appropriate dimensions with Ă being Schur stable. It
should be emphasized that the definition of matrices Ă, B̆, C̆ and D̆ must provide the desired
behavior from faults to residuals in terms of the H– index.

Next, consider the residual generator in (33), with (35b), the reference model in (36),
and let the following augmented vector:

x̄ =

x̃
x̆

 , x̄(k ) ∈ Rna , na = nx + nq. (37)

Thus, the following augmented system can be defined

x̄(k + 1) = Āx̄(k ) + B̄f (k ), (38a)
er (k ) = Q(C̄x̄(k ) + D̄f (k )), (38b)

where er (k ) ∈ Rnf is the residual error as defined below

er (k ) := r (k ) – r̆ (k ), (39)

and the matrices Ā, B̄, C̄ and D̄ are given by

Ā =

A 9 LC 0
0 Ă

 , B̄ =

Bf 9 LDf
B̆

 , C̄ =
[
Cr C 9C̆

]
, D̄ = Cr Df 9 D̆. (40)

In the following sections, two different LMI approaches are devised for designing the
residual generator (i.e., the matrices L, Q and Cr ) which will depend on the class of disturbance
and fault signals.

4.2 H∞ APPROACH

Consider the class of linear discrete-time systems defined in (32), with A1 and A2, and
assume that the class of disturbance and fault are given by:
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A3 W =

w ∈ Rnw :
∞∑

k=0
wT w = ‖w‖2`2 ≤ cw


A4 F =

f ∈ Rnf :
∞∑

k=0
f T f = ‖f‖2`2 ≤ cf


where cw and cf are given positive scalars defining bounds on the energy of w(k ) and f (k ),
respectively. Notice that cw and cf can be normalized to 1 without loss of generality by
appropriately rescaling the matrices Bw , Dw , Bf and Df .

The main objective in this section is to design an H–/H∞ residual generator as defined
by (33) and (35b) such that the behavior from faults to residual is as close as possible to the
behavior given by the reference model (36), while mitigating the effects of disturbance signals.
In this context, the problem of concern is to design the residual generator free matrices (i.e.,
L, Q and Cr ) such that the following holds:

I ‖Gwr‖2∞ ≤ γw ,

II ‖Gfr 9 Gf r̆‖2∞ ≤ γf , and

III ‖Gf r̆‖2_ ≥ γc ,

where Gwr , Gfr and Gf r̆ represent the transfer functions from disturbance to residual, from
fault to residual and from fault to reference residual, respectively, and γc , γw and γf are
positive scalars defining the residual generator performance.

4.2.1 Determining a bound on ‖Gwr‖∞

In order to derive a solution to the filter design problem, let

V1(x̃) = x̃T P1x̃ , P1 ∈ Rnx×nx , P1 > 0, (41)

be a Lyapunov function candidate for the estimation error dynamics, as defined in (34), and
consider the following inequality:

∆V1(x̃) + rT r 9 γwwT w < 0, (42)

where
∆V1(x̃) = V1(x̃(k + 1)) 9 V1(x̃(k )) (43)

Assuming that the error dynamics is stable, i.e., ∆V1(x̃) < 0, ∀ x̃ 6= 0, and summing
the inequality in (42) from k = 0 to ∞ yields:

‖r‖2`2 – γw‖w‖2`2 < V1(x̃(0))

The above inequality for zero initial conditions implies that ‖Gwr‖2∞ ≤ γw from the fact that:

‖Gwr‖∞ := sup
w 6=0

‖r‖`2
‖w‖`2
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Next, considering the residual generator in (35) and disregarding fault signals, the
following is obtained from the inequality in (42):
(
(A 9 LC)x̃ + (Bw 9 LDw )w

)
T P1

(
(A 9 LC)x̃ + (Bw 9 LDw )w

)
9 x̃T P1x̃

+ (Cr Cx̃ + Cr Dww)T QT Q(Cr Cx̃ + Cr Dww) 9 γwwT w < 0,

which can be cast as follows:
 x̃
w

T 
9P1 0

0 9γw Inw

 +

 (A 9 LC)T

(Bw 9 LDw )T

P1
[
(A 9 LC) (Bw 9 LDw )

]

+

 (Cr C)T

(Cr Dw )T

QT Q
[
(Cr C) (Cr Dw )

]
 x̃
w

 < 0.

By applying the Schur complement (Lemma 1), the following condition is obtained:
9P1 0 (A 9 LC)T CT CrT

0 9γw Inw (Bw 9 LDw )T DwT CrT

(A 9 LC) (Bw 9 LDw ) 9P1
91 0

Cr C Cr Dw 0 9Q̄

 < 0, (44)

where
Q̄ = (QT Q)91. (45)

Hence, pre- and post-multiplying (44) by

diag{Inx , Inw , K , Inf }

and its transpose yields:
9P1 0 (KA 9 LK C)T CT CrT

0 9γw Inw (KBw 9 LK Dw )T DwT CrT

(KA 9 LK C) (KBw 9 LK Dw ) 9K P1
91K T 0

Cr C Cr Dw 0 9Q̄

 < 0, (46)

where K ∈ Rnx×nx is a nonsingular free matrix and:

LK = KL. (47)

Now, notice from
(K 9 P1)P1

91(K 9 P1)T ≥ 0

that the following holds:
P1 9 K 9 K T ≥ 9K P1

91K T , (48)

for any nonsingular matrix K .
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Hence, the following sufficient condition for ensuring that ‖Gwr‖2∞ ≤ γw is derived
from (46): 

9P1 ∗ ∗ ∗
0 9γw Inw ∗ ∗

(KA 9 LK C) (KBw 9 LK Dw ) P1 9 K 9 K T ∗
Cr C Cr Dw 0 9Q̄

<0, (49)

where (∗) stands for the transpose of the blocks outside the main diagonal blocks.

4.2.2 Determining a bound on ‖Gfer
‖∞

Consider the augmented system in Eq. (38). Thus, in order to determine a bound on
the `2-gain from f to er , that is:

‖Gfer
‖∞ := ‖Gfr 9 Gf r̆‖∞, (50)

let
V2(x̄) = x̄T P2x̄ , P2 ∈ Rna×na , na := nx + nq, P2 > 0, (51)

and consider the following inequality:

∆V2(x̄) + er
T er 9 γf f

T f < 0, (52)

with
∆V2(x̄) = V2(x̄(k + 1)) 9 V2(x̄(k )) (53)

with x̄ representing the augmented state as defined in (37).
Next, consider the following partition of the matrix P2

P2 =

P21 P22
T

P22 P23

 , (54)

where P21 = PT
21 ∈ Rnx×nx , P22 ∈ Rnq×nx , and P23 = PT

23 ∈ Rnq×nq , and let

K2 =

 K Ka

MK Kb

 , (55)

with Ka ∈ Rnx×nq and Kb ∈ Rnq×nq being free matrices (to be designed), and M ∈ Rnq×nx

being a given real matrix.
Hence, in light of (54) and (55), the inequality in (52) can be cast as follows:

(Āx̄ + B̄f )T P2(Āx̄ + B̄f ) + (C̄x̄ + D̄f )T QT Q(C̄x̄ + D̄f ) 9 x̄T P2x̄ 9 γf f
T f < 0,

or, equivalently:x̄
f

T 
9P2 0

0 9γf Inf

 +

ĀT

B̄T

P2
[
Ā B̄

]
+

C̄T

D̄T

QT Q
[
C̄ D̄

]
x̄

f

 < 0. (56)
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By applying the Schur complement, the above inequality is satisfied, if and only if the
following matrix inequality holds:

9P2 0 ĀT C̄T

0 9γf Inf B̄T D̄T

Ā B̄ 9P2
91 0

C̄ D̄ 0 9Q̄

 < 0, (57)

with Q̄ being as defined in (45).
Thus, pre- and post-multiplying Eq. (57) by

diag{Ina , Inf , K2, Inf }

and its transpose yields:

9P21 ∗ ∗ ∗ ∗ ∗
9P22 9P23 ∗ ∗ ∗ ∗

0 0 9γf Inf ∗ ∗ ∗
ω41 KaĂ ω43 ω44 ∗ ∗
ω51 KbĂ ω53 ω54 ω55 ∗
Cr C 9C̆ ω63 0 0 9Q̄


< 0, (58)

from the fact that P2 9 K2 9 K T
2 ≥ 9K2P–1

2 K T
2 , where K2 is as defined in (55) and

ω41 = KA 9 LK C, ω43 = KBf 9 LK Df + KaB̆,

ω44 = P21 9 K 9 K T , ω51 = MKA 9 MLK C, (59)
ω53 = MKBf 9 MLK Df + KbB̆, ω54 = P22 9 MK 9 K T

a ,

ω55 = P23 9 Kb 9 K T
b , ω63 = Cr Df 9 D̆.

4.2.3 Determining a bound on ‖Gf r̆‖_

In view of Lemma 7 and the reference dynamics in (36), ‖Gf r̆‖2_ is larger or equal to
γc if and only if the following holds:ĂP3ĂT 9 P3 + B̆B̆T ∗

QC̆P3ĂT + QD̆B̆T QC̆P3C̆T QT + QD̆D̆T QT 9 γc Iq

 > 0, (60)

where P3 = PT
3 ∈ Rnq×nq is to be designed.

Thus, pre- and post-multiplying (60) by

diag{Inq , Q91}

and its transpose leads to the following matrix inequalityĂP3ĂT 9 P3 + B̆B̆T ∗
C̆P3ĂT + D̆B̆T C̆P3C̆T + D̆D̆T 9 γcQ̄

 > 0, (61)

where Q̄ is as defined in (45).
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4.2.4 Residual Design

In view of the developments presented in Subsections 4.2.1, 4.2.2 and 4.2.3, the following
theorem proposes residual design conditions in terms of LMI constraints to ensure that the
residual generator performance specifications I, II and III hold.

Theorem 1 Consider the residual generator in (35), the reference model in (36) and the
augmented system defined in (38). Let Ă, B̆, C̆, D̆, M and γc be given. Suppose there exist
symmetric matrices P1, P21, P23, P3 and Q̄, free matrices LK , K , Ka, Kb, Cr and P22, and
positive scalars γf and γw such that the LMIs in (87), (58) and (61) hold. Then, the residual
generator as defined in (33) and (35), with

L = K 91LK and Q = Q̄
91/2,

ensures that:

(i) the unforced residual generator is asymptotically stable;

(ii) ‖Gwr‖2∞ ≤ γw ;

(iii) ‖Gfer
‖2∞ ≤ γf ; and

(iv) ‖Gf r̆‖2_ ≥ γc .

The proof of the above theorem follows in the Appendix A.

4.2.5 Computational Issues

Consider the LMI constraints defined in (87), (58) and (61) which are associated to
the specifications I, II and III, respectively. For a given minimum sensitivity to faults γc , an
optimized residual generator may be derived in the sense of minimizing the mismatch between
Gfr and Gf r̆ by means of the following optimization problem:

min
P1,...,Q,γw ,γf

γf subject to

 (87), (58), (61)
and γw ≤ γ̄w ,

(62)

where γ̄w represents an admissible fault sensitivity to exogenous disturbances in the H∞ sense.
However, the above optimization problem can be quite conservative when the `2-gain

from one fault fi to the residual error er is relatively large compared to the others, for some
fj , j 6= i , j ∈ {1, . . . , nf }. To overcome this problem, the performance specification II may be
relaxed to

‖Gfi r 9 Gfi r̆‖
2
∞ ≤ γfi , i = 1, . . . , nf , (63)



46 Chapter 4. Reference model-based FDI for LDTS

where γf1, . . . ,γfnf
are positive scalars to be optimized and fi stands for the i-th element of

the fault input vector. The constraints in (63) can be accomplished by modifying the LMI in
(57) (Subsection 4.2.2) to the following:

9P21 ∗ ∗ ∗ ∗ ∗
9P22 9P23 ∗ ∗ ∗ ∗

0 0 9Γf ∗ ∗ ∗
ω41 KaĂ ω43 ω44 ∗ ∗
ω51 KbĂ ω53 ω54 ω55 ∗
Cr C 9C̆ ω63 0 0 9Q̄


< 0, (64)

where
Γf = diag{γf1, . . . ,γfnf

}.

Hence, an optimized solution can be obtained by means of the following convex optimization
problem:

min
P1,...,Q̄,γw ,Γf

nf∑
i=1
γfi subject to

(44), (61), (64)and γw ≤ γ̄w
(65)

Notice from (65) that specification II is satisfied with γf = max{γf1, . . . ,γfnf
}.

4.2.6 Numerical example

In order to illustrate the H∞ approach, consider a three tanks system as shown in Fig. 2.
This system consists of three identical cylindrical tanks with transverse area S, connected to
each other by cylindrical tubes with transverse area Sn and equal flow coefficients named µ13
and µ32. The output in Tank 2, which represents the nominal flow of the system, has the same
area Sn, but a different flow coefficient, labeled as µ20. The actuators valves, represented by
Valve 1 and Valve 2, which flow rates are defined by q1 and q2, respectively, are responsible for
supplying Tanks 1 and 2. In this example, a disturbance input w =

[
w1

T w2
T
]T is considered,

where w1 represents the flow of the pump and w2 represents an energy bounded noise on
Tank 1 level sensor. Moreover, notice from physical reasoning that the tank levels (xi , with
i = 1, 2, 3) and the valve flow rates (qj , with j = 1, 2) are bounded by ximax

, i = 1, 2, 3, and
qjmax

, with j = 1, 2, respectively.
Consider the following numerical parameters for the system:

S = 0.0154 m2, Sn = 5× 1095 m2,

ximax
= 0.62 m, qjmax

= 1.2× 1094 m3s91,

µ13 = µ32 = 0.5, µ20 = 0.675,

(66)

as well as the state equilibrium points:

xs1 = 0.6115 m, xs2 = 0.4252 m, xs3 = 0.5118 m. (67)



4.2. H∞ Approach 47

Figure 2 – Three tanks system.
Font: Own authorship.

The inputs q1 and q2 of the linearized model are normalized to belong to the range qi ∈ [0, 1],
for i = 1, 2, with the following operating condition:

q1 = 0.2916, q2 = 0.5417. (68)

In this example, additive faults on Valve 1 and on the sensors measuring the level in Tanks
1 and 3 are considered in vector f . Hence, the linear approximate model of the three tanks
system can be written as in (32), with

A =


0.9670 0.0006 0.0324
0.0006 0.9433 0.0344
0.0324 0.0344 0.9328

, Bu = 1093


22.9864 0.0047
0.0047 22.7053
0.3855 0.4106

,

Bw = 1093


90.0161 0
90.0171 0
90.9407 0

, Bf = 1093


22.9864 0 0
0.00047 0 0
0.3855 0 0

, (69)

C =

1 0 0
0 0 1

, Du =

0 0 0
0 0 0

, Dw =

0 0.05
0 0

, Df =

0 1 0
0 0 1

.

In view of the above setting, the system static gain from faults to measurements is
given by:

Ksys =

2.369 1 0
1.684 0 1

 . (70)

Notice that the dynamics behavior in low frequencies from faults to measurements in (70) has
an appropriate structure for fault detection and isolation as explained later in this section.
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Therefore, the reference model in (36) is chosen to be a copy of the fault to measurement
dynamics, given by Ă and B̆. Besides, to keep a triangular structure for fault detection and
isolation purposes, matrices C̆ and D̆ are deduced from C and Df . This means:

Ă = A, B̆ = Bf , C̆ =

 C
01×3

, D̆ =

 Df
01×3

. (71)

In (71), a third row of zeros has been included in C̆ and D̆ to ensure the same number of
residuals and faults. Hence, the static gain of the reference model is:

Kref =

Ksys

01×3

 =


2.369 1 0
1.684 0 1

0 0 0

 . (72)

Evaluating Ksys in (70), notice that the first two rows are sufficient to isolate the three
faults provided that they do not occur simultaneously. This means that one can consider only
the first two significant rows of Kref in (72) for FDI evaluation purposes. Hence, taking into
account (72), a structure regarding the behavior from faults to residual can be enforced such
that:

• in the case of an occurrence of an actuator fault (fa), both residuals r1 and r2 will be
influenced by it;

• if a fault occurs in sensor 1 (fs1), only residual r1 will be affected by this fault;

• similarly, only residual r2 is influenced by the occurrence of sensor fault fs2 .

Firstly, in this example, the performance specification II is considered and hence problem
(62) is solved. In order to obtain a solution to the optimization problem, it is needed to define
a priori the matrix M. In this example, we started by defining M = υ

[
Inq 0nq×(nx–nq)

]
with

υ = 1, and then the parameter υ was tuned to optimize the solution. Therefore, the following
parameter values are considered:

γc = 0.25, M = 1091 ·
[
Inq 0nq×(nx–nq)

]
, γ̄w = 0.0125, (73)

where a griding was applied in the optimization problem for determining γc and γ̄w , and the
optimization problem leads to

L = 1093


6.967 95.222
0.452 27.01
1.276 169.22

, Q =


0.249 0 0

0 0.25 0
0 0 9754.95

, Cr =


1 0
0 1
0 0

, (74)

γw = 0.0125, γf = 0.7993.
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The static gain from faults to residuals, considering only the first two significant rows,
is given by:

Kfr =

0.1651 0.1982 90.1808
0.0226 90.0087 0.0256

 . (75)

Notice that the obtained solution, even in the absence of disturbance, did not yield
a diagonal structure for the residual generator. Even though γf shown in (74) can ensure a
satisfactory performance for specification II, it is not possible to guarantee fault isolation since
a diagonal (or, at least, triangular) structure for the static gain in (75) is not achieved. To
overcome this problem, the performance specification II is relaxed to ‖Gfi r 9 Gfi r̆‖ ≤ γfi , for
i = 1, 2, 3, as represented by the optimization problem in (65). Therefore, in this case, by
defining

γc = 0.2, M = 10
[
Inq 0nq×(nx–nq)

]
, γ̄w = 0.0215,

and applying the optimization problem in (65) yields the following results:

L = 1094


90.183 90.08
90.144 90.053
0.333 0.142

, Q =


0.2127 0 0
90.042 0.232 0

0 0 3121.85

, Cr =


1 0
0 1
0 0

, (76)

γw = 0.0215, γf1 = 6.3944, γf2 = 0.0013, γf3 = 0.0011.

Analysing the results presented given in (74) and (76), notice that despite an apparent
large mismatch between Gfr and Gf r̆ in Eq. (76) (since ‖Gfer

‖2∞ ≤ 6.3944), fault isolation
can be guaranteed from the resulting Gfr , as demonstrated by the derived static gain:

Kfr =

0.5040 0.2127 0
0.2894 90.0431 0.2324

 . (77)

Comparing the above gain matrix with the static gain structure of the reference model in (72),
fault detection and isolation are guaranteed. This indicates that optimization problem (65)
leads to less conservative results for FDI purposes when the magnitude of fault inputs are
relatively different as shown in the following numerical experiments.

In order to verify the behavior of the system under influence of faults and disturbances,
a simulation study has been carried out. In this example, the following control variation ∆qj ,
for j = 1, 2, and disturbance signals wj , j = 1, 2, are defined:

• ∆q1 = ∆q2 = 0.05;

• w1 = 0.01 sin(1095k + π/2);

• w2 is a white noise with power equal to 0.0001.

The fault signals applied to the three tanks system are defined in order to represent
10% of each signal of interest. While the actuator fault magnitude was defined considering
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the maximum admissible value regarding qi , the sensor faults values take into account the
equilibrium points in (67). Hence, the actuator fault, defined as fa, and the sensor faults,
described by fs1 and fs2 , have the following magnitudes:

fa = 0.1, fs1 = 0.06115, fs2 = 0.05118. (78)

To evaluate the performance of the designed observer concerning the FDI problem,
Fig. 3 presents the residual response considering the influence of fault, control and disturbance
inputs. This means that the disturbance and control inputs are applied to the system during
the entire time slot. On the other hand, for FDI evaluation purposes, each fault signal is applied
to the system one at a time. Fig. 3a is referred to the case where the actuator fault happens
at instant k = 60, where fs1 = fs2 = 0. On the other hand, Fig. 3b and Fig. 3c are related to
each one of the sensor faults, which happen at instants k = 70 and k = 80, respectively. In
this case, fa = 0.

From these results, one can notice the satisfactory performance achieved by the proposed
filter despite relatively large exogenous disturbances. Besides, fault detection and isolation are
guaranteed.

4.3 PEAK NORM APPROACH

Consider the class of linear discrete-time systems in (32) satisfying A1 and A2 as
defined in Section 4.1. In addition, assume that the disturbance and fault signals belong the
to the following sets:

A5 W =
{
w ∈ Rnw : wT w = ‖w‖22 ≤ 1

}

A6 F =
{
f ∈ Rnf : f T f = ‖f‖22 ≤ 1

}
Assumptions A5 and A6 imply that both disturbance and fault signals are amplitude

bounded. Notice that the sets W and F are normalized to 1 (one) which can be set without
loss of generality by appropriately rescaling the matrices Bw , Dw , Bf and Df .

Hence, considering the peak-norm concept for LTI discrete-time systems, the main
objective of this section is to design a robust residual generator based on equations (33) and
(35), such that the behavior from faults to residual is as close as possible to the one given
by the reference model in (36). Therefore, the problem of concern in this case consists in
determining the matrices L and Q of the filter in (33) and (35) such that:

P-I ‖Gwr‖2peak ≤ γw ,

P-II ‖Gfr 9 Gf r̆‖2peak ≤ γf ,

P-III ‖Gf r̆‖2_ ≥ γc ;
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(a) Residual response to the actuator fault.

(b) Residual response to the sensor fault 1.

(c) Residual response to the sensor fault 2.

Figure 3 – Residual response to fault, control and disturbance inputs.
Font: Own authorship.
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where
‖Gwr‖peak = sup

w ∈W
‖r‖`∞

is the peak-norm from w to r , with ‖Gfr – Gf r̆‖peak being defined similarly, and ‖Gf r̆‖_ is the
smallest singular value of Gf r̆ .

Contrasting with the H∞ approach, the matrix Cr of the residual generator in (35b) is
constrained to be given in order to obtain a convex approach for the residual design problem
in the peak-norm setting.

4.3.1 Determination of a bound on ‖Gwr‖peak

Consider the Lyapunov function candidate in (41), the estimation error in (34), and let
the following inequality:

∆V1(x̃) ≤ τ1(wT w 9 V1(x̃)), (79)
with τ1 being a scalar belonging to the interval (0, 1).

If the condition in (79) is satisfied, then the estimation error system in (35) is input-
to-sate stable (ISS); see, e.g., (SONTAG; WANG, Y., 1996) and (JIANG; WANG, Y., 2001).
In addition, to provide a bound γw on ‖Gwr‖peak , the following must be guaranteed:

γw 9 rT r ≥ 0, ∀ (x̃ , w) : x̃T P1x̃ ≤ 1, wT w ≤ 1. (80)

Hence, by applying the S-Procedure, if there exists positive scalars α1 and β1 such
that

α1wT w + β1x̃T P1x̃ 9 rT r ≥ 0 (81)

holds, then the inequality in (80) is satisfied with

γw = α1 + β1.

Furthermore, in order to obtain a tractable solution, the equation in (81) can be cast as follows:

ρ1wT w + x̃T P1x̃ 9 η1rT rη1 ≥ 0, (82)
where

γw =
ρ1 + 1
η2

1
, ρ1 =

α1
β1

, η1 =
1√
β1

,

which is equivalent to: x̃
w

T

P1 0

0 ρ1Inw

 + η1

 CT CrT

DwT CrT

QT Q

 CT CrT

DwT CrT

T

η1


 x̃
w

 ≥ 0. (83)

Hence, from the Schur complement, the following LMI is a necessary and sufficient condition
for ensuring the boundedness of ‖Gwr‖peak :

P1 ∗ ∗
0 ρ1Inw ∗

η1Cr C η1Cr Dw Q̄

 > 0, (84)
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where Q̄ = (QT Q)91.
Next, notice that (79) can be written in the following form:

(
(A9LC)x̃+(Bw9LDw )w

)
T P1

(
(A9LC)x̃+(Bw9LDw )w

)
9(19τ1)x̃T P1x̃9τ1wT w ≤ 0,

which can be cast as follows:
 x̃
w

T 
9(1 9 τ1)P1 0

0 9τ1Inw

+

 (A 9 LC)T

(Bw 9 LDw )T

P1
[
(A 9 LC) (Bw 9 LDw )

]
 x̃
w

 < 0.

By applying the Schur complement (1), the following condition is obtained:
9(1 9 τ1)P1 0 (A 9 LC)T

0 9τ1Inw (Bw 9 LDw )T

(A 9 LC) (Bw 9 LDw ) 9P1
91

 < 0, (85)

Hence, pre- and post-multiplying (85) by

diag{Inx , Inw , K }

and its transpose yields:
9(1 9 τ1)P1 0 (KA 9 LK C)T

0 9τ1Inw (KBw 9 LK Dw )T

(KA 9 LK C) (KBw 9 LK Dw ) 9K P1
91K T

 < 0, (86)

where LK = KL.
Now, considering the condition (48), the following sufficient condition for ensuring that

‖Gwr‖2peak ≤ γw is derived:

9(1 9 τ1)P1 ∗ ∗

0 9τ1Inw ∗
(KA 9 LK C) (KBw 9 LK Dw ) P1 9 K 9 K T

<0. (87)

4.3.2 Determination of a bound on ‖Gfer
‖peak

Consider the augmented system in Eq. (38). Thus, in order to determine a bound on

‖Gfer
‖peak := ‖Gfr 9 Gf r̆‖peak , (88)

let
V2(x̄) = x̄T P2x̄ , P2 ∈ Rna×na , na := nx + nq, P2 > 0, (89)

be a Lyapunov function candidate and consider the following inequality:

∆V2(x̄) ≤ τ2(f T f 9 V2(x̄)), τ2 ∈ (0, 1), (90)
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with ∆V2(x̄) = V2(x̄(k + 1)) 9 V2(x̄(k )).
Notice that the inequality in (90) can be represented in the following form:

(x̄+)T P2x̄+ 9 (1 9 τ2)x̄T P2x̄ 9 τ2f T f ≤ 0, ∀ (x̄+, x̄ , f ) : 9x̄+ + Āx̄ + B̄f = 0, (91)

or, equivalently,

(Āx̄ + B̄f )
T P2(Āx̄ + B̄f ) 9 (1 9 τ2)x̄T P2x̄ 9 τ2f T f ≤ 0. (92)

This means that:x̄

f

T 9(1 9 τ2)P2 ∗
0 9τ2Inf

 +

ĀT

B̄T

P2
[
Ā B̄

]x̄

f

 ≤ 0,

By applying the Schur complement, the above inequality is satisfied, if and only if the following
matrix inequality holds: 

9(1 9 τ2)P2 0 ĀT

0 9τ2Inf B̄T

Ā B̄ 9P91
2

<0. (93)

Therefore, considering the matrix partitions of P2 and K2 as defined in (54) and (55),
respectively, and the procedure developed in Section 4.2.2, the following matrix inequality is
obtained: 

ωp11 ωp12 ωp13 ωp14 ωp15

∗ ωp22 ωp23 ωp24 ωp25

∗ ∗ ωp33 ωp34 0

∗ ∗ ∗ ωp44 0

∗ ∗ ∗ ∗ ωp55


< 0, (94)

where

ωp11 = P21 9 K 9 K T, ωp12 = PT
22 9 Ka 9 K T MT,

ωp13 = KA 9 LK C, ωp14 = KaĂ,

ωp15 = KBf 9 LK Df + KaB̆, ωp22 = P23 9 Kb 9 Kb
T ,

ωp23 = MKA 9 MLK C, ωp24 = KbĂ,

ωp25 = MKBf 9 MLK Df + KbB̆, ωp33 = 9 (1 9 τ2)P21,

ωp34 = 9 (1 9 τ2)PT
22, ωp44 = 9 (19τ2)P23,

ωp55 = 9 τ2Inf ,

with LK as defined in (47).
Next, a bound γf on ‖Gfer

‖peak is guaranteed if the following is satisfied:

γf 9 er
T er ≥ 0, ∀ (x̄ , f ) : x̄T P2x̄ ≤ 1, f T f ≤ 1. (95)
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Hence, by applying the S-Procedure, the following sufficient condition for the inequality in
(95) to hold is obtained:

x̄Tβ2P2x̄ + α2f T f – er
T er ≥ 0, (96)

with γf = α2 + β2, which can be cast as follows:
x̄

f

T P2 0

0 ρ2Inf

 9
(QC̄)T

(QD̄)T

η2
2
[
QC̄ QD̄

]x̄

f

 ≥ 0. (97)

where
ρ2 =

α2
β2

, η2 =
1√
β2

, γf =
1 + ρ2
η2

2
.

Notice that the following matrix inequality (derived from the Schur complement) is a
necessary and sufficient condition for (97) hold:

P2 ∗ ∗
0 ρ2Inf ∗

η2QC̄ η2QD̄ Inf

 ≥ 0. (98)

Thus, pre- and post-multiplying (98) by

diag{Ina , Iny , Q91}

and its transpose, leads to the following LMI:
P21 ∗ ∗ ∗
PT

22 P23 ∗ ∗
0 0 ρ2Inf ∗

η2Cr C 9η2C̆ η2Cr Df 9 η2D̆ Q̄

 > 0, (99)

where P21, P22, P23, Q̄ and η2 are to be designed.

4.3.3 Residual Design

The following LMI-based theorem is established with a view to ensure that the residual
generator is input-to-state stable while ensuring the performance specifications defined in P-I,
P-II and P-III.

Theorem 2 Consider the residual generator in Eq. (35), the reference model in Eq. (36) and
the augmented system in Eq. (38). Let Ă, B̆, C̆, D̆, M, Cr , γc , τ1 and τ2 be given, with
τi ∈ (0, 1), i = 1, 2. Suppose there exist symmetric matrices P1, P21, P23, P3 and Q̄, free
matrices LK , K , Ka, Kb, and P22, and positive scalars ρ1, ρ2, η1 and η2 such that the LMIs
in (??), (84), (94), (99) and (61) are satisfied. Then, the following statements hold:
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i the estimation error system (35) is ISS;

ii ‖Gwr‖peak ≤
√

1+ρ1
η1

;

iii ‖Gfer
‖peak ≤

√
1+ρ2
η2

; and

iv ‖Gf r̆‖_ ≥ γc ,

with L = K 91LK and Q = Q̄91/2.

The proof of the above theorem follows in the Appendix B.

4.3.4 Computational Issues

Similarly to the procedure proposed in Section 4.2.5, one may apply Theorem 2, for
instance, to minimize ‖Gwr‖peak and ‖Gfer

‖peak . However, the bounds γw and γf are non-
convex with respect to ρ1,η1, ρ2 and η2 by noting that:

γw =
1 + ρ1
η2

1
and γf =

1 + ρ2
η2

2

To overcome the above problem, the following solution is adopted in this thesis:

min
P1,...,Q,ρ1,ρ2,η1,η2

(ρ1 + ρ2 – η1 – η2) subject to

(84), (94),(99), (61)
(100)

for a given bound γc on ‖Gf r̆‖_.
The optimization problem in (100) approximately minimizes γ = γw + γf . If needed,

one can alternatively consider an weighted version γ(κ) = (1 – κ)(ρ1 – η1) + κ(ρ2 – η2), where
κ ∈ (0, 1) is a parameter to be tuned by the designer.

4.3.5 Numerical example

To illustrate the Peak-norm approach, the same numerical example introduced in
Section 4.2.6, consisting of the three tanks system depicted in Figure 2, is considered to
evaluate the residual generator performance.

Firstly, for convenience, the matrix transfer function from the faults f to the output y
is recalled:

Gsys =

g11 1 0
g21 0 1

 , (101)

where

g11 =
0.02299z2 9 0.04311z + 0.02019
z3 9 2.843z2 9 2.692z – 0.8488

,

g21 =
0.0003855z2 + 8.835 · 10–6z 9 0.0003509

z3 9 2.843z2 + 2.692z 9 0.8488
.
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It is worth remembering that the dynamics described in (101) has an appropriate
structure for FDI purposes by analyzing the system static gain given in (70). Furthermore,
as discussed in Section 4.2.6, Gsys can be straightforwardly applied to detect and isolate the
faults assuming that they do not occur simultaneously. Then, in order to compare the results
achieved by means of the H∞ and peak norms, the reference model used here is the same one
given in (71).

In order to apply the optimization problem defined in (100), consider the following
numerica values:

γc = 0.125, τ1 = 0.001, τ2 = 0.006,

M = 90.9 ·
[
Inq 0nq×(nx–nq)

]
, Cr =


1 0
0 1
0 0

 . (102)

The above parameters were chosen such that the LMI conditions are feasible and γw + γf is
approximately minimized. In particular:

• A fine griding was applied for designing τ1 and τ2, with (τ1, τ2) ∈ (0, 1)× (0, 1);

• The matrices Cr and M are set to be Cr =
[
I2 02×1

]T and M =ϑ·
[
Inq 0nq×(nx–nq)

]
,

where ϑ is a given parameter; and

• The parameters ϑ and γc were iteratively optimized using a coarse griding.

From the above setting, the optimization problem in (100) led to the following results:

Q =


0.125 0 0

90.0002 0.1252 0
0 0 182.393

, L = 1093


0.7658 0.2161
0.0248 90.0216
0.1247 90.1295

,
ρ1 = 0.05, ρ2 = 0.0027, η1 = 24.77, η2 = 20.4,

γw = 0.0414, γf = 0.0024.

The derived static gain with respect to the behavior from faults to residual is

Kfr =

0.2702 0.1150 90.0013
0.1918 90.0077 0.1246

 , (103)

which indicates that that fault detection and isolation can be achieved despite the presence of
persistent exogenous disturbances.

A simulation has been carried out in order to evaluate the performance of the designed
residual generator for FDI purposes. Thus, the same control variation and disturbance signals
as in Section 4.2.6 were considered as well as the fault signals defined in (78). Figure 4 shows
the residual response to the application of control, disturbance and fault inputs. The control
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and disturbance signals are applied to the system during the whole time slot, while the fault
signals are applied one at a time in order to evaluate the FDI performance. In particular, Figure
4a depicted the result related to the application of the actuator fault at instant k = 60 (with
fs1 = fs2 = 0), while Figures 4b and 4c display the residual signal considering sensor faults
fs1 (at instant k = 70 with fs2 = 0 and fa = 0) and fs2 (at instant k = 80 with fs1 = 0 and
fa = 0), respectively.

Notice in Figure 4a that both residuals were affected by the actuator fault fa as expected.
In Figure 4b, the isolation of the sensor fault fs1 is guaranteed taking into account the residual
r1 response compared to the small influence of residual r2. Similarly, in Figure 4c, the residual r2
response is sufficiently large to indicate that the sensor fs2 is faulty despite a noisy measurement.
From these results, it should be emphasized the good performance achieved by the proposed
residual generator based on the peak-norm approach.

4.4 CHAPTER CONCLUSION

In this chapter, two different approaches (described in Sections 4.2 and 4.3) were pro-
posed for designing a residual generator for FDI purposes based on an observer-like filter and
a reference model representing the desired fault detection and isolation behavior. Specifically,
convex optimization problems in terms of LMI constraints were devised to design the residual
free parameters. Hence, considering the numerical example introduced in Section 4.2.6, the
H∞ approach was applied to ensure the asymptotic stability of the estimation error while
guaranteeing the fault detection and isolation performance. In addition, the same numerical
example is considered to illustrate the residual generator design considering the peak-norm
approach which ensures the input-to-state stability of the estimation error dynamics while
guaranteeing desired performance specifications. The results clearly indicated the effectiveness
of the proposed methods, the peak-norm approach despite the large numbers of tuning parame-
ters seems to be less sensible to large magnitude differences of fault inputs. Future research will
be focused on designing FDI methods for a class of nonlinear discrete-time systems by means
of H∞ and peak-norm approaches. Preliminary results on the state estimation of nonlinear
discrete-time systems assuming persistent disturbance signals are presented in the Appendix C.
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(a) Residual response to the actuator fault.

(b) Residual response to sensor fault 1.

(c) Residual response to sensor fault 2.

Figure 4 – Residual response to fault, control and disturbance inputs.
Font: Own authorship.
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5 REFERENCE MODEL-BASED FDI FOR LDTDS

This chapter presents a robust reference model-based solution for the FDI problem
applied to a class of linear discrete-time descriptor systems based on either the H∞- or
peak-norm settings. Besides ordinary differential equations that appear in a traditional state-
space representation, descriptor models also include algebraic equations, which are notably
encountered when modeling electric systems as Kirchhoff’s laws must be fulfilled. Therefore,
similarly to Chapter 4, the goal is to ensure fault detection and isolation taking into account
the desired behavior given by a reference model despite the presence of disturbances. The
observer-like filter is designed in terms of LMI constraints considering a standard state-space
realization of the descriptor model. Therefore, the class of descriptor systems and the standard
state-space realization to be considered in this chapter are defined in Section 5.1, followed by
the proposed filter, the residual generator, the reference model and the augmented system. Next,
Section 5.2 presents the design of an H∞ reference model-based FDI for linear discrete-time
descriptor systems while Section 5.3 introduces the peak-norm counterpart. The effectiveness
of the proposed design is illustrated by a numerical example in Section 5.4.

5.1 PROBLEM OF INTEREST

Consider the following class of regular and causal discrete-time descriptor systems:

Ex(k + 1) = Ax(k ) + Buu(k ) + Bww(k ) + Bf f (k ), (104a)
y (k ) = Cx(k ) + Duu(k ) + Dww(k ) + Df f (k ), (104b)

where x(k ) ∈ Rnx is the state vector of the descriptor systems, u(k ) ∈ Rnu is the measured in-
put, w(k ) ∈ W ⊂ Rnw is the exogenous input, y (k ) ∈ Rny is the measured output, f (k ) ∈ F ⊂
Rnf is a vector containing actuator and/or sensor faults, and E , A, Bu, Bw , Bf , C, Du, Dw , Df
are given real matrices with appropriate dimensions. The class of signals defined by the sets
W and F will be later specified in this chapter.

The following conditions are assumed with respect to the system defined in (104):

A1 The total number of input and output measurements is equal to n, i.e., n = nu + ny .

A2 The number of faults is equal or smaller than the number of measurements, i.e., nf ≤ 2n.

A3 rank{E} = ne, with ne < nx .

A4 rank

E
C

 = nx .

A5 rank

(zE 9 A)

C

 = nx , ∀ z ∈ C : 1 ≤ |z| <∞.
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Similarly to Chapter 4, assumptions A1 and A2 ensure the the well-posedness of the FDI
problem. In addition, assumptions A3-A5 are somehow standard in the literature of descriptor
systems (DAROUACH, 2009; DAROUACH et al., 2017). In particular, A3 is to state that the
system defined in (104) is a descriptor system, whereas A4 and A5 imply respectively that
the fast dynamics of the descriptor system is observable and its slow dynamics is detectable
(DAI, 1989; BELOV et al., 2018).

From A4, notice that there exist matrices T ∈ Rnx×nx and R ∈ Rnx×ny such that the
following holds:

TE + RC = XΦ = Inx , (105)

where

X =
[
T R

]
and Φ =

E
C

 . (106)

Furthermore, any solution X to the equality in (105) can be parameterized as follows (BEN-
ISRAEL; GREVILLE, 2003):

X = Ψ + ZS (107)

where Ψ ∈ Rnx×(nx+ny ) is the Moore-Penrose pseudoinverse of Φ, Z ∈ Rnx×(nx+ny ) is an
arbitrary matrix and

S = Inx+ny –ΦΨ. (108)

Since the matrix Z is a free matrix, without loss of generality, it can be assumed that
there always exists a nonsingular matrix T satisfying (105), as discussed, e.g., in (KOENIG,
2006) and (RAO; MITRA, 1972).

Next, post-multiplying (105) by x(k + 1) leads to:

x(k + 1) = TEx(k + 1) + RCx(k + 1)

= TEx(k + 1) + R
[
y (k + 1) 9 Duu(k + 1) 9 Dww(k + 1) 9 Df f (k + 1)

]
. (109)

Hence, replacing (104) into (109), the descriptor system can be represented in the
following standard state-space form:

x(k + 1) = TAx(k ) + TBuu(k ) + TBww(k ) + TBf f (k ) + Ry (k + 1)

9 RDuu(k + 1) 9 RDww(k + 1) 9 RDf f (k + 1) (110a)

y (k ) = Cx(k ) + Duu(k ) + Dww(k ) + Df f (k ). (110b)

Now, let the following notation:

∆f (k ) = f (k + 1) 9 f (k ), fa(k ) =

 f (k )
∆f (k )

 , (111)

∆w(k ) = w(k + 1) 9 w(k ), wa(k ) =

 w(k )
∆w(k )

 .
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Then, the system in (110) can be rewritten as:

x(k + 1) = TAx(k ) + TBuu(k ) + Ry (k + 1) 9 RDuu(k + 1) + Bwawa(k ) + Bfa fa(k ) (112a)

y (k ) = Cx(k ) + Duu(k ) + Dwawa(k ) + Dfa fa(k ), (112b)

where

Bwa =
[
(TBw 9 RDw ) 9RDw

]
, Bfa =

[
(TBf 9 RDf ) 9RDf

]
,

Dwa =
[
Dw 0

]
, Dfa =

[
Df 0

]
. (113)

Associate to the system representation in (112), consider the following observer-like
filter:

x̂(k + 1) = TAx̂(k ) + TBuu(k ) 9 RDuu(k + 1) + Ry (k + 1) + L
(
y (k ) 9 ŷ (k )

)
, (114a)

ŷ (k ) = Cx̂(k ) + Duu(k ), (114b)

where x̂ ∈ Rnx and ŷ ∈ Rny are estimates of x and y , respectively, with T ∈ Rnx×nx ,
R ∈ Rnx×ny and L ∈ Rnx×ny to be designed.

Now, let
x̃(k ) = x(k ) 9 x̂(k ) (115)

be the estimation error. Then, the error dynamics can be cast as follows:

x̃(k + 1) =
(
TA 9 LC

)
x̃(k ) +

(
Bwa 9 LDwa

)
wa(k ) +

(
Bfa 9 LDfa

)
fa(k ) (116)

In light of the above developments, the proposed residual generator for the fault,
detection and isolation of the class of discrete-time systems defined in (104) is summarized by
the following equations:

x̂(k + 1) =
(
TA 9 LC

)
x̂(k ) + (TBu 9 LDu)u(k ) 9 RDuu(k +1) + Ry (k +1) + Ly (k ) (117a)

ŷ (k ) = Cx̂(k ) + Duu(k ), (117b)

r (k ) = QCr
(
y (k ) 9 ŷ (k )

)
(117c)

where Cr ∈ Rnf×ny , L ∈ Rnx×ny and Q ∈ Rnf×nf are to be designed.
In addition, with the view of enforcing residual sensitivity to faults, consider the following

fault-to-residual reference model:

Gfa r̆ :

 x̆(k + 1) = Ăx̆(k ) + B̆fa(k )
r̆ (k ) = Q

(
C̆x̆(k ) + D̆fa(k )

) (118)

where x̆(k ) ∈ Rnq and r̆ (k ) ∈ Rnf are the reference model state and residual, respectively,
and Ă, B̆, C̆ and D̆ are given matrices with appropriate dimensions with Ă being Schur stable.
Similarly to the reference model considered in Chapter 4, it should be emphasized that the
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choice of matrices Ă, B̆, C̆ and D̆ must provide the desired behavior from faults to residuals
taking into account the augmented fault vector as defined in (111).

Before ending this section, the following auxiliary systems will be instrumental for
designing the residual generator in (117) considering either the H∞ or peak-norm settings.

Gwar :

 x̃(k +1) =
(
TA 9 LC

)
x̃(k ) +

(
Bwa 9 LDwa

)
wa(k )

r (k ) = QCr
(
Cx̃(k ) + Dwawa(k )

) (119)

Gfaer
:

 x̄(k + 1) = Āx̄(k ) + B̄fa(k )

er (k ) = Q
(
C̄x̄(k ) + D̄fa(k )

) (120)

where
er (k ) := r (k ) 9 r̆ (k ) (121)

is the mismatch between r and r̆ and

x̄ =

x̃
x̆

 , Ā =

TA 9 LC 0
0 Ă

 , B̄ =

(Bfa 9 LDfa

)
B̆

 , (122)

C̄ =
[
Cr C 9C̆

]
, D̄ = Cr Dfa – D̆.

5.2 H∞-NORM APPROACH

The problem of concern in this section is to design the residual generator as defined in
(117) assuming that W and F are `2 signals and considering a mixed H∞/H– performance
such that the behavior from faults to residual is is approximated by the reference model defined
in (118). In other words, the matrices T , R, L, Q and Cr of the residual generator in (117)
should be designed such that the error dynamics in (116) is Schur stable and the following
performance requirements hold:

(i) ‖Gwar‖2∞ ≤ γ1,

(ii) ‖Gfaer
‖2∞ ≤ γ2,

(iii) ‖Gfa r̆‖2– ≥ γ3,

where Gwar , Gfaer
and Gfa r̆ are as defined in (119), (120) and (118), respectively, and γ1, γ2

and γ3 are positive scalars defining the residual generator performance.
Notice that the observer dynamics as well as the performance criteria ‖Gwar‖∞,

‖Gfaer
‖∞ and ‖Gfa r̆‖– depend on the choice of the matrices T and R satisfying the equality

constraint in (105). Thus, in view of the parametrization given in (107), one can exploit the
degree of freedom introduced by the matrix Z when designing the residual generator in order
to improve the overall performance of the FDI scheme.
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Before introducing the main result of this section, consider the following parametrization
of the matrices T and R which will be instrumental to devise a solution for the FDI problem
for LDTDS in a mixed H∞/H– setting:

T = W1 + Z1S11 + Z2S21, R = W2 + Z1S12 + Z2S22, (123)

where

Ψ =
[
W1 W2

]
, Z =

[
Z1 Z2

]
, S =

S11 S12
S21 S22

 , (124)

with Ψ and S being as defined in (107) and (108), respectively, and the matrices W1 ∈ Rnx×nx ,
W2 ∈ Rnx×ny , Z1 ∈ Rnx×nx , Z2 ∈ Rnx×ny , S11 ∈ Rnx×nx , S12 ∈ Rnx×ny , S21 ∈ Rny×nx

and S22 ∈ Rny×ny being obtained by appropriately partitioning the matrices Ψ, Z and S,
respectively.

5.2.1 Determining a bound on ‖Gwar‖∞

Let V1(x̃) = x̃T P1x̃ , P1 > 0, be a Lyapunov function candidate for the system Gwar

as defined in (119) and consider the following H∞ inequality

∆V1(x̃) + rT r 9 γ1wa
T wa < 0, (125)

where ∆V1(x̃) = V (x̃(k + 1)) – V (x̃).
Substituting the system dynamics and the output equation given in (119) into the

above inequality yields
{(

TA 9 LC
)
x̃ +

(
Bwa 9 LDwa

)
wa
}
T P1

{(
TA 9 LC

)
x̃ +

(
Bwa 9 LDwa

)
wa
}
9 x̃T P1x̃

+ (Cr Cx̃ + Cr Dwawa)T QT Q(Cr Cx̃ + Cr Dwawa) 9 γ1wa
T wa < 0, (126)

which can be cast as follows:
 x̃
wa

T 
9P1 0

0 9γ1I2nw

 +


(
TA 9 LC

)T(
Bwa 9 LDwa

)T

P1
[(

TA 9 LC
) (

Bwa 9 LDwa

)]

+

 (Cr C)T

(Cr Dwa)T

QT Q
[
(Cr C) (Cr Dwa)

]
 x̃
wa

 < 0. (127)

From the Schur’s complement, the above inequality is satisfied if the following matrix
inequality holds: 

9P1 0
(
TA 9 LC

)T
CT CrT

0 9γ1I2nw

(
Bwa 9 LDwa

)T
Dwa

T CrT

TA 9 LC Bwa 9 LDwa 9P1
91 0

Cr C Cr Dwa 0 9Q̄

 < 0, (128)
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where Q̄ = (QT Q)91.
Next, pre- and post-multiplying (128) by

diag{Inx , I2nw
, K , Inf }

and its transpose leads to:
9P1 0

(
TK A 9 LK C

)T
CT CrT

0 9γ1I2nw
ΩT Dwa

T CrT

TK A 9 LK C Ω 9K P1
91K T 0

Cr C Cr Dwa 0 9Q̄

 < 0, (129)

where K ∈ Rnx×nx is a free nonsingular matrix and:

TK = KT = KW1 + Z1K S11 + Z2K S21, LK = KL, Z1K = KZ1, Z2K = KZ2,

Ω =
[
(TK Bw – RK Dw ) 9RK Dw

]
, RK = KR = KW2 + Z1K S12 + Z2K S22. (130)

Then, by recalling the condition in (48), the following LMI ensures that ‖Gwar‖∞ ≤ γ1:
9P1 ∗ ∗ ∗

0 9γ1I2nw
∗ ∗

TK A 9 LK C Ω P1 9 K 9 K T ∗
Cr C Cr Dwa 0 9Q̄

 < 0, (131)

where P1, K , LK , Z1K , Z2K , Cr and Q̄ are the decision variables.

5.2.2 Determining a bound on ‖Gfaer
‖∞

Let

V2(x̄) = x̄T P2x̄ , P2 ∈ Rna×na , na := nx + nq, P2 > 0, (132)

be a Lyapunov function candidate for the system defined in (120) and consider the following
inequality:

∆V2(x̄) + er
T er 9 γ2faT fa < 0, (133)

which implies for zero initial conditions that ‖Gfaer
‖∞ ≤ γ2.

Thus, similarly to the development in (126) and taking into account the definition of
the augmented dynamics in (120), it follows that:

(Āx̄ + B̄fa)T P2(Āx̄ + B̄fa) + (C̄x̄ + D̄fa)T QT Q(C̄x̄ + D̄fa) 9 x̄T P2x̄ 9 γ2faT fa < 0, (134)

which can be cast as follows: x̄
fa

T 
9P2 0

0 9γ2I2nf

 +

ĀT

B̄T

P2
[
Ā B̄

]
+

C̄T

D̄T

QT Q
[
C̄ D̄

]
 x̄
fa

 < 0.
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From the Schur’s complement, the above inequality holds if the following matrix inequality is
satisfied: 

9P2 0 ĀT C̄T

0 9γ2I2nf
B̄T D̄T

Ā B̄ 9P91
2 0

C̄ D̄ 0 9Q̄

 < 0. (135)

Now, let the following matrix

Λ = diag{Ina , I2nf
, K2, Inf }, (136)

where K2 is as defined in (55), and consider the following partition of the matrix P2

P2 =

P21 ∗
P22 P23

 , (137)

with P21 = PT
21 ∈ Rnx×nx , P22 ∈ Rnq×nx and P23 = PT

23 ∈ Rnq×nq .
Next, by pre- and post-multiplying (135) by Λ and ΛT , respectively, it follows that:

9P21 ∗ ∗ ∗ ∗ ∗
9P22 9P23 ∗ ∗ ∗ ∗

0 0 9γ2I2nf
∗ ∗ ∗

$41 KaĂ $43 $44 ∗ ∗
$51 KbĂ $53 $54 $55 ∗
Cr C 9C̆ $63 0 0 9Q̄


< 0 (138)

ensures that ‖Gfaer
‖∞ ≤ γ2 holds from the fact that

P2 9 K2 9 K T
2 ≥ 9K2P–1

2 K T
2 ,

where

$41 = TK A 9 LK C, $43 = Υa + KaB̆,

$44 = P21 9 K 9 K T , $53 = MΥa + KbB̆,

$51 = MTK A 9 MLK C, $54 = P22 9 MK 9 Ka
T,

$55 = P23 9 Kb 9 Kb
T, $63 = Cr Dfa 9 D̆,

Υa =
[
TK Bf 9 RK Df 9 LK Dfa 9RK Df

]
,

with P21, P22, P23, TK , RK , LK , Q̄, Cr , K , Ka and Kb to be designed.

5.2.3 H∞ Residual Design

In view of the developments presented in Sections 5.2.1 and 5.2.2, and by recalling
that ‖Gfa r̆‖2– ≥ γ3 is satisfied if (61) holds with γc replaced by γ3, the following Theorem
proposes an LMI-based solution to the H∞ residual generator problem for descriptor systems.
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Theorem 3 Consider the class of linear discrete-time descriptor systems in (104), the residual
generator in (117), the reference model in (118) and the augmented system in (120). Let Ă,
B̆, C̆, D̆, M and γ3 be given. Suppose there exist symmetric matrices P1, P21, P23, P3 and
Q̄, free matrices LK , K , Z1K , Z2K , Ka, Kb, Cr and P22, and positive scalars γ1 and γ2 such
that the LMIs in (131) and (138), and the followingĂP3ĂT 9 P3 + B̆B̆T ∗

C̆P3ĂT + D̆B̆T C̆P3C̆T + D̆D̆T 9 γ3Q̄

 > 0, (139)

He
{
KW1 + Z1K S11 + Z2K S21

}
> 0, (140)

hold. Then, the residual generator defined in (117) considering Cr and

L = K 91LK , T = W1 + K 91
(
Z1kS11 + Z2kS21

)
, (141)

Q = Q̄
91/2, R = W2 + K 91

(
Z1kS12 + Z2kS22

)
,

ensures that:

i) the unforced error dynamics is asymptotically stable;

ii) ‖Gwar‖2∞ ≤ γ1;

iii) ‖Gfaer
‖2∞ ≤ γ2; and

iv) ‖Gfa r̆‖2– ≥ γ3.

Remark 3 The LMI constraint in (140) has been considered to ensure that the matrix

TK = KW1 + Z1K S11 + Z2K S21

and consequently T = K 91TK are nonsingular, since K is full rank.

Remark 4 The same strategies developed in Section 4.2.5 can be directly applied to Theorem 3
in order to optimize the residual generator performance in the H∞ sense.

5.3 PEAK-NORM APPROACH

In this section, the residual generator synthesis for discrete-time descriptor systems is
addressed considering a mixed H–/peak-norm design criterion.To this end, assume that the
augmented disturbance and fault input vectors of the standard system representation given in
(112) satisfy the following

A6 wa ∈ Wa, with Wa := {wa ∈ R2nw : wT
a wa ≤ 1};
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A7 fa ∈ Fa, with Fa := {fa ∈ R2nf : f T
a fa ≤ 1}.

The above assumptions do not imply loss of generality, since one can appropriately re-scale
the matrices Bwa , Dwa , Bfa and Dfa .

Hence, in view of the above setting, the problem of concern in this section can be
stated as follows:

• For given matrices M and Cr , determine the matrices T , R, L and Q of the residual
generator defined in (117) such that the error dynamics is ISS and following performance
requirements are satisfied:

(P-I) ‖Gwar‖2peak ≤ γ1 ;

(P-II) ‖Gfaer
‖2peak ≤ γ2 ;

(P-III) ‖Gfa r̆‖2– ≥ γ3 ;

where
‖Gwar‖peak = sup

wa ∈Wa

‖r‖`∞, ‖Gfaer
‖peak = sup

fa ∈ Fa

‖er‖`∞

are the peak-norms from wa to r and fa to er , respectively, and ‖Gfa r̆‖_ is the smallest
singular value of Gfa r̆ .

Notice in contrast with the H∞ approach that the matrix Cr will be constrained to be
constant in order to derive numerically tractable design conditions.

5.3.1 Determining a bound on ‖Gwar‖peak

Consider the following Lyapunov function candidate

V1(x̃) = x̃T P1x̃ , P1 > 0, P1 ∈ Rnx×nx . (142)

Hence, the system in (119) is ISS if the following inequality holds (JIANG; WANG, Y., 2001):

∆V1(x̃) ≤ τ1
(
wT

a wa – V1(x̃)
)
, τ1 ∈ (0, 1). (143)

Taking into account the representation of Gwar in (119), the above expression can be cast as
follows:

(x̃+)T P1x̃+ – (1 – τ1)x̃T P1x̃ – τ1wT
a wa ≤ 0,

∀ (x̃+, x̃ , wa) : –x̃+ + (A – LC)x̃ + (Bwa – LDwa)wa = 0,

or, equivalently, as
(
(TA 9 LC)x̃ + (Bwa 9 LDwa)wa

)
T P1

(
(TA 9 LC)x̃ + (Bwa 9 LDwa)wa

)
9 (1 9 τ1)x̃T P1x̃ 9 τ1wa

T wa ≤ 0,
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which can be cast as follows: x̃
wa

T
9(1 9 τ1)P1 0

0 9τ1Inwa

+

 (TA 9 LC)T

(Bwa 9 LDwa)T

P1
[
(TA 9 LC) (Bwa 9 LDwa)

]
 x̃
wa

 < 0.

By applying the Schur complement (Lemma 1), the following condition is obtained:
9(1 9 τ1)P1 0 (TA 9 LC)T

0 9τ1Inwa
(Bwa 9 LDwa)T

(TA 9 LC) (Bwa 9 LDwa) 9P1
91

 < 0, (144)

Hence, pre- and post-multiplying (85) by

diag{Inx , Inwa
, K }

and its transpose yields:
9(1 9 τ1)P1 0 (TK A 9 LK C)T

0 9τ1Inwa
(TK Bwa 9 LK Dwa)T

(TK A 9 LK C) (TK Bwa 9 LK Dwa) 9K P1
91K T

 < 0, (145)

where LK = KL and TK = TK . Considering the same developments in Section 5.2.1, the
following sufficient condition for (143) to hold is obtained:

P1 – K – K T KA – LK C Ω1
∗ –(1 – τ1)P1 0
∗ ∗ –τ1I2nw

 < 0, (146)

where K ∈ Rnx×nx is a free nonsingular matrix to be determined and

Ω1 =
[
(TK – RK Dw – LK Dw ) –RK Dw

]
. (147)

Now, assuming that (143) holds, a bound γ1 on ‖Gwar‖2peak should satisfy the following
constrained inequality:

γ1 – rT r ≥ 0, ∀ (x̃ , wa) : x̃T P1x̃ ≤ 1, wT
a wa ≤ 1, (148)

which by applying the S-Procedure yields

α1wT
a wa + β1x̃T P1x̃ – rT r ≥ 0, (149)

with α1 and β1 being positive scalars to be designed and

γ1 = α1 + β1.

Next, let
ρ1 =

α1
β1

and η1 =
1√
β1

.
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Hence, the expression in (149) can be cast by means of x̃
wa

T P1 ∗
0 ρ1I2nw

 – η1

CT CT
r

DT
wa

CT
r

QT Q
[
Cr C Cr Dwa

]
η1

 x̃
wa

 ≥ 0,

which is satisfied if the following matrix inequality holds (derived from the Schur’s complement):


P1 ∗ ∗
0 ρ1I2nw

∗
η1Cr C η1Cr Dwa Q̄

 > 0, (150)

where
Q̄ = (QT Q)–1 and γ1 =

1 + ρ1
η2

1
.

5.3.2 Determining a bound on ‖Gfaer
‖peak

Consider the following Lyapunov function candidate

V2(x̄) = x̄T P2x̄ , P2 > 0, P2 ∈ Rna×na , (151)

the system Gfaer
in (120), and the following dissipation inequality:

∆V2(x̄) ≤ τ2
(
f T
a fa – V2(x̄)

)
, τ2 ∈ (0, 1). (152)

Taking into account the representation of Gfaer
, the latter expression can be written as follows:

(x̄+)T P2x̄+ – (1 – τ2)x̄T P1x̄ – τ2f T
a fa ≤ 0, ∀ (x̄+, x̄ , fa) : –x̄+ + Āx̄ + B̄fa = 0

or, equivalently,

(Āx̄ + B̄fa)T P2(Āx̄ + B̄fa) 9 (1 9 τ2)x̄T P2x̄ 9 τ2f T
a fa ≤ 0. (153)

This means that: x̄

fa

T 9(1 9 τ2)P2 ∗
0 9τ2Infa

 +

ĀT

B̄T
fa

P2
[
Ā B̄fa

] x̄

fa

 ≤ 0.

By applying the Schur complement, the above inequality is satisfied, if and only if the following
matrix inequality holds: 

9(1 9 τ2)P2 0 ĀT

0 9τ2Infa
B̄T

fa
Ā B̄fa 9P91

2

<0. (154)

Hence, considering the matrix partitions of P2 and K2 as defined in (54) and (55), respectively,
and the procedure developed in Section 5.2.2, the following matrix inequality is obtained:

P2 – K2 – K T
2 K2Ā K2B̄fa

∗ –(1 – τ2)P2 0
∗ ∗ –τ2I2nfa

 < 0, (155)
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where K2 ∈ Rna×na .
In order to obtain a numerical and tractable condition, the multiplier K2 will be con-

strained to be as follows:

K2 =

 K Ka

MK Kb

 (156)

with M ∈ Rnq×nx being a given matrix and K ∈ Rnx×nx , Ka ∈ Rnx×nq and Kb ∈ Rnq×nq to
be determined such that K2 is nonsingular.

Then, considering the partition of P2 as in (137), the definition of the matrices Ā,
and B̄ in (122), the definition of K2 in (156), the following sufficient condition for (152) is
obtained:

P219K 9K T Ω12 Ω13 KaĂ Ω15
∗ P239 Kb9 K T

b Ω23 KbĂ Ω25
∗ ∗ 9(19τ2)P21 9(19τ2)PT

22 0
∗ ∗ ∗ 9(19τ2)P23 0
∗ ∗ ∗ ∗ 9τ2I2nf


< 0 (157)

where

Ω12 = PT
22 9 Ka 9 K T MT , Ω13 = TK A – LK C, Ω23 = M

(
TK A – LK C

)
, (158)

Ω15 =
[
(TK Bf – RK Df – LK Df ) –RK Df

]
+ KaB̆,

Ω25 = M
[
(TK Bf – RK Df – LK Df ) –RK Df

]
+ KbB̆.

Now, assume that the dissipation inequality in (152) holds. Then, a bound γ2 on
‖Gfaer

‖2peak satisfies the following:

γ2 – eT
r er ≥ 0, ∀ (x̄ , fa) : x̄T P2x̄ ≤ 1, f T

a fa ≤ 1,

which by applying the S-Procedure yields

α2f T
a fa + β2x̄T P2x̄ – eT

r er ≥ 0, (159)

with α2 and β2 being positive scalars to be designed and

γ2 = α2 + β2.

Next, let
ρ2 =

α2
β2

and η2 =
1√
β2

.

In light of the above definition, the inequality in (159) can be written in the following
form  x̄

fa

T P2 ∗
0 ρ2I2nf

 – η2

C̄T

D̄T

QT Q
[
C̄ D̄

]
η2

 x̄
fa

 ≥ 0,
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which is satisfied if the following matrix inequality holds:
P21 ∗ ∗ ∗
P22 P23 ∗ ∗
0 0 ρ2I2nf

∗
η2Cr C –η2C̆ η2(Cr Dfa – D̆) Q̄

 > 0, (160)

where Q̄ = (QT Q)–1.

5.3.3 Peak-norm Residual Design

Notice that ‖Gfa r̆‖2– ≥ γ3 is satisfied if (61) holds with γc replaced by γ3. Then, by
considering the latter developments, the following result proposes an LMI-based solution to
the residual generator problem for descriptor systems in terms of the peak-norm approach.

Theorem 4 Consider the class of linear discrete-time descriptor systems in (104), the residual
generator in (117), the reference model in (118) and the augmented system in (120). Let Ă, B̆,
C̆, D̆, Cr , M, γ3 and τi ∈ (0, 1), i = 1, 2, be given. Suppose there exist symmetric matrices
P1, P21, P23, P3 and Q̄, free matrices LK , K , Z1K , Z2K , Ka, Kb, and P22, and positive
scalars ρi , ηi , and γi , i = 1, 2, such that the LMIs in (139), (140), (146), (150), (157) and
(160) hold. Then, the residual generator defined in (117) with

L = K 91LK , T = W1 + K 91
(
Z1kS11 + Z2kS21

)
,

Q = Q̄
91/2, R = W2 + K 91

(
Z1kS12 + Z2kS22

)
,

ensures that:

i) the error dynamics is ISS;

ii) ‖Gwar‖2peak ≤ γ1;

iii) ‖Gfaer
‖2peak ≤ γ2; and

iv) ‖Gfa r̆‖2– ≥ γ3;

where
γ1 =

1 + ρ1
η2

1
and γ2 =

1 + ρ2
η2

2
.

Similarly to the procedure proposed in Section 4.3.4, Theorem 4 can be applied to
obtain an optimized solution. For instance, upper-bounds on ‖Gwr‖peak and ‖Gfer

‖peak can
be minimized for a given bound γc on ‖Gf r̆‖_ by means of the following optimization problem:

min
P1,...,Q,ρ1,ρ2,η1,η2

γ(κ) subject to

 (139), (140), (146), (150), (157) , (160),
with γ(κ) = (1 – κ)(ρ1 – η1) + κ(ρ2 – η2),

(161)

where κ ∈ (0, 1) is a parameter to be tuned by the designer.
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5.4 NUMERICAL EXAMPLE

In order to illustrate the proposed residual generator design for linear discrete-time
descriptor systems, a numerical example representing two cascade subsystems with an equality
constraint is presented in the following considering the H∞-norm approach. To this end,
consider the following matrices defining the descriptor system described in (104):

E =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0


, A =



0.99 0 0 0 0
1 1 0 0 0
0 0 0.99 910910 0
0 0 1 1 0
0 1092 0 0 91


, Bu =



1
0
1
0
1


, Bw =



0
0
0
0
0


,

Bf =



91 0
0 0
91 0
0 0
91 0


, C =

0 1092 0 1092 0
0 0 0 1092 1

, Du =

2
1

, Df =

92 0
91 1

, Dw =1093 ·

1
1

,

and let
Y (z) = Guwf (z)

[
U(z) W (z) F (z)

]T
, (162)

where Guwf (z) is a transfer function matrix, and Y (z), U(z), W (z) and F (z) are the Z
transform from the output, the control input, the disturbance and the fault, respectively.
Therefore, the static gain can be defined as Kuwf = Guwf (z = 1), which is given by:

Kuwf =

4505 0.001 94505 0
9016 0.001 99016 1

 . (163)

The reference model matrices in Eq. (118) are chosen in order to guarantee an appropriate
structure to fault detection and isolation with regards to the dynamics from faults to measure-
ments (i.e., either a diagonal or triangular matrix transfer function) and considering a stable
dynamic behavior as close as possible to the dynamics of the original system, which for this
particular example yields:

Ă =


0.99 91095 0 0

1 1 0 0
0 0 0.99 91094

0 0 1 1

 , B̆ =


91 0 0 0
0 0 0 0
91 0 0 0
0 0 0 0

 ,

C̆ =

0 0.01 0 0.01
0 0 0 0.01

 , D̆ =

92 0 0 0
91 1 0 0

 .

Now, let
R̆q(z) = Gfa r̆q

(z)Fa(z), Gfa r̆q
(z) = C̆(zInq – Ă)–1B̆ + D̆,
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with r̆q = Q–1r̆ representing the desired residual without the gain Q, and R̆q(z) and Fa(z)
denoting the Z transform of r̆q and fa, respectively. Thus, the reference model static gain can
be defined as:

Kref = Gfa r̆q
(1) =

91102.0004 0 0 0
9101 1 0 0

 . (164)

Hence, considering Kref in Eq. (164) for FDI evaluation purposes, a triangular structure with
respect to the behavior from faults to residual can be enforced such that:

• if an actuator fault (fa) occurs, both residuals r1 and r2 will be influenced by it;

• if sensor 1 (fs1) is affected by a fault, only residual r1 will respond to this fault;

• in the same way, in the occurrence of sensor fault fs2 , only residual r2 is affected by it.

Therefore, considering the parameters

γ3 = 2 · 1097, γ̄1 = 0.5, M = 9Inq×nx , (165)

the following optimization problem is applied

min
P1,...,Q̄,γ1,γ2

γ2 subject to

γ̄1 – γ1 ≥ 0,

(131), (138)-(140)

leading to

L =



90.0008 0.0005
0.3050 90.0592
0.0025 0.0004
90.0970 90.0413
0.4737 90.5694


, Q =

2.2568 0
0.4579 90.3323

 , (166)

Cr =

1.0099 90.0234
0.0625 0.6312

 , γ1 = 0.4650, γ2 = 0.7817.

The static gain from faults to residuals is given by:

Kfr =

0.0134 90.0125 0.0541 0.1375
0.1184 91.6250 0.0469 91.8

 , (167)

which demonstrates that fault detection and isolation can be guaranteed depending on the
defined threshold. In this case, the chosen threshold is equal to 0.1. This means that the
proposed optimization problem can ensure that the design conditions (i), (ii) and (iii) are
satisfied.

In order to analyze the behavior of the system under influence of faults and disturbances,
a simulation has been developed. In this example, a control variation (∆uj (k ), for j = 1, 2) is
considered, with upper and lower values. Besides, the disturbance (w(k )) and the fault signals
(actuator fault f1(k ) and sensor fault f2(k )) are defined:
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• ∆u1 = 90.5, ∆u2 = 0.5;

• w(k ) = 1;

• f1(k ) = 0.01, f2(k ) = 1.

The control input is applied to the system during the entire time slot, whereas the disturbance
signal occurs from time k = 665 s. Moreover, for FDI evaluation purposes, each fault signal
is applied to the system one at a time. To evaluate the performance of the designed observer
concerning the FDI problem, Figure 5a is referred to the case where the actuator fault happens
at time k = 249, with f2(k ) = 0. On the other hand, Figure 5b is related to occurrence of the
sensor fault, which happen at k = 249. In this case, f1(k ) = 0.

(a) Residual response to the actuator fault.

(b) Residual response to the sensor fault.

Figure 5 – Residual response to fault, control and disturbance inputs.
Font: Own authorship.

From these results, the satisfactory performance achieved by the proposed filter despite
the presence of exogenous disturbances is clear. Taking into account a triangular structure
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with respect to the fault-residual static gain, in the occasion of an actuator fault (Figure 5a),
both residuals (r1 and r2) are influenced by it, while the occurrence of a sensor fault (Figure
5b) only affects one residual (r2). Therefore, fault detection and isolation are guaranteed.

5.5 CHAPTER CONCLUSION

In this chapter, two LMI-based approaches were proposed for designing residual gener-
ators for a class of linear discrete-time descriptor systems considering either a mixed H–/H∞
or H–/peak-norm observer-like filter, which approximates the solution given by a reference
model with the view to achieve fault detection and isolation. In order to obtain optimized
solutions, the filter parameters are designed via quasi-convex optimization problems in terms
of LMI constraints. A numerical example representing two cascade subsystems with an equality
constraint (presented in Section 5.4) demonstrated the potentials of the proposed approach for
the fault detection and isolation of descriptor systems. In particular, the derived residual gener-
ator (considering a mixed H–/H∞ design criterion) achieved a excellent FDI features. Future
research will concentrate on designing residual generators for a class of nonlinear discrete-time
descriptor systems.
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6 APPLICATION TO LI-ION BATTERY PACKS

This chapter presents the application of a reference model-based FDI technique for a
linear approximated model of Li-Ion battery packs. To this end, firstly, a nonlinear Li-ion battery
cell model is introduced in Section 6.1, followed by the model of two batteries connected in
series in Section 6.2. Next, Section 6.3 shows the linear approximation of the battery pack
model around a prescribed operating condition. Due to reasons that will be explained later in
this chapter, the linear approximate model of a battery pack is represented in terms of a class
of linear discrete-time descriptor systems. Hence, Chapter 5 will be used as a basis for the
residual generator design applied to Li-ion battery packs based on the H∞-norm setting. The
effectiveness of the proposed design for this application is illustrated by numerical examples. It
is important to emphasize that the studied nonlinear descriptor model in this chapter is based
on the unpublished work of (COUTO et al., 2021).

6.1 LI-ION BATTERY MODEL

A battery cell can be divided in three regions: two porous electrodes and a separator.
The electrode regions are composed by two phases: a solid and an electrolyte. On the other
hand, the separator region only has electrolyte phase. Since lithium is the element responsible
for storing energy in a battery, when a battery is empty, all its lithium content is in the solid
phase of the positive electrode. Moreover, when the battery is being charged, the lithium
diffuses from the bulk of the positive electrode to the surface where it undergoes an oxidation
reaction. The resulting lithium ions then travel within the electrolyte towards the negative
electrode. Therefore, lithium ions go from the positive electrode up to the negative electrode
by crossing the separator in the way. Once the negative electrode contains all the available
lithium, the charging process is finished, while the discharging process is done when all the
available lithium is on the positive electrode side (COUTO et al., 2021; COUTO, 2018).

The operation of a lithium-ion battery cell can be properly described by reduced-order
electrochemical models, such as the so-called equivalent-hydraulic model (EHM). For more
details on the EHM representation, please refer to (MILOCCO et al., 2014; COUTO et al.,
2021). Figure 6 presents a schematic representation of a battery cell across the cell thickness,
the solid-phase diffusion process as an EHM, and also the heat generated by the charging
and discharging of the Li-Ion battery. A lithium-ion battery cell operation can be represented
by a two tanks system. In this case, the tank system is illustrated through a single-particle
analogy with the internal tank as the bulk concentration and the external one as the critical
surface concentration (CSC). Additionally, the combination of these two gives rise to the
state-of-charge (SOC) of the battery.

The valve coefficient g regulates the transfer of material entering into the particle u
from the surface to the bulk. Although two EHM models can be used to describe the battery
diffusion processes exemplified in Figure 6 (one for each electrode), a single EHM associated to
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(a)

(b) (c)

Figure 6 – Schematic representation of a battery cell and its model. (a) Longitudinal scheme
of a cell, (b) electrode solid-phase diffusion process as an EHM, and (c) thermal
model representation.
Font: (COUTO et al., 2021).

the diffusion-limiting electrode is often enough to describe the operation of a battery under mild
conditions (i.e. current magnitudes below 1C1). Unlike other models, such as reduced-order
EChMs (electrochemical models) and ECMs (equivalent circuit models), the EHM provides a
simple model (only two states) while keeping its physical relevance. The two most important
diffusion states are the concentration of lithium in the negative electrode, denoted as SOC,
and in its surface, denoted as CSC.

Apart from lithium diffusion, thermal phenomena inside batteries are also fundamental
in order to prevent safety hazards such as thermal runaway (BANDHAUER et al., 2011). It is
important to emphasize that only the surface temperature (Ts) of the battery can be measured,
although the heat builds up inside the battery. Therefore, in order to carefully monitor the
thermal state of the battery, a model-based estimation is performed. In particular, a second-
order thermal model (LIN et al., 2014) is used, where the temperature states include core (Tc)
and surface (Ts) temperatures.

The nonlinear dynamic model that results from extending the EHM with thermal
dynamics is denoted as TEHM, and it takes the following form in discrete-time (COUTO,
2018; COUTO; KINNAERT, 2018):

x(k + 1) = f (u(k ), x(k ), v (k )) + b(T∞), (168)

where T∞ is the ambient temperature, the input u(k ) ∈ R is the applied current, and v (k ) ∈ R
is the terminal voltage. The state vector consists of two components:

• a solid-phase diffusion component xs(k ) = [SOC(k ), CSC(k )]T ;
1 C-rate: normalization of the battery current in [A] with respect to the battery nominal capacity in [Ah].
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• and a thermal component xT (k ) = [Tc(k ), Ts(k )]T with core and surface temperatures,
respectively.

This means that x(k ) = [xs(k ), xT (k )]T ∈ R4. The nonlinear function f can also be split as
f = [fs, fT ]T in accordance with the state vector, where fs : R× R4 → R2 takes the form

fs(u(k ), x(k )) =


SOC(k ) + τsγu(k )

τs
g(Tc(k ))
β(1 9 β)

SOC(k ) +
(
1 9 τs

g(Tc(k ))
β(1 9 β)

)
CSC(k ) + τs

γ

1 9 β
u(k )

, (169)

where τs is the sampling time, g is the valve coefficient, β represents the tank cross-section
area for a given number of tanks, and γ is a given constant. Moreover, fT : R×R4×R→ R2

is given by (LIN et al., 2014)

fT (u(k ),x(k ), v (k )) =

(
19τs

kc
Cpc

)
Tc(k ) + τs

kc
Cpc

Ts(k ) +
τs

Cpc

(
U+

b (SOC(k ))9U9
b(SOC(k ))9v (k )

)
u(k )

τs
kc

Cps
Tc(k ) +

(
1 9 τs

kc + hc
Cps

)
Ts(k ),

, (170)

with kc being the thermal conductivity, hc is the heat transfer coefficient, Cpc and Cps are
the core and surface specific heat capacity, and b(T∞) = τs

hc
Cps

T∞ (COUTO et al., 2016). It
is important to point out that the discretization procedure was determined by using the Euler
approach. In Figure 6, the thermal process is represented, emphasizing the internal and surface
temperatures, Tc and Ts, respectively, and how heat fluxes are governed by conductivities kc

or ke and convection coefficient hc .
For more details on the definition of the the different diffusion, thermal and electro-

chemical model variables, please refer to (COUTO et al., 2021). The function g is temperature-
dependent, and it follows Arrhenius law:

g(Tc(k )) = gref exp
(

EΦ
Rg

(
1

Tref
–

1
Tc(k )

))
. (171)

The model functions U±b : R → R are the equilibrium potentials U± evaluated at the bulk
SOC for the positive and negative electrodes. For more details on the EHM and the thermal
model, please refer to (COUTO et al., 2019; COUTO; KINNAERT, 2018).

The diffusion and thermal TEHM in Eq. (168) is complemented with an electrochemical
output equation given by

v (k ) = h(u(k ), x(k )), (172)

where the output v ∈ R is the voltage response of the battery and the nonlinear function
h : R× R4 → R is represented by

h(u(k ), x(k )) = η+
s (u(k ), x(k ))9η9s(u(k ), x(k ))+U+

s (SOC(k ))9U9
s (CSC(k ))9Rf u(k ). (173)
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The model functions η±s : R× R4 → R are the surface over potentials given by

η±s (u(k ), x(k )) = ∓
2Rg
F

Tc(k ) sinh–1

 1
i±0 (x(k ))

u(k )

. (174)

The exchange current density i±0 : R4 → R is given by

i±0 (x(k ))=2L±a±s k±n (Tc(k ))c±s,max

√
c0

ez±(k )
(√

1–z±(k )
)
, (175)

where z+(k ) = ρSOC(k ) + σ for the positive electrode and z–(k ) = CSC(k ) for the negative
electrode. The model functions U±s are the equilibrium potentials evaluated at the surface
CSC for the positive and negative electrodes. The model parameter Rf is a film resistance.
Similarly as with the diffusion-related parameter g, the kinetic-related parameters k±n depend
on the temperature according to Eq. (171), with k±n (Tc(k )).

Remark 5 The TEHM (Eq.(168),(172)) presented in this section is associated to a single
battery cell. When considering two-cell arrangements, a TEHM is needed for each battery cell,
and each cell TEHM is denoted with a subscript i ∈ {1, 2} in parenthesis. For instance, the
input current and the equilibrium potentials for the i-th battery cell will be denoted as u(i) and
U±s,(i), respectively. A two-cell arrangement modeling is presented in the next section.

6.2 LI-ION BATTERY SERIES PACK MODEL

In order to deliver the energy/power required by a given application, lithium-ion battery
cells have to be connected in series/parallel arrangements (COUTO et al., 2021). Therefore,
the single cell TEHM designed in Section 6.1 has to be adapted to include cell interconnections
as well as thermal and electrical couplings. In this section, two battery cells are considered and
it is assumed that these cells are deployed side by side. Figure 7 illustrates both the parallel
and series electrical topologies, respectively.

(a) Parallel configuration (b) Series configuration

Figure 7 – Possible parallel/series topologies for two electrically connected batteries.
Font: (COUTO et al., 2021).
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The first characteristic to be taken into account is that the cells are thermally coupled
since they exchange heat due to their physical proximity. Hence, from energy balance, the
state space representation in (168) for each i-th battery cell has to be suitably modified to
accommodate heat exchange. This is achieved by substituting the thermal dynamics in (168),
namely the last two equations, by the following model:

xT ,i (k + 1) = [fTc ,i (ui (k ), xi (k ), vi (k )), fTs,i (xi (k ), xj (k ))]T + b(T∞), (176)

where xT ,i (k ) = [Tc,i (k ), Ts,i (k )]T ∈ R2, the subscript j represents the j-th neighboring cell,
the function fTc ,i : R × R4 × R → R corresponds to the first component in (170) and the
function fTs,i : R4 × R4 → R is given by

fTs,i (xi (k ),xj (k )) =

τs
kc,i

Cps,i
Tc,i (k ) +

(
1 – τs

ka,i
Cps,i

)
Ts,i (k ) + τs

ke,j
Cps,j

Ts,j (k ), (177)

where ka,i = kc,i + ke,i + hc,i .
Furthermore, the electrical interconnection of the cells depends on the network topol-

ogy. In this work, the application will be focused on the series configuration. Therefore, the
Kirchhoff’s laws of current and voltage for the series configuration, illustrated in Figure 7(b),
is represented as follows:

u(k ) = u1(k ) = u2(k ), (178)
v (k ) = v1(k ) + v2(k ). (179)

In practice, battery cells are not identical due to their different operating conditions
resulting from e.g. differences in impedance or thermal environments. Hence, a variable ∆ is
introduced to represent battery mismatches. In the series configuration case, the voltage v (k )
can be written in terms of the voltage of cell 1, i.e., v1(k ), as follows

v (k ) = (2 + ∆)v1(k ). (180)

6.3 LINEAR APPROXIMATE MODEL

The resulting electrochemical model for two battery cells in a series topology is obtained
by:

i) grouping a TEHM (Eq. (168),(172)) for each i-th, i ∈ {1, 2}, with a thermal model of
the form of Eq. (176) for each cell;

ii) electrically interconnecting the cells through the algebraic equations (178),(180).

This model naturally renders itself into a descriptor-type of system. Hence, in order to design a
linear state observer, one can approximate the resulting nonlinear descriptor system by a linear
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approximate representation around a nominal operating condition by using the Taylor series
development limited to a first order. Here, we consider the operating condition of 0.45 for the
SOC and 91 A for the input current. As a result, the approximate model takes the form given
by 

Eξ(k + 1) = Aξ(k ) + Bqq(k ) + Bww(k ),

y (k ) = Cξ(k ) + Dqq(k ) + Dww(k ).
(181)

Furthermore, with the intention of designing an H∞ fault detection and isolation
approach for a class of discrete-time descriptor systems, the model in Eq. (181) can be
rewritten as follows:

Eξ(k + 1) = Aξ(k ) + Bqq(k ) + Bww(k ) + Bf f (k ),

y (k ) = Cξ(k ) + Dqq(k ) + Dww(k ) + Df f (k ).
(182)

In this example, the SOC and the CSC of each battery of the battery pack composes the
state x(k ), which means:

x1(k ) = [SOC1(k ), CSC1(k )]T , (183)
x2(k ) = [SOC2(k ), CSC2(k )]T . (184)

Therefore, the state vector ξ(k ) ∈ Rnξ , nξ = 6, is defined as

ξ(k ) =
[
x1(k )T , x2(k )T , u1(k ), v1(k )

]T
, (185)

the measurable electrical variables u(k ) and v (k ) are grouped in q(k ) ∈ R2 as

q(k ) =
[
u(k ), v (k )

]T
, (186)

and the mismatch variables ∆u1(k ) and ∆v1(k ) representing disturbed current and voltage
are included in w(k ) ∈ Rnw , nw = 2, as

w(k ) =
[
∆u1(k ), ∆v1(k )

]T
. (187)

The output signal y (k ) is defined as follows:

y (k ) =
[
v (k ), v (k ), u(k ), v (k )

]T (188)

The matrix E is given by
E = diag(I4, 02) ∈ R6×6, (189)

and the matrices A ∈ R6×6, Bq ∈ R6×2, Bw ∈ R6×2, Bf ∈ R6×2, C ∈ R4×6, Dq ∈ R4×2,
Dw ∈ R4×2 and Df ∈ R4×2 are the corresponding Jacobian matrices of fξ and hξ, yielding
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the following representation:

A=



1 0 0 0 98.81 · 1096 0
12.24 · 1093 0.987 0 0 929.24 · 1096 0

0 0 1.0 0 96.46 · 1096 0
0 0 12.24 · 1093 0.987 921.44 · 1096 0
0 0 0 0 0.5 0
0 0 0 0 0 1


; Bq =



0 0
0 0
0 0
0 0

90.5 0
0 90.5


;

Bw =



0
0
0
0
0

0.5


; Bf =1096 ·



8.81 0
29.24 0
6.46 0
21.44 0

0 0
0 0


; Dq =


0 0
0 0
0 0
0 0

; Dw =


1
0
1
0

; Df =


0 1
0 1
0 0
0 1

;

C =


0 0 0 0 0 2

0.645 0.1246 3.0051 0.1248 90.0085 0
0 0 0 0 1 0
0 0 3.0051 0.1248 90.0036 1

. (190)

In this example, we considered an actuator fault on the SOC of one of the batteries as
well as a sensor fault in the output voltage v (k ).

For simplicity, in this chapter, the ambient temperature is assumed to be measured and
thus its effect on the residual generator dynamics can be neglected. For more details, please
refer to (COUTO et al., 2021).

6.4 H∞ FDI RESULTS

In order to achieve fault detection and isolation (FDI) for the battery pack problem, a
robust reference model design based on the H∞–norm approach (Section 5.2) is developed.
Firstly, we consider the linear approximate model of two batteries in series assuming that the
input current and total voltage sensor are subject to faults. Then, the matrices Ă, B̆, C̆ and
D̆ of the reference model defined in (118) are chosen in order to have a similar dynamics to
the system dynamics and to guarantee an appropriate structure for the fault detection and
isolation from the augmented fault vector fa to the reference model residual r̆ yielding:

Ă =


0.99 90.001 0 0
0.99 0.99 0 0

0 0 0.09 0.001
0 0 0.0001 0.01

 , B̆ =


0.99 0 0.99 0

0 90.99 0 90.99
90.99 0 90.99 0

0 0 0 0

 ,

C̆ = 1093 ·

0 1 0 1
0 1 0 0.1

 , D̆ =

2 0 30 0
0 2 0 60

 , (191)
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which results in the following reference model static gain

Kref =

2.8992 90.0091 30.8992 90.0091
0 2 0 60

 . (192)

Hence, for FDI evaluation purposes, an approximate diagonal structure with respect to
the behavior from the fault vector f =

[
f1 f2

]T to the residual vector r =
[
r1 r2

]T can be
enforced leading to the following analysis:

• if the actuator fault f1 occurs, only residual r1 will be influenced by it; and

• if the total voltage sensor is affected by a failure f2, only residual r2 will respond to this
fault.

Next, in order to design the residual generator by means of Theorem 3, we set

γ3 = 0.2, M = 04×6, (193)

and apply the following optimization problem:

min
P1,...,Q̄,γ1,γ2

γ1 + γ2 subject to (131), (138)-(140) and Zx ≥ 0,

where

Zx =

8 · 102 · Inx Z1K
T

Z1K Inx

 ,

leading to

L =



91.2643 96.0045 90.045 1.851
24.5915 124.022 0.8648 947.1217
90.2398 90.0498 0.0005 0.2368
90.003 0.0054 0.0001 0.0028

91.3458 · 1099 14.73 · 1099 97.23 · 1099 3.4235 · 1099

90.0625 0.3227 90.4276 · 1093 90.888


, (194)

Cr =

90.0412 90.0802 90.002 91.6672
93.7662 0.0034 90.0052 0.1836

 , Q =

 0.1884 0
92.258 · 104 2.258 · 104

 ,

γ1 = 0.0913, γ2 = 1.5674.

The constraint Zx ≥ 0 has been added to the optimization to improve the conditioning of
matrices T and R defined in (141), since it implies ‖Z1K ‖2 ≤ 8× 102.

The resulting static gain from the fault vector fa to the residual r is given by:

Kfr =

92.8992 91.4713 930.8992 3.3358
0.0002 95.7492 0 949.8862

 , (195)

which demonstrates (despite the large value of γ2) that fault detection and isolation can be
achieved by considering of the following analysis:
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(a) if the actuator fault f1 occurs, only residual r1 will be influenced by it; and

(b) if the total voltage sensor is affected by a failure f2, both residuals will be affected.

In other words, the proposed optimization problem (Theorem 3) is able to guarantee
that the design conditions (i), (ii) and (iii) are fulfilled. To evaluate the behavior of the residual
generator when the system is under influence of faults, a simulation has been carried out. In
this example, the input signal variation q(k ) (i.e., u(k ) and v (k )), the disturbance (∆u1(k )
and ∆v1(k )) and the fault signals (actuator fault f1(k ) and sensor fault f2(k )) are defined as
follows:

• ∆u1 = ∆v1 = 0.01 A;

• u(k ) = 9200 A;

• v (k ) = 50 V;

• f1(k ) = –500 A;

• f2(k ) = 0.02 V;

In the following results, the input as well as the disturbance signal are applied to the
system during the entire time slot. Moreover, for FDI evaluation purposes, it is considered
that each fault signal occurs one at a time. Figure 8a refers to the case where the actuator
fault happens at instant k = 125, with f2(k ) = 0. On the other hand, Figure 8b is related to
occurrence of the sensor fault at instant k = 125 with f1(k ) = 0.

The results shown in Figures 5a and 5b clearly demonstrated the satisfactory perfor-
mance achieved by the proposed residual generator despite the presence of step-like exogenous
disturbances thanks to the triangular structure from the fault f to the residual r static gain.
Notice that in the occasion of an actuator fault (Figure 5a), only residual r1 is influenced by
it, while the occurrence of a sensor fault (Figure 5b) affects both residuals (r1 and r2).

6.5 NONLINEAR MODEL SIMULATION

In this section, the effectiveness of the proposed residual general design approach is
evaluated considering the nonlinear model defined in (168)-(175). For comparison purposes,
the reference model, design and simulation conditions are the same as the ones presented in
Section 6.4.

In the simulations, the input signal variation q(k ) (i.e., u(k ) and v (k )), the disturbance
(∆u1(k ) and ∆v1(k )) and the fault signals (actuator fault f1(k ) and sensor fault f2(k )) are as
defined below:

• ∆u1 = ∆v1 = 0.01 A;

• u(k ) = 9200 A;
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(a) Residual response to the actuator fault.

(b) Residual response to the sensor fault.

Figure 8 – Residual response to fault, control and disturbance inputs.
Font: Own authorship.

• v (k ) = 50 V;

• f1(k ) = –50 A;

• f2(k ) = 0.02 V;

In addition, the input and the disturbance signals are applied to the system during the entire
time slot and it is considered that each fault signal occurs one at a time. Figure 9a refers
to the case where the actuator fault happens, i.e., f2(k ) = 0, while Figure 9b is related to
occurrence of the sensor fault, i.e., f1(k ) = 0.

Despite of performance degradation compared to the results shown in Section 6.4, the
results depicted in Figures 9a and 9b demonstrated (assuming suitable thresholds) that is
still possible to detect the faults considering the proposed (linear) residual generator and the
nonlinear model of the battery pack. Notice that in the occasion of an actuator fault (Figure
9a), residual r1 is more influenced by it, while the occurrence of a sensor fault (Figure 9b)
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(a) Residual response to the actuator fault.

(b) Residual response to the sensor fault.

Figure 9 – Residual response to fault, control and disturbance inputs.
Font: Own authorship.

affects more substantially residual r2. It is important to emphasize that the residual generator
provides satisfactory FDI results when dealing with relatively small magnitudes of the fault
signals. Large inputs and fault signals may lead to unbounded residuals as noted in some
simulations.

6.6 CHAPTER CONCLUSION

In this chapter, the LMI-based H∞ approach was applied to design an FDI scheme for
two Li-Ion batteries in the series configuration in which the dynamical model was embedded
in the class of linear discrete-time descriptor systems introduced in Chapter 5. The resulting
observer-like filter approximated the diagonal solution imposed by the reference model achieving
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fault detection and isolation. The simulations demonstrated the potentials of the proposed
approach for the fault detection and isolation of (linear) descriptor systems while for the
nonlinear case the FDI performance depends on the input signals magnitude. Future research
will be concentrate on designing nonlinear residual generators considering the series and parallel
configurations of battery-packs.
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7 CONCLUDING REMARKS

In this thesis, we aimed at designing robust observer-based FDI techniques applied
to discrete-time systems as well as discrete-time descriptor systems. The achieved results
considered mixed sensitivity specifications (either H∞/H– or Hpeak/H–) for guaranteeing
sensitivity to faults while attaining low sensitivity to disturbance and control inputs. To achieve
this goal, the thesis contributions are highlighted in Section 7.1 while the list of publications
(directly or indirectly) related to this thesis is reported in Section 7.2. Future lines of research
are discussed in Section 7.3.

7.1 THESIS CONTRIBUTIONS

In order to achieve the thesis objectives, four main categories of contributions can be
distinguished, which are presented in the following:

• Reference model: the design of FDI techniques integrated with a triangular reference
model structure allows the fault detection and isolation when the faults do not occur
simultaneously. The proposed reference model has a degree of freedom (given by the
matrix Q) which facilitates the achievement of a desired sensitivity to faults. Also, one
may consider a situation where there exist more faults than the number of measurements
(i.e., when nf = 2n + 1). This usually occurs when all sensors and actuators can be
subject to faults (SCHONS et al., 2020a, 2020b) as shown in Chapters 4, 5 and 6.

• Linear Matrix Inequality Framework: the proposed residual generator design condi-
tions described in terms of LMI constraints made possible to consider mixed performance
specifications and different classes of systems in a unified mathematical formalism.

• Descriptor models: the main characteristic of a descriptor structure is the inclusion of
algebraic constraints in the state and/or output equations, which is particularly interesting
when modeling electric or mechanical systems; see, e.g., (BELOV et al., 2018). The
proposed LMI conditions for descriptor systems do not impose any additional conservatism
to the residual generator design when compared to the results derived for standard state
space representations (thanks to the model transformation given in Chapter 5).

• Application to the FDI problem of two Li-Ion batteries connected in series: In
Chapter 6, the H∞/H– result established in Chapter 5 is employed to the FDI problem of
two batteries in series, showing that the proposed solution can be successfully considered
for practical-oriented applications.
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7.2 LIST OF PUBLICATIONS

In the following, the publications directly and indirectly connected to the scope of this
thesis are presented. In particular, the publications P3 and P4 will be instrumental to the
extension of proposed results to nonlinear systems as discussed in Section 7.3.

P1 D. Coutinho, S. Schons, M. Kinnaert and C.E. de Souza, "H∞ Filter Design for a Class of
Discrete-time Nonlinear Descriptor Systems". In 2019 IEEE 58th Conference on Decision
and Control (CDC). Nice, France, pp. 623-628.

Main contribution: as this work was motivated by state observation of lithium-ion
battery packs, nonlinearities in both state and output equations were considered, as well
as the inclusion of a nonlinearity in the matrix coefficient of the one-step-ahead state
vector.

P2 L.D. Couto, S. Schons, D. Coutinho and M. Kinnaert, "A Descriptor Modelling Approach
for the Observer Design of Interconnected Li-ion Batteries Using Limited Measurements".
In 2019 15th Advanced Control and Diagnosis (ACD). Bologna, Italy.

Main contribution: a framework that allows for state estimation of series or parallel
arrangements of battery cells is presented. Besides, a robust LMI-based descriptor observer
that minimizes the peak norm between current or voltage discrepancies and a given
performance variable is designed.

P3 D. Coutinho, S. Schons, L.D. Couto and M. Kinnaert, ”Robust observer design for
discrete-time locally one-sided Lipschitz systems". European Journal of Control, 53:43-
51, 2020.

Main contribution: the design of a robust state observer for one-sided Lipschitz non-
linear discrete-time systems with nonlinear state and output equations, minimizing an
upper-bound on the `∞-induced system norm from the disturbance input to the error
system performance output.

P4 S. Schons, D. Coutinho and M. Kinnaert, "H–/H∞ Reference Model-based Fault Detec-
tion and Isolation for Discrete-time Systems". In 2020 28th Mediterranean Conference
on Control and Automation (MED). Saint-Raphaël, France, pp. 272-277.

Main contribution: an H–/H∞ FDI is designed considering a triangular reference model
structure with fixed dynamics. The filter design is cast in terms of LMI constraints.

P5 L.D. Couto, S. Schons, D. Coutinho and M. Kinnaert, "Observer design for the series
interconnection of Li-ion battery cells subject to reduced voltage information". In Pro-
ceedings of the ASME Dynamic Systems and Control Conference. Pittsburgh, PA, USA,
2020.
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Main contribution: The lithium-ion battery pack model is formulated as a descriptor
system subject to limited voltage and temperature measurements. The proposed state
observer is able to estimate the state of each individual cell, including state of charge
and inner temperature, as well as the unmeasured voltages.

P6 S. Schons, D. Coutinho and M. Kinnaert. "Reference Model-based Fault Detection and
Isolation for Discrete-time Systems Subject to Persistent Disturbances". In 2020 23th
Automatic Brazilian Congress. Porto Alegre, Brazil.

Main contribution: a robust H–/peak-norm filter is designed in order to guarantee fault
detection and isolation for linear discrete-time systems. This paper considers a triangular
reference model structure with partially fixed dynamics, which allows one to consider a
situation where more faults than the number of measured system outputs are present.
Finally, the problem is cast in terms of LMI constraints.

P7 D. Coutinho, C. E. de Souza, M. Kinnaert and S. Schons, "Robust observer design
for a class of discrete-time nonlinear singular systems with persistent disturbances".
International Journal of Adaptive Control and Signal Processing, 35:51–68, 2021.

Main contribution: by designing a state observer, an upper bound is minimized on a
peak-to-peak performance index relating the disturbances/parametric uncertainties and
a given observer performance signal while guaranteeing regional input-to-state stability
of the estimation error dynamics. Besides, an estimate of the reachable set for the
estimation error system is provided.

7.3 FUTURE RESEARCH

This work has covered state estimation and FDI techniques applied to linear discrete-
time systems. Additionally, the state estimation problem of nonlinear (possibly uncertain)
discrete-time systems has also been the subject of research as reported in publications P3 and
P7 in the latter Section, which are summarized in Appendices C and D for completeness. In
particular, (COUTINHO et al., 2020) proposed LMI-based conditions to the design of robust
nonlinear observers for standard discrete-time one-sided Lipschitz systems, while (COUTINHO
et al., 2019) addressed the problem of H∞ filtering for nonlinear discrete-time descriptor
systems locally satisfying Lipschitz-like conditions.

Therefore, following the same route of results presented in Chapters 4 and 5, future
research will be focused on deriving FDI designed methods to (uncertain) nonlinear systems.
A key issue to be better studied is how to define the reference model, since a linear reference
model might be unsuitable or lead to conservative results.

Regarding the application on battery-packs, the extension of the work to a battery
pack made of an arbitrary number of cells in series/parallel arrangement and handling actuator,
sensor and internal faults simultaneously would be the ultimate goal. Therefore, future research
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will focus on reach this objective with a minimal number of sensors or with an instrumentation
having the lowest cost.
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APPENDIX A – PROOF OF THEOREM 1

This appendix presents the proof of Theorem 1, where an H–/H∞ approach is designed
with the view to guarantee fault detection and isolation for a class of linear discrete-time
systems. Therefore, firstly, consider the LMI in (87) (Subsection 4.2.1). Notice from the block
(3, 3) that the inequality

K + K T – P1 > 0

is obtained. Since P1 > 0, it follows that K is full rank. In addition, taking the inequality in
(48) into account, the following holds:

9P1 ∗ ∗ ∗
0 9γw Inw ∗ ∗

KA 9 LkC KBw 9 LkDw 9KP91
1 K ∗

Cr C Cr Dw 0 9Q̄

 < 0, (196)

Next, pre- and post-multiplying the above matrix inequality by

diag{Inx , Inw , P1K 91, Inf }

and its transpose, respectively, and then by applying the Schur’s complement leads to:
9P1 0

0 9γw Inw

 +

 (A 9 LC)T

(Bw 9 LDw )T

P1
[
(A 9 LC) (Bw 9 LDw )

]

+

 (Cr C)T

(Cr Dw )T

QT Q
[
Cr C Cr Dw

]
< 0 (197)

Hence, pre- and post-multiplying (197) by [x̃ T wT ]T and its transpose yields the
inequality given in (42) and thus the unforced system in (35) is asymptotically stable and the
condition (ii) of Theorem 1 is satisfied, which means that ‖Gwr‖2∞ ≤ γw .

Now, suppose that the LMI in (57) (Subsection 4.2.2) is satisfied. Then, the following
condition can be obtained:

Ω < 0, Ω =

 P21 9 K 9 K T ∗
P22 9 MK 9 K T

a P23 9 K T
b 9 K T

b

 , (198)

or equivalently K2 + K T
2 9 P2 > 0, where K2 and P2 are as defined in (54). Hence, from the

fact that P2 > 0, it follows that K2 is full rank. Taking the fact that

P2 9 K2 9 K T
2 ≥ 9K2P91

2 K T
2 ,

it turns out that the LMI in (57), with the block Ω as defined in (198) being replaced by

9K2P91
2 K T

2 ,
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holds. Thus, pre- and post-multiplying the resulting matrix inequality by

diag{Ina , Inf , P2K 91
2 , Inf }

and its transpose, respectively, yields:9P2 0
0 9γf Im

 +

ĀT

B̄T

P2
[
Ā B̄

]
+

C̄T

D̄T

QT Q
[
C̄ D̄

]
< 0 (199)

from the Schur’s complement. Further, pre- and post-multiplying (199) by [x̄T f T ]T and its
transpose, respectively, leads to the inequality in (133). Hence, it follows from the bounded
real lemma that the condition (iii) of Theorem 1 is satisfied, i.e., ‖Gfer

‖2∞ ≤ γf .
Finally, the condition (iv ) of Theorem 1, i.e., ‖Gf r̆‖2– ≥ γc , follows straightforwardly

from the LMI in (61) (Subsection 4.2.3) and (LI, X.; LIU, H., 2013), which completes the
proof.
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APPENDIX B – PROOF OF THEOREM 2

The proof of Theorem 2 is presented in this appendix, where a mixed H–/peak-norm
approach is considered to design a residual based observer for the fault detection and isolation
of linear discrete-time systems.

Firstly, consider the LMI in (??) (Subsection 4.3.1). From the block (1, 1), it follows
that

K + K T 9 P1 > 0,

which implies that K is full rank since P1 > 0. In addition, by noticing that

(K 9 P1)P91
1 (K 9 P1)T ≥ 0,

the following holds:
P1 9 K 9 K T ≥ 9KP91

1 K T , (200)

for any nonsingular matrix K . As a result, the following inequality holds:
9KP–1

1 K KA9LkC Bw 9LkDw

∗ 9(1 9 τ1)P1 0

∗ ∗ 9τ1Inw

< 0. (201)

Next, pre- and post-multiplying the above by

diag{P1K 91, Inx , Inw }

and its transpose, respectively, and then applying the Schur’s complement leads to:9P1 KA9LkC

∗ 9(1 9 τ1)P1

 9
(Bw 9 LkDw )T

0

 τ1Inw

[
(Bw 9 LkDw ) 0

]
< 0. (202)

Thus, by pre- and post-multiplying (202) by [x̃ T wT ]T and its transpose, yields the inequality
in (79) (Subsection 4.3.1). Hence, the condition

‖Gwr‖peak ≤

√
1 + ρ1
η1

(203)

is satisfied and the error system is locally ISS stable.
Now, suppose that the LMI in (94) (Subsection 4.3.2) is satisfied. Then, the following

condition can be obtained:

Ω < 0, Ω =

ω11 ω12
∗ ω22

 , (204)

or equivalently K2 + K T
2 9 P2 > 0, where K2 and P2 are as defined in (54) (Subsection 4.2.2).

Hence, from the fact that P2 > 0, it follows that K2 is full rank. Accounting for the fact that

P2 9 K2 9 K T
2 ≥ 9K2P91

2 K T
2 ,
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it turns out that the LMI in (94) (Subsection 4.3.2), with the block Ω as defined in (204)
being replaced by

9K2P91
2 K T

2 ,

holds. Thus, pre- and post-multiplying the resulting matrix inequality by

diag{P2K 91
2 , Ina , Inf }

and its transpose, respectively, yields9P2 0
0 9(1 9 τ2)P21

 +

ĀT

B̄T

P2
[
Ā B̄

]
9

C̄T

D̄T

 τ2Inf

[
C̄ D̄

]
< 0 (205)

from the Schur’s complement. Further, pre- and post-multiplying (205) by [x̄T f T ]T and its
transpose, respectively, leads to the inequality in (90) (Subsection 4.3.2). Hence, it follows
that

‖Gfer
‖peak ≤

√
1 + ρ2
η2

(206)

holds.
Finally, ‖Gf r̆‖2– ≥ γc follows straightforwardly from the LMI in (61) (Subsection 4.2.3)

and (LI, X.; LIU, H., 2013), which completes the proof.
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APPENDIX C – STATE ESTIMATION OF NONLINEAR DISCRETE-TIME
SYSTEMS

In this appendix, a robust nonlinear observer design technique is proposed for a class of
nonlinear one-sided Lipschitz discrete-time systems, where both state and output equations are
nonlinear functions of the state, inputs and parameter uncertainties. This result was published
as a journal paper and is summarized in this appendix. The reader may follow (COUTINHO
et al., 2020) for the main results proofs and further details.

C.1 PROBLEM STATEMENT

Consider the following class of discrete-time systems:

x(k + 1) = Ax(k ) +
n∑

i=1
Fiφi (x , u, w , θ) + Buu(k ) + Bww(k ), (207a)

y (k ) = Cx(k ) +
n∑

i=1
Hiφi (x , u, w , θ) + Duu(k ) + Dww(k ), (207b)

where θ ∈ Θ ⊂ Rnθ is the vector of uncertain (possibly time-varying) parameters, φi :
X ×U×V×Θ→ Rni , i = 1, . . . , n, are nonlinear vector functions satisfying the conditions for
uniqueness and existence of a solution to (207), and A, F1, . . . , Fn, Bu, Bv , C, H1, . . . , Hn, Du

and Dv are given real matrices with appropriate dimensions. X ,U ,V and Θ are compact
domains and, for simplicity of presentation, the domains X ,V and Θ are assumed to contain
their origins.

Moreover, consider the following assumptions with respect to system (207):

A1 The pair (A, C) is detectable.

A2 φi (0, 0, 0, θ) = 0, i = 1, . . . , n, for all θ ∈ Θ.

A3 There exist matrices Mi ∈ Rnx×ni , Qi = Qi
T ∈ Rnx×nx , Q̄i = Q̄i

T ∈ Rnv×nv , Q̆i =
Q̆i

T ∈ Rnθ×nθ , Ri = Ri
T ∈ Rnx×nx , R̄i = R̄i

T ∈ Rnv×nv , R̆i = R̆i
T ∈ Rnθ×nθ , and

real scalars si , i = 1, . . . , n, such that the following holds for all x , x̂ ∈ X , u ∈ U ,
w ∈ W , θ ∈ Θ and i = 1, . . . , n:(
φi (x , u, w , θ) 9 φi (x̂ , u, 0, 0)

)T Mi
T (x 9 x̂) ≤

‖Qi
1/2(x 9 x̂)‖2 + ‖Q̄i

1/2w‖2 + ‖Q̆i
1/2θ‖2, (208)

‖φi (x , u, w , θ) 9 φi (x̂ , u, 0, 0)‖2 ≤ ‖Ri
1/2(x 9 x̂)‖2 + ‖R̄i

1/2w‖2+

‖R̆i
1/2θ‖2 + si

(
φi (x , u, w , θ) 9 φi (x̂ , u, 0, 0)

)T Mi
T (x 9 x̂). (209)

A4 There exist positive scalars mw and mθ such that

w ∈ W := {w ∈ Rnw : wT w ≤ mw } (210)
θ ∈ Θ := {θ ∈ Rnθ : θTθ ≤ mθ} (211)
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Remark 6 The inequalities in (208) and (209) are respectively local versions of the one-sided
Lipschitz condition and quadratic inner bound property (for more details, see (ABBASZADEH,
M.; MARQUEZ, H. J., 2010)), which provide a tighter upper bound on ‖φi (x , u, w , θ) 9
φi (x̂ , u, 0, 0)‖ when compared to a standard locally Lipschitz condition. This point of view
can be demonstrated by combining (208) and (209), which leads to:

‖φi (x , u, w , θ) 9 φi (x̂ , u, 0, 0)‖2 ≤ ‖Ri
1/2(x 9 x̂)‖2 + si‖Qi

1/2(x 9 x̂)‖2

+ ‖R̄i
1/2w‖2 + si‖Q̄i

1/2w‖2

+ ‖R̆i
1/2θ‖2 + si‖Q̆i

1/2θ‖2 (212)

≤ ‖Si
1/2(x 9 x̂)‖2 + ‖S̄i

1/2w‖2 + ‖S̆i
1/2θ‖2 (213)

where Si = Ri + |si |Qi , S̄i = R̄i + |si |Q̄i , S̆i = R̆i + |si |Q̆i . Therefore, the combination of one-
sided Lipschitz condition with quadratic boundedness, given by the right-hand side of (212),
leads to a tighter upper bound on ‖φi (x , u, w , θ) 9 φi (x̂ , u, 0, 0)‖ than the one provided by
the standard Lipschitz condition given in (213). This fact makes one-sided Lipschitz conditions
potentially less conservative than the traditional Lipschitz formulations.

Thus, the idea is to design a nonlinear observer for the system in (207) which ensures
that the estimation error system is locally input-to-state stable (ISS) while attenuating the
effect of the disturbances and parameter uncertainty on the error.

In order to obtain an estimate x̂ of x , consider the following nonlinear observer:

x̂(k + 1) = Ax̂(k ) +
n∑

i=1
Fi φ̂i (k ) + Buu(k ) + L(y (k ) 9 ŷ (k )), (214a)

ŷ (k ) = Cx̂(k ) +
n∑

i=1
Hi φ̂i (k ) + Duu(k ), (214b)

where L ∈ Rnx×ny is to be designed and

φ̂i (k ) = φi (x̂ , u, 0, 0), i = 1, . . . , n. (215)

Furthermore, consider the estimation error defined in (34) (Section 4.1). Besides, let
X̃ be the set induced by

X̃ :=
{
x̃ ∈ Rnx : x̃ = x 9 x̂ , x , x̂ ∈ X

}
. (216)

Then, the estimation error dynamics is given by

x̃(k + 1) = (A 9 LC)x̃(k ) +
n∑

i=1
(Fi 9 LHi )φ̃i (k ) + (Bw 9 LDw )w , x̃0 = x(0) 9 x̂(0), (217)

where x̃ ∈ X̃ and

φ̃i = φi (x , u, w , θ) 9 φi (x̂ , u, 0, 0), i = 1, . . . , n. (218)
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In order to obtain a numerically tractable solution for the observer in (214) locally
ensuring the ISS stability of the estimation error system while guaranteeing a peak-to-peak
performance with respect to exogenous signals and parameter uncertainty, consider the following
augmented disturbance input:

wa(k ) =
1√
m

w
θ

 , m = mw + mθ, wa ∈ Rnwa , nwa = nw + nθ, (219)

and the following performance output

e(k ) = Cex̃(k ) + Dwawa(k ), (220)

where e ∈ Rne and Ce, Dwa are given real matrices with appropriate dimensions. From (210),
(211) and (219), one can notice that the augmented disturbance vector wa belongs to the
following set:

Wa := {wa ∈ Rnwa : wa
T wa ≤ 1}. (221)

Thus, considering the following system with the output given by (220)

x̃(k + 1) = (A 9 LC)x̃(k ) +
n∑

i=1
(Fi 9 LHi )φ̃i (k ) + Bwawa(k ), (222)

with
Bwa =

[
(Bw 9 LDw ) 0

]
,

the peak norm of the error dynamics can be defined as follows:

‖Gwae‖peak = sup {‖e(k )‖∞, wa ∈ Wa, k ≥ 0, x̃0 = 0}. (223)

The notion of input-to-state stability used in this work consider the following definition
which is consistent with the definition of ISS systems introduced in (Z. P. JIANG; Y. WANG,
2001).

Definition 5 The equilibrium point x̃(k ) = 0 of system in (222) is said to be locally ISS,
if there exist sets R ⊂ X̃ and R0 ⊆ R such that, for any x̃(0) ∈ R0 and wa ∈ Wa,
x̃(k ) remains confined to R, for all k ≥ 0. Moreover, if wa(k ) vanishes as k → ∞ then
x̃(k ) k→∞−→ 0.

Hence, the following problems will be addressed in next section:

• For a given set R0 (called the set of admissible initial conditions), determine the gain L
such that the error system in (222) is locally ISS;

• For a given performance output as in (220), determine the gain L such that the error
system in (222) is locally ISS while minimizing an upper bound γ on ‖Gwe‖peak.
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C.2 OBSERVER DESIGN

Consider the system defined in (222), the assumptions A1-A4, and the sets X̃ and
Wa as defined in (216) and (221), respectively. Suppose there exist a Lyapunov function

V (x̃) = x̃T Px̃ , P > 0, (224)

and a real scalar τ ∈ (0, 1) such that the following conditions hold

∆V (x̃) ≤ τ(wa
T wa 9 V (x̃)) and R ⊂ X̃ , (225)

for all x̃ ∈ X̃ , wa ∈ Wa and k ≥ 0. Then, the origin of system (222) is locally ISS and the
region

R :=
{
x̃ ∈ Rnx : V (x̃) = x̃T Px̃ ≤ 1

}
(226)

is a positively invariant set. Moreover, if there exists an integer k0 such that wa(k ) ≡ 0, for
all k ≥ k0, then x̃(k )→ 0 as k →∞.

It turns out that the conditions in (225) provide an estimate R of the error system
reachable set as well as a bound on the norm of x̃(k ) as detailed below:

λx̃T x̃ ≤ V (x̃) ≤ 1 ⇒ ‖x̃(k )‖ ≤
√

1
λ

, ∀ k ≥ 0,

where λ is the smallest eigenvalue of P.
Hence, with the view to derive an upper bound γ on ‖G‖peak, consider the following

constrained inequality:

eT e ≤ γ2, ∀ (x̃ , wa) : x̃ ∈ R, wa ∈ Wa. (227)

Applying the S-Procedure, the following inequality is a sufficient condition for (227) to hold:

β1V (x̃) + β2wa
T wa 9 eT e ≥ 0, γ =

√
β1 + β2, (228)

with β1 and β2 being positive scalars to be determined.
Next, taking into account the estimation error, conditions (208) and (209), for i =

1, . . . , n, can be recast as follows:

(Mi φ̃i )
T x̃ ≤ ‖Qi

1/2x̃‖2 + ‖Ji
1/2wa‖2 (229)

φ̃T φ̃ ≤ ‖Ri
1/2x̃‖2 + ‖Ti

1/2wa‖2 + si (Mi φ̃)T x̃ (230)

where
Ji = m × diag{Q̄i , Q̆i } and Ti = m × diag{R̄i , R̆i }.

Besides, to derive numerically tractable solutions, the state error domain X̃ is constrained to
be the following polytopic set containing the origin:

X̃ :=
{
x̃ ∈ Rnx : aj

T x̃ ≤ 1, j = 1, . . . , nf
}

, (231)

where a1, . . . , anf ∈ Rnx define the nf faces of X̃ .
Therefore, the following theorem can be established:
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Theorem 5 Consider the error system in (222) satisfying the conditions given in (229) and
(230). Let X̃ and τ be respectively a given polytopic set as defined in (231) and a given scalar
belonging to the interval (0, 1). Suppose there exist matrices P = PT , G, K and positive
scalars µi and ρi , i = 1, . . . , n, such that the following holds:1 aj

T

aj P

 > 0, j = 1, . . . , nf , (232)
ΩP +Ωµ +Ωρ ΥT

Υ P 9 G 9 GT

 < 0, (233)

where

ΩP = diag
{
(τ 9 1)P, 0n1, . . . , 0nn , 9τInwa

}
,

Ωµ =



∑n
i=1 µiQi ? · · · ? 0

90.5µ1M1
T 0 · · · 0 0

... ... . . . ... ...
90.5µnMnT 0 · · · 0 0

0 0 · · · 0
∑n

i=1 µiJi


, (234)

Ωρ =



∑n
i=1 ρiRi ? · · · ? 0

0.5ρ1s1M1
T 9ρ1In1 · · · 0 0

... ... . . . ... ...
0.5ρnsnMnT 0 · · · 9ρnInwa

0
0 0 · · · 0

∑n
i=1 ρiTi


,

Υ =
[
(GA 9 KC) (GF1 9 KH1) · · · (GFn 9 KHn)

[√
m(GBv 9 KDv ) 0

]]
.

Then, the equilibrium point x̃ = 0 of the error system in (222), with L = G91K , is locally ISS
and the error trajectory x̃(k ) driven by any x̃(0) ∈ R and wa ∈ Wa remains bounded to R,
for all k ≥ 0, where R is as defined in (226).

Theorem 5 can be applied in several ways. For instance, an optimized estimate R of
the error system reachable set can be determined for a given set of admissible initial conditions.
Hence, assume that

R0 :=
{
x̃ ∈ Rnx : x̃T P0x̃ ≤ 1

}
, R0 ⊆ R, (235)

is the set of admissible initial conditions, where P0 > 0 is a given matrix defining the size and
shape of R0, and let λ be a positive scalar such that

P 9 λInx ≥ 0. (236)

Hence, the following optimization problem provides an optimized estimate R of the
error system reachable set

max
P,G,...,ρn,λ,τ

λ : P0 9 P ≥ 0, subject to (232), (233) and (236). (237)
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Notice in the above optimization problem that the condition in (233) is not jointly
convex with respect to τ and P. To overcome this problem, a bisection algorithm can be applied
taking into account that τ ∈ (0, 1). In addition, it turns out that λ91 is an upper-bound of
‖x̃(k )‖2∞, by noting that

λx̃T x̃ ≤ x̃T Px̃ ≤ 1 ⇒ ‖x̃(k )‖2 ≤ 1
λ

, ∀ k ≥ 0. (238)

In other words, the optimization problem in (237) provides an observer which minimizes
sup ‖x̃(k )‖∞ while providing an optimized estimate of the error system reachable set ensuring
the local input-to-state stability of the error system origin.

Next, if it is of interest to design the observer such that ‖G‖peak is minimized consider
the following result.

Theorem 6 Consider the performance output as defined in (220) and the error system in
(222), satisfying (229) and (230). Let X̃ , R0 and τ be respectively a given polytopic set as
in (231), a given set of admissible initial errors as in (235) and a given scalar belonging to the
interval (0, 1). Suppose there exist matrices P = PT , G, K and positive scalars λ,β,β1,µi
and ρi , i = 1, . . . , n such that the conditions (232), (233), (236) and the following hold:

P0 9 P ≥ 0, (239)
P 0 CeT

0 βInwa
Dwa

T

Ce Dwa β1Ine

 ≥ 0. (240)

Then, the following holds for the error system in (222) with L = G91K :

(i) for any x̃(0) ∈ R0 and wa ∈ Wa, x̃(k ) ∈ R for all k ≥ 0, where R is as defined in
(226); and

(ii) ‖G‖2peak ≤ β1(1 + β).

In order to derive an observer as in (214), which guarantees that the error trajectory
is confined to the set R, for all k ≥ 0, while minimizing an upper bound γ on ‖G‖peak, the
following optimization problem is proposed:

min
P,G,...,ρn,β,β1,τ

(β + β1) : subject to (268), (269), (239) and (240). (241)

Similarly to the optimization problem proposed in (237), a bisection algorithm can be ap-
plied over τ ∈ (0, 1) to obtain an optimized solution. Notice that the above optimization
approximately minimizes the value of γ = β1 + β1β in order to simplify a numerical solution.
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C.3 ILLUSTRATIVE EXAMPLE

To demonstrate the effectiveness of the proposed state estimator, consider the following
nonlinear discrete-time oscillator subject to a multiplicative noise measurement:

x1(k + 1) = 1.9x1(k ) + x2(k ) 9 x1(k )3 + u(k )

x2(k + 1) = 0.5x2(k )

y (k ) = x1(k ) + 0.1x1(k )v (k )

(242)

where v (k ) is such that v (k )2 ≤ 1, ∀ k ≥ 0. With respect to (242), it is assumed that

u(k ) = 92y (k ) + y (k )3,

which guarantees the local stability of the closed-loop system for all x(k ) belonging to the
following set:

X = {x ∈ R2 : |xi | ≤ 1, i = 1, 2}. (243)

Hence, by defining

φ1(k ) = 9x1(k )3 and φ2 = x1(k )v (k ),

the following bounds can be obtained for φ̃1(k ) and φ̃2(k )

i φ̃1MT
1 x̃ ≤ 0, φ̃2

1 ≤ s1φ̃1MT
1 x̃ ; and

ii φ̃2
2 ≤ R̄2v2,

where M1 = [ 1 0 ]T , s1 = 91 and R̄2 = 1.
In this example, an observer is derived for the system defined in (242), which minimizes

‖G‖peak assuming the following output performance

e(k ) = x1(k ) 9 x̂1(k ) (244)

by means of optimization problem proposed in (241). Then, by setting

R0 = {x̃ ∈ R2 : 3 x̃T x̃ ≤ 1},

the following results were obtained:

P =

 1.1050 90.3563
90.3563 2.9330

, L =

1.5215
0.0607

, τ = 0.08, γ = 0.9704.

Figure 10 shows the estimation R of the reachable set and the set of admissible initial errors
R0 as well as the phase portrait of the error system considering the following assumptions:

• Initial conditions x(0) = [90.10 0.56 ]T and x̂(0) = [ 0 0 ]T ; and
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Figure 10 – A bounded error trajectory (dashed line) with representation of the sets R and
R0.

• An uniformly distributed pseudo random sequence v (k ) such that v2(k ) ≤ 1, for all
k ≥ 0.

This result demonstrates the effectiveness of the proposed observer, which designed
conditions ensure that the error trajectory is locally bounded while providing an estimate of the
error system reachable set with a guaranteed peak-to-peak performance. A comparative analysis
between the result presented in Figure 10 and the method proposed by (BENALLOUCH et al.,
2012) is made in (COUTINHO et al., 2020).
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APPENDIX D – STATE ESTIMATION OF NONLINEAR DISCRETE-TIME
DESCRIPTOR SYSTEMS

This chapter presents the summary results from the published paper (COUTINHO et al.,
2019). Here, a convex technique is proposed to the design of standard H∞ nonlinear observer-
like filters for a class of nonlinear discrete-time descriptor systems. Consider the following
specifications with respect to the system of interest:

• nonlinearities in the state and the output equations; and

• for the sake of generality, a nonlinearity in the matrix coefficient of the one-step-ahead
state vector is included.

Therefore, consider the following class of nonlinear discrete-time descriptor systems:

Ex(k + 1) = Ax(k ) + (1 + δ)Buu(k ) + Bv v (k ) + Fφ(x(k + 1), x(k ), u(k )), (245a)
y (k ) = Cx(k ) + (1 + δ)Duu(k ) + Dv v (k ) + Hψ(x(k ), u(k )), (245b)
x(0) = x0, (245c)

where x ∈ X ⊂ Rnx is the state, u ∈ U ⊂ Rnu is the control input, y ∈ Rny is the
measurement output, v ∈ V ⊂ `nv

2 is the disturbance input, φ ∈ Rnφ and ψ ∈ Rnψ are
known nonlinear functions and E , F and H are known constant real matrices with appropriate
dimensions, with `nv

2 denoting the space of square summable nv -dimensional vector sequences
over [0,∞) with norm ‖(·)‖2 =

√
(·)T (·). The additional terms involving the real scalar δ are

introduced here to account for a possible model uncertainty with respect to the input u(k ).
Besides the assumptions A1-A3 in Chapter 5 with respect to the class of linear discrete-time
descriptor systems in (104), the following conditions are assumed with respect to system (245):

A4 There exist compact sets R ⊆ X and V such that for all k ≥ 0, it holds that x(k ) ∈ R
for any x0 ∈ R, u ∈ U and v ∈ V .

A5 There exist real matrices M, N and Y with appropriate dimensions such that:

‖φ(ξ1, ζ1, u) 9 φ(ξ2, ζ2, u)‖ ≤ ‖M(ξ1 9 ξ2) + N(ζ1 9 ζ2)‖, (246a)
‖ψ(ζ1, u) 9ψ(ζ2, u)‖ ≤ ‖Y (ζ1 9 ζ2)‖, (246b)

for all ξ1, ξ2, ζ1, ζ2 ∈ X and u ∈ U .

Assumption A4 guarantees that the system state trajectory is bounded in the domain
of interest, and A5 stands for a matrix version of standard local Lipschitz conditions. Inspired
by (WANG, Z. et al., 2012), notice from A2 that there exist matrices T ∈ Rnx×nx and
R ∈ Rnx×ny such that

TE + RC = Inx . (247)
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From now on, the dependence on k of the discrete-time representation in (245) will be
often omitted to simplify the notation. Then, taking (247) into account, the system (245) can
be cast as follows:

x+ = TAx + (1 + δ)TBuu + TFφ(x+, x , u)+TBv v + Ry+ 9 (1 + δ)RDuu+

9RHψ(x+, u+) 9 RDv v+,

y = Cx + (1+δ)Duu + Hψ(x , u) + Dv v .

(248)

In view of the standard state-space representation (248) of the system defined in (245),
the following state observer is proposed:

x̂+ = TAx̂ + TBuu + TF φ̂ + Ry+ + L(y 9 ŷ ) 9 RDuu+ 9 RHψ̂+,

ŷ = Cx̂ + Duu + Hψ̂,

x̂(0) = 0,

(249)

where φ̂ := φ(x̂+, x̂ , u), ψ̂ := ψ(x̂ , u), x̂ ∈ Rnx is the estimate of x , and L ∈ Rnx×ny ,
T ∈ Rnx×nx and R ∈ Rnx×ny are matrices to be determined.

Now, let
x̃ := x 9 x̂ (250)

be the estimation error vector. It is assumed that x̃ ∈ X̃ with X̃ being a compact set containing
x̃ = 0. Then, taking (248)-(250) into account, the dynamics of x̃ can be cast as follows: x̃+ = (TA 9 LC)x̃ + TF φ̃ 9 RHψ̃+

9 LHψ̃ + B̃w ,

x̃(0) = x0,
(251)

where

φ̃ = φ(x+, x , u) 9 φ(x̂+, x̂ , u),

ψ̃ = ψ(x , u) 9ψ(x̂ , u),

ψ̃
+ = ψ(x+, u+) 9ψ(x̂+, u+), (252)

B̃ =
[
9δRDu δ(TBu 9 LDu) 9RDv (TBv 9 LDv )

]
,

w =
[
(u+)T uT (v+)T vT

]T
,

with w ∈ Rnw and nw =2(nu +nv ).
In order to obtain numerically tractable conditions for designing the gain L of the

observer-based filter in (249), consider the following additional assumptions:

A6 w ∈ W(t ,µ), where

W(t ,µ) :=

w(k ) ∈ Rnw, k ∈ [0, t ] :
t∑

i=0
wT (i)w(i) ≤ µ

 , (253)

with t and µ being respectively a given positive integer and a given positive real scalar.
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A7 x0 ∈ R0, where
R0 :=

{
x ∈ Rnx : xT P0x ≤ 1

}
, (254)

with P0 > 0 being a given real matrix defining the size and shape of R0.

Observe from assumption A5 that the following holds with respect to the nonlinear
functions appearing in the error system in (251):

‖ φ̃ ‖≤‖Mx̃+ + Nx̃ ‖,

‖ ψ̃ ‖≤‖Y x̃ ‖, ‖ ψ̃+‖ ≤ ‖Y x̃+‖, (255)

for all x̃+ ∈ X̃ and x̃ ∈ X̃ .
Next, let

e = Cex̃ + Dψψ̃ + Dww , e ∈ Rne , (256)

where Ce, Dψ and Dw are given real matrices with appropriate dimensions, be the performance
output of the error system, and consider the following system norm definition:

‖Gwe‖∞,[0,t ] := sup
0 6≡ w ∈ W(t ,µ)

x0 = 0

‖e‖[2,[0,t ]
‖w‖2,[0,t ]

, (257)

where
‖(·)‖2,[0,t ] =

√∑t
k=0(·)T (·) .

Remark 7 The performance output as defined in (256) is a function of the error system
nonlinearities in order to cope with more general performance signals. Such a term arises, for
instance, if it is of interest to consider the output estimation error ỹ := y –ŷ as the performance
output.

Therefore, the problem of concern is to determine the matrices L, T and R of the filter
in (249) such that the error dynamics is bounded in a finite horizon [0, t ] while guaranteeing a
prescribed (or optimized) upper-bound γ on ‖Gwe‖∞,[0,t ].

Remark 8 The proposed observer-based filter in (249) provides an estimate x̂(k ) of x(k )
based on the measurements {y (i), u(i), i =0, 1, . . . , k }. For implementation purposes, x̂(k ) can
be obtained from the following recursive equations:

f (k ) = (TA 9 LC)x̂(k 9 1) + (TBu 9 LDu)u(k 9 1) + Ry (k ) + Ly (k 9 1) (258)
9LHψ̂(k 9 1) 9 RDuu(k ),

x̂(k ) 9 TF φ̂(k 9 1) + RHψ̂(k ) = f (k ), (259)

where

φ̂(k 9 1) = φ(x̂(k ), x̂(k 9 1), u(k 9 1)), (260)
ψ̂(k ) = ψ(x̂(k ), u(k )). (261)
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Notice that, since φ̂(k–1) and ψ̂(k ) are nonlinear functions of x̂(k ), Eq. (259) may be nonlinear
with respect to x̂(k ). Hence, to determine x̂(k ) requires numerically solving a nonlinear equation
at each time instant, which may not be convenient. However, if φ(k –1) and ψ(k ) do not
depend on the system static state variables at time k , then (259) will be linear with respect
to x̂(k ).

Therefore, in order to derive a solution to the filter design problem, let

V (x̃) = x̃T Px̃ , P > 0, (262)

be a Lyapunov function candidate for the estimation error system defined by (251) and (256),
and consider the following dissipation inequality:

∆V (x̃(k )) + γ91e(k )T e(k ) 9 γw(k )T w(k ) < 0, (263)

where ∆V (x̃(k )) := V (x̃(k +1)) – V (x̃(k )).
Supposing that the inequality in (263) holds for all k ∈ [0, t ], then summing the

left-hand side of (263) from k = 0 to k = t yields:

V (x̃(t)) + γ91‖e‖22,[0,t ] < V (x0) + γ‖w‖22,[0,t ]. (264)

Next, assuming that w(k ) 6≡ 0 over [0, t ], the above inequality implies that the following
statements hold for any integer k ∈ [1, t ]:

(i) if the matrix P0 in (254) satisfies P0 ≥ P, then V (x̃(k )) < 1 + γµ, and thus x̃ is
bounded on the time horizon [0, t ]; and

(ii) ‖e‖22,[0,k ] < γ2‖w‖22,[0,k ] under the condition x0 = 0, implying that ‖Gwe‖∞,[0,t ] < γ.

Before introducing the next result which proposes LMI based conditions to ensure that
the above holds, consider the following polytopic inner approximation of X (i.e., P ⊆ X̃ ):

P :=
{
p ∈ Rnx : |cT

j p| ≤ 1, j = 1, . . . , m
}

, (265)

where c1, . . . , cm ∈ Rnx define the faces of P .

Theorem 7 Consider the error system in Eq. (251) under assumptions A1-A6. Let W(t ,µ),
R0 and P , as defined respectively in Eq. (253), Eq. (254) and Eq. (265), be given and γ > 0
be a given scalar. Suppose there exists real matrices P > 0, K , TK , LK and RK , and positive
scalars λ, ρ and η such that the following LMIs hold:

P0 9 P ≥ 0, (266)
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 (1 + γµ) (1 + γµ)cT
j

(1 + γµ)cj P

 ≥ 0, j = 1, . . . , m, (267)

Ω =
[
ωij

]
i ,j=1,...,10

< 0, ωij = ωT
ji , for i 6= j , (268)

subject to
TK E + RK C 9 K = 0nx , (269)

where the nonzero blocks ωij of matrix Ω are given by

ω11 = P 9 K 9 K T , ω12 = TK A 9 LK C, ω13 = TK F , ω14 = 9RK H, ω15 = 9LK H,

ω16 = B̃K , ω18 = λMT ,ω19 = ρY T , ω22 =9P, ω27 = CT
e , ω28 = λNT, ω210 =ηY T,

ω33 = 9λInφ, ω44 = 9ρInψ, ω55 = 9ηInψ, ω57 = DT
ψ, ω66 = 9γInw , ω67 = DT

w ,

ω77 = 9γIne , ω88 = 9λInφ, ω99 = 9ρInψ, ω1010 = 9ηInφ,

with
B̃K =

[
9δRK Du δ(TK Bu 9 LK Du) 9RK Dv (TK Bv 9 LK Dv )

]
.

Then, the state observer in Eq (249) with

L = K 91LK , T = K 91TK and R = K 91RK

ensures that the following holds for the estimation error system in (251) and (256):

1. For any x0 ∈ R0 and w(k ) ∈ W(t ,µ), x̃(k ) ∈ R̃ for all k ∈ [0, t ], where

R̃ :=
{
p ∈ Rnx : pT Pp ≤ 1 + γµ

}
; (270)

2. ‖Gwe‖∞,[0,t ] < γ.

The proof of Theorem 7 can be checked in (COUTINHO et al., 2019).

D.1 ILLUSTRATIVE EXAMPLE

In order to illustrate the effectiveness of the proposed technique, a numerical example
is presented. Hence, consider the following nonlinear implicit system which has been adapted
from the example in (BEIDAGHI et al., 2017) by replacing its uncertain parameter θ(k ), with
|θ(k )| ≤ 1, by the nonlinear function sin (x1) and the addition of a disturbance signal v2 in
the measured output y ∈ R: F(x+, x , u, v )

Fo(y , x , u, v )

 = 0, (271)

where x = [x1 x2 x3]T∈ R3 is the state to be estimated based on y and the input u ∈ R
which is corrupted by the exogenous disturbance v1, and v =

[
v1 v2

]T , with
F(·) =

[
FT

1 (·) FT
2 (·) FT

3 (·)
]T

,
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Fo(·) = 9y + (0.5 + 2 · 1094s(x1))x1 + 0.3x2 + 0.1v2+(0.2 9 4 · 1094s(x1))x3,

F1(·) = 9(1 + 0.01s(x1))x+
1 + (0.51 + 2 · 1093s(x1))x1

+ 0.32x2 + (0.2 9 4 · 1093s(x1))x3 + 0.01(u + v1),

F2(·) = 9(0.31 9 1 · 1093s(x1))x1 9 0.21x2 + (0.15 9 2 · 1093s(x1))x3 + 0.2(u + v1),

F3(·) = (2 · 1092s(x1) 9 1)x+
2 9 0.1x1 9 0.1x2 9 0.4x3 9 0.1(u + v1),

where s(x1) = sin(x1). It can be proved that the solution of F(x+, x , 0, v ) = 0 is regular,
causal and globally bounded.

Letting 
φ(x+, x)) = s(x1)[ x+

1 x+
2 x1 x3 ]T ,

ψ(x) = s(x1)[ x1 x2 ]T ,
(272)

the system in Eq. (271) can be written as in Eq. (245) with δ = 0 and

E =


1 0 0
0 0 0
0 1 0

 , A =


0.51 0.32 0.20
90.31 90.21 0.15
90.10 90.10 90.40

 , Bu =


0.01
0.20
–0.10

 , Bv =
[
Bu 03×1

]
,

C =


0.5
0.3
2


T

, F = 1093


910 0 2 94
0 0 1 92
0 20 0 0

 , Du = 0, H = 1094
[
2 94

]
, Dv =

[
0 0.1

]
.

It is assumed that the performance output of the error system is defined by:

e(k ) = Cex̃(k ) + Dφψ̃(k ), (273)

where x̃(k ) = x(k ) 9 x̂(k ), x̂(k ) = [ x̂1(k ) x̂2(k ) x̂3(k ) ]T , ψ̃(k ) = ψ(x)(k ) 9ψ(x̂)(k ) and

Ce =
[
0.5 0 0.1

]
, Dψ = 1094 ·

[
4 98

]
.

In order to evaluate the performance of the proposed observer design technique with
respect to exogenous disturbances, it is considered in this example that:

X =
{
x ∈ R3 : |x1| ≤ 0.5, |x2| ≤ 1, |x3| ≤ 2

}
,

U = {u ∈ R : |u| ≤ 1} and X̃ ≡ X .

Considering (272) and since |s(α)| ≤ 1, ∀ α ∈ R, it follows that the assumption A5 is
satisfied with the following matrices:

M =


1 0 0
0 1 0
0 0 0
0 0 0

 , N =


0 0 0
0 0 0
2 0 0
0 0 1

 , Y =

1 0 0
0 1 0

 .
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Assuming x0 = 0, P ≡ X and µ = 2, the following optimization problem is solved in
order to minimize an upper-bound γ on ‖Gwe‖∞,[0,t ]

min
P, K , TK , RK ,
LK , λ, ρ,η,γ

γ subject to (267), (268) and (269),

leading to the following results:

P =


88.576 35.240 95.404
35.240 20.359 90.597
95.404 90.597 0.965

, R =


0
0
5

, T =


1.000 90.0518 0.000
0.000 0.5040 1.000
92.500 90.6250 91.500

,

L =


0.9116
91.4705
90.0808

,γ = 7.1774 · 1093, λ = 0.1255, ρ = 0.7074, η = 0.0277.

For illustrative purposes, Fig. 11a shows the performance output e(k ), whereas Fig. 11b
and 11c respectively display the state errors x̃1(k ) and x̃3(k ) (it is noticed that x̃2(k ) is quite
similar to x̃1(k )) considering x0 =

[
0.075 0.1 0.2

]T ,
u(k )=0.5 sin(0.02πk ), v1(k )=0.25 sin(0.2πk ),

and with v2(k ) being a uniformly distributed random sequence over the interval [–1, 1]. Notice
the excellent performance achieved by the proposed filter despite relatively large exogenous
disturbances. This filter has been implemented considering the following recursive equations:

1. f (k ) = (TA9LC)x̂(k 91)+TFbφ̂b(k 91)+TBuu(k 91)+Ry (k )+Ly (k 91)9LHψ̂(k 9 1)9
RDuu(k );

2. x̂1(k ) = (1 + 0.01 sin(x̂1(k 9 1))91f1(k );

3. x̂2(k ) = (190.02 sin(x̂1(k 9 1))91f2(k );

4. x̂3(k ) = f3(k )9
[

0 0 1
](

RHψ̂(k ) 9 TFaφ̂a(k 9 1)
)
;

where f (k ) =
[

f1(k ) f2(k ) f3(k )
]T and

ψ̂(k ) = s(x̂1(k ))
[
x̂1(k ) x̂2(k )

]T
,

φ̂a(k 9 1)
– – –

φ̂b(k 9 1)

 = φ̂(k 9 1),
[
TFa | TFb

]
= TF ,

φ̂a(k 9 1) = s(x̂1(k 9 1))

x̂1(k )
x̂2(k )

 , φ̂b(k 9 1) = s(x̂1(k 9 1))

x̂1(k 9 1)
x̂3(k 9 1)

 .
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Noting that φ̂a(k 91) and ψ̂(k ) do not depend on the estimate x̂3(k ) of the static state
variable x3(k ), as pointed out in Remark 8, it turns out that the estimates x̂i (k ), i = 1, 2, 3,
are computed solving only linear equations. Indeed, observe that x̂3(k ) as above is given by:

x̂3(k ) = f3(k ) 9 0.001s(x̂1(k ))x̂1(k ) + 0.002s(x̂1(k ))x̂2(k )

+ 0.025s(x̂1(k 9 1))x̂1(k ) 9 0.03s(x̂1(k 9 1))x̂2(k ).

In general, the filter implementation requires numerically solving, at each time instant, a
system of algebraic nonlinear equations with respect to the state estimate. However, when the
model nonlinearities only involve the system dynamic states and the control input, the above
mentioned system of equations becomes linear and the filter lends itself to a straightforward
implementation.
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(a) Estimation error performance output.
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(c) Estimation error x̃3(k ).

Figure 11 – Estimation error.
Font: Own authorship.
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