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Abstract 36 

Indole-3-acetic acid (IAA) represents a crucial phytohormone regulating specific tropic 37 

responses in plants, and functions as a chemical signal between plant hosts and their 38 

symbionts. The Actinobacteria strain of AW22 with high IAA production ability was 39 

isolated in Algeria for the first time and was characterized as Streptomyces 40 

rubrogriseus through chemotaxonomic analysis and 16S rDNA sequence alignment. The 41 

suitable medium for a maximum IAA yield was engineered in vitro and in silico using 42 

machine learning-assisted modeling. The primary low-cost feedstocks consisted of various 43 

concentrations of spent coffee grounds (SCGs) and carob bean grounds (CBGs) extracts. 44 

Further, we combined the Box-Behnken design from response surface methodology (BBD-45 

RSM) with artificial neural networks (ANNs) coupled with the genetic algorithm (GA). The 46 

critical process parameters screened via Plackett-Burman design (PBD) served as BBD and 47 

ANN-GA inputs, with IAA yield as the output variable. Analysis of the putative IAA using 48 

thin-layer chromatography (TLC) and (HPLC) revealed RF values equal to 0.69 and a 49 

retention time of 3.711 min, equivalent to the authentic IAA. AW 22 achieved a maximum 50 

IAA yield of 188,290±0,38 µg/mL using the process parameters generated by the ANN-GA 51 

model, consisting of L-Trp, 0.6%; SCG, 30%; T°, 25,8°C; and pH, 9, after eight days of 52 

incubation. An R2 of 99,98%, adding to an MSE of 1,86x10-5 at 129 epochs, postulated higher 53 

reliability of ANN-GA-approach in predicting responses, compared with BBD-RSM 54 

modeling exhibiting an R2 of 76,28%. The validation experiments resulted in a 4,55-fold and 55 

4,46-fold increase in IAA secretion, corresponding to ANN-GA and BBD-RSM models, 56 

respectively, confirming the validity of both models.  57 
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1. Introduction  80 

Indole-3-acetic acid (IAA), or Auxin, represents a crucial endogenous phytohormone 81 

modulating a variety of key plant physiological activities, starting from its role in shaping 82 

the plant morphology to the regulation of physiological growth activities (Grones et al., 2018; 83 

Qin et al., 2020; Rakusová et al., 2019). Indeed, IAA acts as a chemical signal coordinating the 84 

specific phenotypic responses of plants to environmental stimuli. These activities include cell-85 

cell signalling, phototropism, gravitropism, thigmotropism (obstacle avoidance) and elicitation 86 

of plant defence (Gravel et al., 2007; Spaepen et al., 2007). Consequently, Auxin participates 87 

in abiotic stress alleviation (Huang et al., 2020; Zhou et al., 2020). Plants and microbes 88 

synthesize IAA via several interrelated pathways, including the tryptophan-dependent 89 

pathway (Duca and Glick, 2020). However, less information about auxin perception and 90 

signalling elucidates the accurate auxin-induced responses during plant growth (Gelová et 91 

al., 2021). Notably, multiple investigations revealed the capacity of Streptomyces sp. to 92 

synthesize physiologically active IAA to be oriented for industrial Auxin production 93 

(Boubekri et al., 2021; Myo et al., 2019). In recent investigations, economic carbon and 94 

nitrogen sources were employed as substitutes for expensive laboratory-grade medium 95 

components (Al Farraj et al., 2020; Bunsangiam et al., 2021; Lim et al., 2023). 96 

Spent coffee grounds (SCGs) constitute a brewing process's derivate, are generally 97 

considered municipal solid waste, and contain around  75% of the original coffee bean (Wu 98 

et al., 2019). SCG are toxic pollutants rich in polyphenols, flavonoids, chlorogenic acid, and 99 

protocatechuic acid. These components have an essential antioxidant activity (Esquivel et al., 100 

2012) and may disturb many life processes, adding to the massive oxygen quantity required 101 

for their decomposition (Hardgrove and Livesley, 2016; Lessa et al., 2018). Heat treatment, 102 

microbial degradation, and aerobic metabolism could considerably reduce SCG toxicity (Hao 103 
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et al., 2018). The total polysaccharides present in SCGs constitutes about 45.3% (w/w, dry 104 

weight) and are non-reducing sugars (Pasin et al., 2011). 105 

Several factors such as nutritional and physiological parameters influence microbial growth 106 

and metabolic profile including auxin production. Optimizing tools help to study the 107 

significance and interaction of these parameters on the output during the bioprocess. 108 

For this purpose, machine learning (ML) modelling methods may provide prospective 109 

substitutes for controlling or simulating targets using examples or experience (Schmidt et al., 110 

2019). Nonetheless, the microbiological behaviour and metabolic processes are highly 111 

complex, less predictable and require a broad range of experiments susceptible to several 112 

physiological as well as nutritional process parameters (Medjili et al., 2023).  113 

Modelling microbial growth and its metabolite production has recently been encouraged 114 

using empirical models, including response surface methodology (RSM) and artificial neural 115 

networks (ANNs). In media engineering, RSM constitutes a frequently exploited statistical 116 

approach for the generation of non-linear quadratic models and simultaneous bioprocesses 117 

factors optimization (Ribeiro et al., 2003; Roy et al., 2018). RSM integrates statistical and 118 

mathematical modelling into the experimental design and proceeds to treat complex data 119 

(Qin et al., 2012; Saini et al., 2020).  120 

Artificial intelligence (AI) assisted methods like ANNs are adaptable process models with 121 

several interconnected units inspired by the brain's structure. ANN exhibits excellent 122 

accuracy in simulating and modelling complex and multivariate nonlinear targets (Desai et 123 

al., 2005). The phenomenon need not be mathematically described, and ANN can manage 124 

incomplete data from inputs and outputs (Aghaeinejad-Meybodi et al., 2019). Although 125 

ANN is an efficient tool to predict and optimize in silico complex process parameters with 126 
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universal approximation capability (Desai et al., 2008), it cannot guarantee the viability of the 127 

optimal global solution (Rajendra et al., 2009). These units are called artificial neurons 128 

(Vasseghian et al., 2021). 129 

Genetic algorithm (GA) among other meta-heuristic optimization algorithms are founded on 130 

the principles of natural selection (Gherbawy et al., 2012; Jiang et al., 2014; Ousaadi et al., 131 

2021; Poh et al., 2016). These algorithms do not easily get trapped in a local minimum  132 

(Agarwal et al., 2016; Ghaedi et al., 2015a, 2015b; Jiang et al., 2014; Zhang and Pan, 2014). GA 133 

relies on the Darwinian genetic evolution principle and uses genetic operators, including 134 

selection, mutation and/or inversion, and crossover, to identify the problem’s optimal 135 

solution (Smaali et al., 2021; Yahya et al., 2020). This procedure is called the fitness function 136 

(Ghaedi and Vafaei, 2017). This operation is repeated several times over generations to 137 

generate the fittest chromosomes, constituting the solutions or the optimal operating 138 

variables for the studied bioprocess. Thus, GA represents a suitable evolutionary, adaptive 139 

optimizer often coupled with ANN and finds the precise or approximate optimal operational 140 

parameters for a single exclusive target, such as IAA production, with satisfying 141 

performance while reducing ANN complexity (Fan et al., 2018).  142 

Our primary motive resides in formulating an appropriate low-cost medium composition to 143 

achieve maximum IAA output using SCG as a feedstock substrate. This approach relies upon 144 

combining RSM with ANN-GA to determine the proper optimization of the low-cost, 145 

nutritionally adequate process parameters in submerged fermentation. The two models' 146 

predictive performance and modelling efficiencies were assessed according to the correlation 147 

coefficient (R2) with the absolute error. Variance (ANOVA) and Sensitivity analysis were 148 

conducted to examine the relative significance of inputs.   149 
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In the present study, the experimental design of Plackett-Burman (PBD) was conducted to 150 

effectively categorize the most significant process parameters impacting the fermentation 151 

process. Subsequently, determining the approximate range of the pre-identified key factors 152 

using Box-Behnken design (BBD) and establishing the regression model to measure Auxin 153 

content in a low-cost medium (Zhao et al., 2013). Finally, optimal fermentation conditions for 154 

the low-cost bioprocess for IAA production from Streptomyces sp. were optimized using 155 

ANN-GA. It is the first report on the effective valorization of SCG or CBP as media 156 

components for producing actinobacteria-originated IAA. This research sheds important 157 

light on the critical operating conditions affecting the bioprocess for the semi-pilot or large-158 

scale synthesis of agroactive compounds, including IAA, for further sustainable use in 159 

agriculture. 160 

 161 

2. Materials and methods 162 

2.1. Isolation of Streptomyces-Like isolates 163 

Actinobacteria were isolated from a semi-arid, nonsaline rhizospheric soil, collected from 164 

different wheat-growing fields in the Tiffeche Region (36° 9ʹ 24ʺ N; 7° 41ʹ 56ʺ E) of Souk-165 

Ahras Province in Algeria. Further, incubation on Starch Casein Agar agar (Starch 10 g/L, 166 

Casein 1 g/L, K2HPO4 0.5 g/L, Agar 13 g/L, pH 7.2) was carried out for 7-14 days at 28°C, as 167 

earlier suggested by (Kusuma et al., 2020). After detaching the healthy wheat roots from the 168 

soil with no visible damage, the bulk soil was withdrawn by shaking the roots. The soil that 169 

was still firmly adhered was recovered as rhizospheric soil, and it was safely transferred and 170 

stored at 4°C until use. Then, 1 g of CaCO3 was incorporated into 4-5 g of soil samples. The 171 

samples were further dried for one hour at 45°C (Suárez-Moreno et al., 2019). 28 172 

Streptomyces-like strains were isolated according to their microscopic and macroscopic 173 
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features and subsequently characterized on International Streptomyces Project media (ISP2, 174 

ISP3, and ISP4) (van der Aart et al., 2019; Yan et al., 2018). The catalase and oxidase tests and 175 

carbon source utilization were assessed, as indicated for Streptomyces-like bacteria (Shirling 176 

and Gottlieb, 1968). Mycelial fragments and spores of pure colonies were sustained in 15%, 177 

v/v glycerol at -20°C and -80°C (Shirling and Gottlieb, 1966).  178 

2.2. Screening for IAA production  179 

The aptitude of actinobacteria strains to synthesize and release IAA was assessed according 180 

to Khamna et al. (2010). One millilitre aliquot of Streptomyces-like spore suspensions (~ 106 181 

spores ml−1) was introduced into 250 mL Erlenmeyer flasks comprising 100 ml of yeast 182 

extract-tryptone broth (YTB) amended with 0.2% (w/v) L-tryptophan then incubated for 183 

eight days at 30 °C under the agitation of 150 rpm.  184 

2.3. Auxin assay 185 

Cultures’ supernatants were recovered via filtration through Whatman filter paper n°1, 186 

followed by centrifugation (20 min at 4000×g) on the eighth day of incubation. The 187 

absorbance of the samples was measured at 530 nm using a Helios epsilon UV-vis 188 

spectrophotometer (Germany), and IAA concentration was estimated according to a 189 

standard curve prepared with an authentic IAA purchased from Sigma, USA (Passari et al., 190 

2015). The IAA concentration was investigated by colourimetric assay (Bano and Musarrat, 191 

2003) by mixing the culture supernatant with the Salkowski reagent at a ratio of (1:2), 192 

respectively (Sadeghi et al., 2012). A developed pink-red colour after 30 min of incubation in 193 

the darkness indicates indole compound production by actinobacteria.   194 

 195 

 196 
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2.4. Enzyme production and physiological characteristics 197 

2.4.1. Protease Production 198 

Actinobacteria isolates were spot inoculated on 10% (v/v) skimmed milk agar (SMA) to 199 

detect extracellular proteases. SMA consists of a stock solution of skimmed milk and agar 200 

solution autoclaved individually at 115°C for 10 minutes and 121°C for 20 minutes, 201 

respectively. The two solutions were mixed at 60°C to a 1% final concentration of skimmed 202 

milk. After incubation at 30°C for 48–72 hours, the formation of clear zones around the 203 

colonies indicated extracellular caseinase production (Abdelmoteleb et al., 2017). 204 

2.4.2. Cellulase Production (cellulolytic activity) 205 

The cellulolytic activity, the cleavage of amorphous cellulose, was assessed semi-206 

quantitatively on the minimal medium agar amended with 1% (w/v) Carboxymethyl 207 

cellulose (CMC) as the sole energy and carbon source [in g/l: NaNO3, 1.2; K2HPO4, 6; 208 

KH2PO4, 3; MgSO47H2O, 0.2; CaCl2, 0.05; MnSO47H2O, 0.01; Zn SO47H2O, 0.001; Agar, 15; pH 209 

7.0]. CMC plates were spot inoculated with 5-day-old cultures in the petri dish centre, then 210 

incubated for five days at 30°C (Ahirwar et al., 2017). The CMC degradation ability of the 211 

strain was detected after flooding plates with 0.1% Red Congo (aqueous) solution for 30 212 

minutes, then destained using 1 M NaCl solution to make the hydrolyzed zone visible and 213 

clear. Cellulase activity was revealed by the colonies developing a visible halo (Slama et al., 214 

2019; Suárez-Moreno et al., 2019).  215 

2.4.3. Lignin oxidation activity  216 

The ability of the strain to develop on purified lignin was evaluated on the minimal medium 217 

containing 0.5% (w/v) craft Lignin as the sole carbon source [in g/l: NaNO3, 1.2; K2HPO4, 6; 218 

KH2PO4, 3; MgSO47H2O, 0.2; CaCl2, 0.05; MnSO47H2O, 0.01; Zn SO47H2O, 0.001; Agar, 15; pH 219 
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7.0]. The colony growth after incubation at 30°C for five to seven days indicates a positive 220 

result.  221 

2.4.4. Amylase production 222 

Spot inoculation of the actinobacteria isolate on Starch-Casein Agar media containing 1% 223 

(w/v) of soluble starch was performed [in g/l: Starch, 10; Casein, 0.3; KNO3, 2; MgSO47H2O, 224 

0.05; K2HPO4, 2; NaCl, 2; CaCO3, 0.02; FeSO47H2O, 0.01; Agar, 15; pH 7.0]. This Method 225 

enables the assessment of starch hydrolyzation mediated by Amylase activity. After 226 

incubation for three to four days at 30°C, Lugol’s iodine solution [ in (w/v) iodine, 5% and 227 

KI/L, 10%) was poured on the plates’ surface. Prominent halo development around the 228 

colonies is an indicator of a positive amylolytic activity of the isolated (Slama et al., 2019).  229 

2.4.5. Chitinase production 230 

The chitinolytic activity of Streptomyces-like strain was detected according to Gonzalez-231 

Franco et al. (2003). The isolate (10µL of five-day-old cultures, 106 spore/mL) were spot 232 

inoculated on colloidal chitin agar medium (0.4%) (w/v) then incubated for five to seven 233 

days at 30 °C. The colloidal chitin agar media (pH 7.0± 0.2) consisted of [in (g/L): (K2HPO4, 234 

0.7; KH2PO4, 0.3; MgSO4 X5H2O, 0.5; FeSO4 X 7H20, 0.01; ZnSO4, 0.001; MnCl2, 0.001; agar, 15), 235 

supplemented with 0.4% moist colloidal chitin as the sole carbon supplier (Gómez Ramírez 236 

et al., 2004; Murthy and Bleakley, 2012). A halo surrounding the colonies revealed the 237 

chitinolytic activity of the test strain (Murthy and Bleakley, 2012; Zamoum et al., 2015). 238 

2.4.6. Plant sugar utilization profile of AW22 239 

Determination of sugar utilization profile of selected isolate was adapted to a 96-well 240 

microplate using Minimal medium (MM) [in g/l: NaNO3, 1.2 ; K2HPO4, 6 ; KH2PO4, 3 ; 241 

MgSO47H2O, 0.2 ; CaCl2, 0.05 ; MnSO47H2O, 0.01 ; Zn SO47H2O, 0.001 ; pH 7.0±0.2] amended 242 
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with 0.2% (w/v) of Fructose, Mannose, Maltose, Xylose, Arabinose, Lactose, Galactose, 243 

Sucrose, Mannitol, Ribose and Rhamnose. Phenol red (PR) was used as a pH indicator 244 

instead of Bromocresol purple (BCP). All sugars were filter-sterilized into the MM after 245 

autoclaving. The positive control consisted of MM supplemented with 0.2% (w/v) glucose, 246 

while MM devoid of any added carbon source was employed as a negative control. 96 well 247 

Microplates were UV-sterilized for 20min before utilization. Each well was filled with 180µl 248 

MM (with and without C source) completed to a volume of 200µl with spore suspension (106 249 

spore/ml). The assay was performed in triplicates. For five days, parafilm-sealed microplates 250 

were incubated at 28°C under slow agitation (100 rpm) and examined periodically. The 251 

colour change of the PR into yellow indicated a positive result.  252 

2.4.7. Nitrogen source utilization profile 253 

The utilization of amino acids as the sole nitrogen source by the selected actinobacteria strain 254 

was also evaluated (Williams et al., 1983). Each nitrogen source (proline, glycine, leucine, and 255 

L-asparagine) was introduced to the basal medium  (pH of 7.0±0.2 ) at final concentration of 256 

0.1% (w/v) and incubated for 14 to 21 days at 30°C at.  257 

2.4.8. Physiological characterisation 258 

 The physiological characteristics of actinobacteria isolate to grow at different temperatures 259 

(4, 15, 20, 25, 30, 35, 40 and 45°C), at different pH (5.0, 7.0 13.0 ±0.2 pH unit) and to tolerate 260 

Phenol 0.5%, Tellurite 0.5%, Sodium azide 0.1% and NaCl concentration from 0–10% (w/v) at 261 

1.0 NaCl unit intervals) were examined. These characteristics were evaluated on GYM agar 262 

after 14 days of incubation.  263 

AW 22 growth was recorded according to the following scale: -: no growth, +: weak growth, 264 

++: moderate growth, +++: abundant growth. 265 
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2.5. Molecular identification of the higher IAA producer actinobacterium  266 

16S rRNA gene sequencing was used to identify strain AW 22 taxonomically. PCR was 267 

carried out using the universal primers 27F (5′-GAGTTTGATCCTGGCTCAG-3′) and 1492R 268 

(5′ TACGGYTACCTTGTTACGACTT-3′) according to the protocol outlined by Girão et al. 269 

(2019). Genomic DNA extraction, 16S rRNA gene amplification by PCR, and sequencing of 270 

purified PCR products were performed in ALVALAB, Spain. Using the NCBI BLAST 271 

database for Bacteria and Archaea, the 16S rDNA sequences were examined, and the 272 

phylogenetic affiliation of the isolate was determined. This affiliation was then validated 273 

using the identification tool from EzTaxon and the sequence match tool from the Ribosomal 274 

Database Project. Further, the phylogenetic tree was developed to support the taxonomic 275 

analysis of the isolates. In compliance with the BLAST results, the nearest neighbours 276 

sequences in GenBank were chosen, and MUSCLE was used to align each sequence fulfilling 277 

these requirements. Next, the Tamura-Nei model-based Neighbour-joining method was used 278 

to create the phylogenic tree using 1000 bootstraps. The MEGA11 program, which stands for 279 

Molecular Evolutionary Genetics Analysis, was used to perform the evolutionary analyses 280 

(Tamura et al., 2021). 281 

2.6. Time course of IAA and biomass production from strain AW 22 282 

The appropriate incubation time for IAA and biomass yield by AW 22 was evaluated at 24 h 283 

intervals for ten days on GYM broth supplemented with L-Tryptophan at 0.2% (w/v). The 284 

development of biomass was measured using the traditional oven method (Buono and 285 

Erickson, 1985). Briefly, AW 22 cultures were filtered via Whatman filter paper (No. 1) and 286 

dried at 70 °C for 12h to estimate dry biomass weight. All experiments were performed with 287 

an inoculum size of 3.8×106 CFU/mL of AW 22 cells and conducted in triplicate to obtain 288 

average values.  289 
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2.7. Extraction and TLC confirmation of IAA  290 

The synthesis of IAA was verified by thin-layer chromatography (TLC), as reported by 291 

Goudjal et al. (2013). Extracts were separated with Ethyl Acetate (EA) at a ratio of (1:3) (v/v) 292 

and vacuum evaporated at 40°C.  293 

EA fractions of 10–20 μl were spot-deposited on TLC plates (silica gel GF254, thickness 0.25 294 

mm, Merck, Germany) and processed in ethyl acetate: chloroform: formic acid (55:35:10, by 295 

volume). TLC plates were treated with Ehmann’s reagent before their visualization under 296 

UV light (254 nm), displaying spots with identical Rf values to the standard IAA. 297 

2.8. High-Performance Liquid Chromatography (HPLC) for IAA quantification 298 

EA fractions were subjected to an HPLC (Agilent Technologies, USA) equipped with a UV 299 

detector and a column model Cosmosil SC18-MS-II (Nacalai Tesque, Japan). The elution 300 

system and the flow rate were optimized and adapted from (Bunsangiam et al., 2021; Kaur & 301 

Kaur, 2021; Myo et al., 2019; Nutaratat et al., 2015). The mobile phase's solvent system 302 

consisted of acetonitrile: water: acetic acid (35:65:1 v/v/v) at a 1 mL/min flow rate (Nakurte et 303 

al., 2012) with a 20 μL injection volume. Thus, the isocratic elution method was preferred 304 

over gradient elution while the column temperature was sustained at 25°C. As the standard, 305 

authentic IAA (Sigma, USA) was used to quantify IAA in the sample. IAA detection was 306 

monitored at 280 nm. 307 

2.9. SCG and CBP extract preparation 308 

SCG extract was prepared according to the hydrothermal method adapted from (Rajendran 309 

et al., 1991). Samples of SCG were collected from coffee shop consumption of Robusta coffee 310 

beans at 85°C, Algeria. Carob extracts were obtained from freshly collected carob beans. 311 
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Substrates were either air-dried for fifteen days or heat-dried for eight hours at 60°C for, and 312 

Carob beans were chopped, ground and sieved. 313 

Briefly, 200 grams of dried SCG/ CBP were mixed with 1000 mL of deionized water were 314 

autoclaved at 121°C for one hour, and samples were cooled to room temperature overnight, 315 

then stocked at 4°C. Subsequently, samples were extracted by filtration through cheesecloth 316 

and Whatman No. 1 filter paper to obtain SCG and CBP extract solution (Wu et al., 2019).  317 

2.10. Influence of carbon source concentrations on IAA yield  318 

The influence of substrate concentration on the ability of strain AW 22 to produce IAA was 319 

assessed. Briefly, minimal medium was amended with Glucose at 0.2%, 0.5% and 1% (v/v), 320 

Carob Beans Powder extract at 10-50% (v/v), SCG extract medium at 10-50% (v/v) and L-Trp 321 

at 0.2% (w/v). The minimal medium devoid of L-Trp consisted of negative control while the 322 

Glucose 0.5% consisted of positive control. AW 22 cultures were inoculated and incubated at 323 

28 °C for 8 days under permanent shaking at 150 rpm. 324 

2.11. Plackett-Burman design (PBD) screening of significant parameters 325 

This approach aims to select the most influential media components (Khosravi-Darani and 326 

Zoghi, 2008; Purama and Goyal, 2008) on IAA production. After determining the maximum 327 

IAA yield according to the time course experiment, the experimental design of Plackett-328 

Burman was employed for the screening of fourteen independent variables. These 329 

parameters consist of eleven nutrient factors (L-Tryptophan, SCGE, CBPE, CaCO3, Yeast 330 

extract, soluble starch, Tryptone, NaCl, K2HPO4, MgSO4) (Zhao et al., 2013), three culture 331 

conditions (pH, growth temperature, incubation time) and Inoculum amount (in %) (v /v).  332 

All independent factors were assessed at two widely-spaced intervals, represented as 333 

negative values (low level, − 1) and positive values (high level, + 1) in 20 experiments. Each 334 

row represents a trial with a response value consisting of IAA yield. 335 
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The factors' actual levels are listed in Table 1, while the BBD matrix in coded units is 336 

summarized in Table 2. 337 

All experiments were performed in triplicate, and the mean value constituted the response. 338 

The statistical metrics of the model were determined via the analysis of variance (ANOVA). 339 

The variables’ significance was estimated by calculating the p-value and confidence levels 340 

using the standard regression analysis. Factors presenting a 5% level of significance (p<0.05) 341 

were further optimized with BBD to increase IAA yield. The PBD first order model is given 342 

in equation (1): 343 

𝑌 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖                         Eq. (1) 344 

where Y stands for the dependent variable (response = IAA production), β0 corresponds to 345 

the model' intercept, βi represents the regression coefficient, and xi is the independent 346 

variable. Minitab 19.0 statistical software package was used for the PBD and results analysis. 347 

 348 

Table 1. Actual values of independent variables screened by PBD. 349 

Facto label Variables Unit level 

-1 1 

X1 CBP % 30 50 

X2 SCG % 30 50 

X3 Starch g/L 2 5 

X4 Tryptone g/L 3 6 

X5 Yeast E g/L 2,5 5 

X6 L-Trp % 0,3 0,6 

X7 NaCl g/L 1 5 

X8 K2HPO4 g/L 0,3 0,7 

X9 MgSO4 g/L 0,2 0,5 
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X10 CaCO3 g/L 1,0 1,5 

X11 Incub. Time Day 6 10 

X12 T °C 26 35 

X13 pH - 7±0,1 9±0,1 

X14 Inoc. amount % 2 4 

Note: X1-X14 correspond to various impact variables; "1" and "-1" are two different levels. 350 

 351 

Table 2. Plackett–Burman experimental design matrix represented in coded units. 352 

Run N° X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 

1 + - + + + + - - + + - + + - 

2 - + - + + + + - - + + - + + 

3 + - + + - - - - + - + - + + 

4 - - - - - - - - - - - - - - 

5 + + - - - - + - + - + + + + 

6 + - - - - + - + - + + + + - 

7 + - + - + + + + - - + + - + 

8 + + - + + - - - - + - + - + 

9 + - - + + - + + - - - - + - 

10 - + - + - + + + + - - + + - 

11 - + + - - - - + - + - + + + 

12 - - - - + - + - + + + + - - 

13 - - + + - + + - - - - + - + 

14 + + + + - - + + - + + - - - 

15 - + + - + + - - - - + - + - 

16 - + + + + - - + + - + + - - 

17 - - - + - + - + + + + - - + 

18 + + - - + + - + + - - - - + 

19 - - + - + - + + + + - - + + 

20 + + + - - + + - + + - - - - 
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Note: X1 ~ X14 represent the impact variables; "1" and "-1" correspond to two different levels; 1 to 20 353 

represent 20 different sets of fermentation conditions. 354 

2.12. Box-Behnken design (BBD) of Response surface methodology (RSM) 355 

The four highly significant process parameters obtained from PBD (SCG, L- tryptophan 356 

concentration, incubation temperature and pH) were later subjected to RSM analysis using 357 

the Box-Behnken design (Lanka and Latha, 2015). Minitab 19.0 statistical software package 358 

optimised response and correlating the independent variables mathematically(Ousaadi et al., 359 

2021). 360 

This study generated twenty-eight experiments for 4-factor BBD with four central points. All 361 

factors were evaluated at three levels (+ 1, 0 and − 1), where 0 corresponds to the coded 362 

central value, + 1 is a high value, and − 1 is a low value to optimize the key factors (Actual 363 

and coded values are given in table 3 and 4, respectively). 364 

All experiments were conducted in triplicate, and the calculated average IAA concentration 365 

served as the experimental response value. Further, all responses were fitted to an 366 

independent second-order polynomial model represented in equation (2): 367 

 368 

𝑌 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖 + ∑ 𝛽𝑖𝑖𝑥𝑖𝑥𝑗 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗              Eq. (2) 369 

 370 

Where: 371 

Y stands for the predicted value of the output variable (IAA production). 372 

β0 constant term coefficient (the intercept). 373 

βi, βj and βij are the linear, quadratic, and interaction term coefficients, respectively.  374 

xi and xj are the coded independent variable.  375 

 376 
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The correlation between xi coded value for Xi, which represents the independent variable’s 377 

actual value and is expressed as follows (Eq. 3):  378 

 379 

𝑥𝑖 =
𝑋𝑖−𝑋0

𝛿𝑋
                   (Eq.3) 380 

 381 

X0 denotes the independent variable's actual value at the central test point, and the step 382 

change in Xi is represented by δX.  383 

i=1,2,3… 384 

The regression equation also served to calculate predicted response values. A variance 385 

analysis (ANOVA) resolved the model's statistical competence. F- and p-values evaluate the 386 

factors’ significance and the regression model. Thus, a great Student's t-test with a low P-387 

value testifies to the high reliability of the regression model (Vasseghian et al., 2020). 388 

The coefficient of determination (R2) with the adjusted R2 was used to statistically evaluate 389 

the accuracy and assess the reliability of the polynomial model equation.  390 

Developing contour plots help to elucidate the correlations between the responses and the 391 

experimental levels of every independent variable. Subsequently, the software's response 392 

optimizer tool served to designate the best value for each variable to achieve the highest IAA 393 

yield. 394 

2.13. Experimental validation of the fitted model 395 

The fitted model was experimentally validated, and strain AW 22 was inoculated on the 396 

optimal medium according to the combination of different optimized variables (culture 397 

conditions) suggested by BBD. The culture conditions and the target response are recorded 398 
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in Table 12. The in silico optimization predicted the maximum IAA response with desirability 399 

1. 400 

Table 3. Actual and coded values for the independent variables evaluated in the BBD. 401 

 

Level 

Factors 

L-Trp (%) SCG (%) Temperature 

(°C) 

pH  

-1 0,2 30 26 7,1 

0 0,4 40 30 8,05 

1 0,6 50 35 9 

 402 

Table 4. Experimental matrix of Box Behnken Design in coded units including experimental 403 

data. 404 

Run 

Variables IAA yield (µg/mL) 

A B C D Y (Test 

value) 

Y (Fit 

value) 

Residual 

1 1 0 1 0 173,06±6,23 179,99 -6,93 

2 0 0 0 0 177,18±6,34 120,29 56,88 

3 0 1 1 0 86,28±2,74 102,29 -16,01 

4 0 1 0 1 74,11±4,63 82,33 -8,22 

5 1 0 -1 0 64,20±1,82 98,62 -34,41 

6 0 1 -1 0 80,87±3,57 54,46 26,41 

7 -1 0 1 0 77,37±10,03 46,89 30,48 

8 -1 0 -1 0 34,36±1,54 31,37 3,00 

9 0 0 0 0 76,99±4,96 120,29 -43,31 

10 -1 0 0 1 31,20±1,37 50,43 -19,22 

11 -1 1 0 0 18,56±1,26 22,21 -3,66 

12 1 0 0 -1 184,36±7,85 184,02 0,35 

13 0 0 1 -1 159,27±6,94 138,15 21,12 

14 1 1 0 0 115,35±7,31 92,36 22,99 

15 0 -1 0 1 94,23±4,82 76,65 17,58 
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16 0 0 0 0 155,68±9,42 120,29 35,38 

17 -1 0 0 -1 25,31±2,88 35,73 -10,42 

18 1 -1 0 0 176,60±7,12 150,14 26,47 

19 0 -1 -1 0 78,71±5,71 81,58 -2,87 

20 0 -1 1 0 85,37±1,96 130,66 -45,29 

21 0 0 -1 -1 129,96±2,80 123,77 6,19 

22 0 0 0 0 71,34±5,05 120,29 -48,96 

23 0 0 -1 1 57,97±6,20 56,28 1,69 

24 0 1 0 -1 60,80±9,14 82,32 -21,52 

25 0 0 1 1 155,44±9,00 138,81 16,63 

26 -1 -1 0 0 19,76±2,61 19,93 -0,18 

27 1 0 0 1 94,04±3,59 102,49 -8,46 

28 0 -1 0 -1 147,77±12,37 143,49 4,28 

 405 

2.14. Machine learning assisted optimization of IAA production 406 

The input, hidden, and output layers, are the distinct divisions of the several neurons that 407 

constitute an ANN. The operating units acting as feature detectors and introducing 408 

nonlinearity into the network are the hidden layers, which can be single or multi-architecture 409 

(López et al., 2017). The elaboration of an ANN model depends on several phases. The 410 

training phase (Input feed-forward multilayer and error backpropagation) and the validation 411 

phase. The feed-forward back propagation (BP) or Levenberg-Marquardt (trainlm) algorithm 412 

was adopted to create and train an ANN model using the BBD data that was previously 413 

presented. However, as proposed by (Maji et al., 2014), data points were increased up to 200 414 

and generated based on the second-order polynomial equation, as the experimental data sets 415 

from BBD were insufficient for creating an optimal network architecture. The validation 416 

procedure aimed to reset the reliability of the built-in model during the training phase. The 417 
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model can be used in subsequent applications only when the validation results match 418 

expectations. 419 

2.14.1. Artificial neural network modeling 420 

The typical input feed-forward multilayer ANN (MLP) was combined with a training 421 

algorithm for ANN modeling at this level. MLPs are straightforward universal 422 

approximators and are frequently considered for modeling physicochemical processes 423 

(Jasso-Salcedo et al., 2017; Moghri et al., 2017).  424 

Three subdivisions of the datasets were generated. Each subset contained 70% of the data for 425 

testing, 15% for validating, and 15% for network training. Inputs and outputs represent fixed 426 

components in the ANN topology (architecture). At the same time, the hidden layers’ 427 

number and their respective neurons constitute a series of variable elements. Typically, bias 428 

and weights express the connections between each layer. Aside from network topology, 429 

internal parameters are selected according to the empirical data to achieve the best ANN 430 

identification.  431 

Therefore, around 11 alternative training algorithms and a five-fold cross-validation strategy 432 

were applied to identify the ANN core parameters and the appropriate amount of hidden 433 

neurons. 434 

The system's inputs for the current process are the initial concentrations of L-Trp 435 

concentration (X1), operating temperature (X2), initial pH (X3), and SCG concentration (X4), 436 

while the system's output is the yield of IAA. Two hidden layers were chosen, consisting of a 437 

neuron number between [1-10] intervals.  438 

Figure 1 shows the current ANN simple structure, and Table 5 summarizes the design 439 

parameters adopted in developing the present ANN model. 440 
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Table 5. Parameters adopted in creating the ANN model. 441 

Type Description 

Inputs layer 4 neurons (L-Trp concentration, SCG concentration, T°, pH) 

Hidden layer n= 2 layers; m= 12  neurons 

Output layer 1 neuron (IAA yield) 

Learning rate 0.01 

Epoch 1000 

MSE goal 0.001 

Algorithms Levenberg-Marquardt (trainlm) 

Sigmoid (tansig): preferred between input and hidden layers Function 

Linear: preferred between hidden and output layers 

 442 

 443 

Fig. 1. Typical design of the current artificial neural network (ANN). 444 

 445 

A three-layered BP-ANN was elaborated in this study. An activation function is first 446 

executed to generate a simulated output on a network that has been trained with random 447 
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weights and bias values. The activation functions convert the weighted sum of the input to 448 

generate the output (Çelekli et al., 2013). 449 

The hidden layer-emitted signals are expressed in weights, and thresholds through 450 

transferring function, as described in equation (4). Still, the hidden-to-output layer-oriented 451 

signals constitute the predicted value that may be expressed by the equation (5). 452 

 453 

𝑥𝑗 = 𝐹(∑ 𝑥𝑖
𝑛
𝑖=1 × 𝑤𝑖𝑗 + 𝑃𝑗)                     Eq. (4) 454 

𝑦𝑖−𝑝𝑟𝑒𝑑 = 𝐹′(∑ 𝑣𝑗 × 𝑥𝑗 + 𝑄𝑛
𝑖=1 )             Eq. (5) 455 

where: 456 

xi, bj represent the input and the hidden neuron values, respectively. 457 

wij and vj correspond, respectively, to the weights between xi (input neuron) and xj (hidden 458 

neuron) and xj (hidden neuron) and the output neuron.  459 

Pj and Q represent the connection thresholds of the hidden and output neurons, respectively. 460 

F means the transfer function between xi and xj; F’ means the transfer function between xj 461 

and the output neurons. 462 

Yi-pred is the IAA concentration predicted value.  463 

wij, Pj, vj, and Q are first arbitrarily designated low values for subsequent readjustments 464 

during the feedback process. 465 

The output and hidden layers have linear and tangent sigmoid transfer functions, respectively.  466 

All the ANN model’s training values were normalized between 0 and 1 via the min-max 467 

method expressed in equation (6) to prevent numerical overflows brought on by larger or 468 

smaller weights: 469 

 470 
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𝑥𝑖 =
𝑋𝑖−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                    Eq. (6) 471 

where Xi, Xmin and Xmax represent the normalized, least and highest values of X (original 472 

value), respectively. 473 

After training, the BP algorithm is processed with the error backwards propagation to diminish 474 

the prediction mean squared error (MSE) iteratively between experimental and simulated 475 

output data and continuously adjust weights and biases between the neurons.  476 

As performance indices, the MSE Eq. ( 7) and the determination coefficient (R2) (Eq. 8) served 477 

to create an ideal ANN model capable of assessing the predictions accuracy made between 478 

the ANN outputs and the targets (Dhanarajan et al., 2014; Sivapathasekaran et al., 2010; 479 

Vasseghian and Dragoi, 2018). Based on the minimum value of MSE, the hidden neurons’ 480 

amount was designated (Rajendra et al., 2009). Subsequently, an optimal network topology 481 

was selected depending on the least MSE and maximal R-values to prevent data over-fitting 482 

and enhance the accuracy and predictability of outputs (Dhanarajan et al., 2014; Huang et al., 483 

2007). 484 

 485 

𝑀𝑆𝐸 = ∑
(𝑦𝑖−𝑦𝑖−𝑝𝑟𝑒𝑑)

2

𝑛
𝑛
𝑖=1             Eq. (7) 486 

 487 

𝑅2 =
∑ (𝑦𝑖−𝑦𝑖−𝑝𝑟𝑒𝑑)

2𝑛
𝑖=1

∑ (𝑦𝑖−𝑎𝑣−𝑦𝑖−𝑝𝑟𝑒𝑑)
2𝑛

𝑖=0

              Eq. (8) 488 

where yi-pred and yi correspond to the predicted and provided output values, respectively, and 489 

𝑛 is the respective number of provided data points for the corresponding phase (training, 490 

testing, or validation), yi-av is the average value.  491 
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 492 

The hidden neuron weight (Wj) can be computed according to equation (9), which can be put 493 

forward: 494 

𝑊𝑗 = ∑ 𝑤𝑖𝑗𝑥𝑖
𝑘
𝑖=1                              Eq. (9) 495 

where k represents the input layer-related number of neurons, wij is the connection weight 496 

between x (output neuron) and b (hidden neuron).  497 

i is the input layer neuron, and xi represents its value. 498 

 499 

Similarly, the output neuron weight (Wk) can be computed according to equation (10): 500 

𝑊𝑘 = ∑ 𝑤𝑗𝑘𝑥𝑗
𝑧
𝑗=1                                 Eq. (10) 501 

where z represents the hidden layer-related number of neurons, wjk is the connection weight 502 

between j (hidden neuron) and k (output neuron). 503 

j is the hidden layer neuron, and xj represents its value. 504 

 505 

The activation function generates the predicted output using the neuron's weight in the 506 

hidden or output layer according to equation (11). 507 

 508 

𝑦 = 𝑓(𝑊 + 𝐵)                                  Eq. (11) 509 

where: 510 

y stands for the predicted output. 511 

 f is the activation function. 512 

W and B represent the weight and bias in the hidden or output layer.  513 
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The cross-validation procedure was performed ten times to improve predictability and 514 

accuracy, with the results averaged. 515 

2.14.2. Sensitivity analysis  516 

The connection weights were investigated, and the input factors' relative influence on the 517 

output was evaluated through the Garson algorithm's sensitivity analysis (Zhang and Pan, 518 

2014). For this kind of analysis, the Garson equation (Eq. 12) and potential combinations of 519 

variables were used (Aleboyeh et al., 2008; Yetilmezsoy and Demirel, 2008).  520 

𝑄𝑖𝑘 =
∑ (

|𝑤𝑖𝑗|

∑ |𝑤𝑟𝑗|𝑁
𝑟=1

|𝑣𝑗𝑘|)𝐿
𝑗=1

∑ (∑ (
|𝑤𝑖𝑗|

∑ |𝑤𝑟𝑗|𝑁
𝑟=1

|𝑣𝑗𝑘|)𝐿
𝑗=1 )𝑁

𝑖=1

                  Eq. ( 12) 521 

The Qik stands for the impact percentage of the input variable. The connection weight 522 

between i and j, the input and the hidden neuron, respectively, is indicated by wij.  523 

The connection weight between j  and k the hidden and the output neuron, respectively,  is 524 

represented by vjk, and the connection weight between the input neuron N and the hidden 525 

neuron j is defined by wrj. 526 

N, L, and M are the neurons' numbers in the input, hidden, and output layers.  527 

w and v are the connection weights between the input and the hidden layers and between the 528 

hidden and the output layers. 529 

2.14.3. Genetic algorithm-assisted optimization 530 

The genetic algorithm constitutes an AI-based stochastic nonlinear optimization formalism 531 

that simulates natural selection and genetic mechanisms (Jiang et al., 2014). GA prevents the 532 

models from being trapped by local optima by selecting suitable initial weights and 533 
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thresholds for the previously generated ANN model and utilized as a fitness function (Eq. 534 

13). The fitness function can be expressed as follows: 535 

𝐹 = 𝑃𝑢𝑟𝑒𝑙𝑖𝑛(𝐽𝑊 ∗ tan𝑠𝑖𝑔(𝐾𝑊 ∗ [𝑥1; 𝑥2; 𝑥3; 𝑥4] + 𝑏𝑗) + 𝑏𝑘)       (Eq. 13) 536 

Where F denotes the IAA yield, bk and JW stand for the output layer’s bias and weight, and bj 537 

and KW represent the hidden layer’s bias and weight, respectively. 538 

The IAA production bioprocess optimization using the GA algorithm followed several steps: 539 

initialization, selection, crossover, and mutation with different parameters and, relying on 540 

particular characteristics, using various rules.  541 

The default "ga" function in MATLAB interprets and treats the elementary data of the 542 

parameters requiring optimization, such as the initial weights and thresholds as 543 

chromosomes. The higher fitted chromosomes will be chosen by means of genetic 544 

reproduction, including crossover and mutation, while the least fitted ones will be 545 

substituted (Jiang et al., 2014). GA is reportedly adept at global searching to achieve 546 

convergence, independent of the initial value.  547 

(1) GA starts by providing an initial population of solutions or individuals using initial 548 

operating temperature, pH, and L-Trp and SCG concentrations as optimization 549 

inputs. The ANN model-related initial weight and threshold were obtained and 550 

encoded into binary strings forming the chromosomes. 551 

(2)  Subsequent selection of outstanding chromosomes with high fitness from the present 552 

population is based on the coefficient of fitness for every chromosome. This operation 553 

helps to propagate excellent offspring and eliminates the low fitness chromosomes 554 

(Jiang et al., 2014). 555 
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(3) The remaining chromosomes are treated using evolutionary operators crossover and 556 

mutation to improve the offspring of parents and produce the next generation  557 

(Yetilmezsoy and Demirel, 2008). Crossover aims to exchange data and genes among 558 

individuals, whereas mutation randomly affects individuals from the population and 559 

alters their genes (Bagheri et al., 2015). 560 

(4) The fitness function (step 2) is carried out iteratively until the chromosomes have 561 

attained the maximum fitness level, and the convergence forms the optimal solution.  562 

(5) The last step entails decoding all chromosomes and substituting the ANN model's 563 

starting weights and threshold with these upgraded ones.  564 

For this work's purpose, the settings taken into account are summarized in table 6. 565 

Nonetheless, the selection function output is multiplied by-1 since the GA algorithm aims to 566 

minimize and not maximize outcomes. 567 

 568 

Table 6. GA configuration for the IAA production model implementation. 569 

Parameters Value 

Population size 200 

Number of elite 2 

Crossing fraction 1 

Migration fraction 0.2000 

Migration interval 20 

Direction of migration forward 

Stall generation limit 20 

Stall time limit 20 

Plot Interval 1 

Generations 100 
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3. Results and discussion 570 

3.1. Streptomyces-like isolates and IAA production  571 

Streptomyces represents the dominant genus of actinobacteria in soil ecosystems  (Thakur et 572 

al. 2007). This genus' members are typically isolated from plant tissues and the rhizosphere, 573 

indicating their highly compatible nature with various host organisms and contributing to 574 

improving their growth (Goudjal et al., 2014; Verma et al., 2009). Twenty-eight 575 

morphologically distinct rhizospheric actinobacteria colonies were gram-positive 576 

filamentous rods exhibiting Streptomyces aspects. Wrinkled and coloured colonies with waxy, 577 

powdery, or velvety surfaces were among the traits (data not shown), which were obtained 578 

from wheat rhizospheric soil samples from Tiffech province of Souk-Ahras, Algeria, upon 579 

enrichment with CaCO3. Our findings confirmed that the presence and distribution of 580 

Streptomyces-like isolates in this newly explored province are slightly different, from a 581 

metabolic point of view, from other reported niches, such as the river sand ecosystem. Thus, 582 

previous studies correlated that the habitat affected actinobacteria diversity in the soil more 583 

than the microbial communities (Abbasi et al., 2019). Interestingly, some nutrient restrictions 584 

in the belowground constitute a significant factor in the diversity dynamics of soil 585 

microbiomes because of natural selection.  586 

In our study, primary screening consisting of a quantitative assessment of IAA synthesis by 587 

Streptomyces-like strains found that all the wheat-associated isolates (100%) possess the 588 

ability to yield IAA (Fig. 2) ranging between 1,8534± 0,1724-23,999±1,126 μg/mL which agree 589 

with previous studies (0.2–15 mg/L). However, IAA production from both Streptomyces and 590 

non-Streptomyces spp. Actinobacterial isolates with L-tryptophan remain moderate compared 591 

to other plant-associated bacterial phyla  (Nimnoi et al., 2010). Six isolates comprising RZB13, 592 
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AW25, S27, RZB, S28 and AW22 were the highest producers (in the range 16,44±2,05-593 

23,999±1,126 μg/mL). Strain AW22 exhibited maximum IAA production with 23,999±1,126 594 

μg/mL with 0,2% (w/v) L-Trp added. Thus, AW22 was selected for further studies. 595 

Moreover, nine isolates, RZBD, AW11, AW01, AW17, RZB11, RZB24, AW08, AW1F2 and 596 

AW12 were moderate producers (in the range 8,185±1,045-12,735±1,038 μg/mL) and the rest 597 

were the least producers (in the range1,8534± 0,1724- 7,843±0,612μg/mL). 598 

Our findings agree with those described by Abbasi et al. (2019) on the ability of 106 599 

cucumber and tomato rhizosphere-originated actinobacteria to produce ranges of 7.0–40.9 600 

μg/mL of IAA. The same authors declared that twenty percent of test strains had more than 601 

27 μg/mL IAA with 0,5% (w/v) L-Trp. IAA biosynthesis constitutes a common feature 602 

amongst rhizospheric Streptomyces species. Strains exhibiting antagonistic activity against 603 

plant pathogens are concerned by this biosynthesis (Sreevidya et al., 2016). Passari et al. 604 

(2016) reported a maximum amount of 43.8 μg ml-1 from S. thermocarboxydus DBT219, a 605 

tomato-associated endophyte (Solanum lycopersicum). This production was slightly higher 606 

than the minimal concentration reported by Goudjal et al. (2016), ranging from 35.9-117 607 

μg/mL. Nafis et al. (2019) reported IAA amounts evolving from 6.70 to 75.54 µg/mL within 608 

eight days of incubation, with a maximum production obtained from Streptomyces sp. MNC-1 609 

was originated from the Merzouga desert. Several studies advocated the production of IAA 610 

from actinobacteria strains isolated from Algerian niches. Toumatia et al. (2016) described 611 

the Saharan soil originated Streptomyces mutabilis IA1 ability to release a significant amount 612 

of IAA at the maximum level of 74.39 (μg ml−1), adding to its biocontrol properties against 613 

Fusarium and rhizosphere competence. For instance, out of 14 actinomycetes strains isolated 614 

from salty water (Sebkha) in Northeast Algeria (Smati and Kitouni, 2019), nine were able to 615 

synthesize IAA with variable productivity rates ranging from (7.44 to 21.4 μg/ml). Indeed, 616 
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IAA production for 28 Actinobacteria strains (µg/mL)

strain Nocardiopsis aegyptica H14 recorded the highest score, followed by strains Nocardiopsis 617 

dassonvillei subsp. dassonvillei T45, Streptomyces xantholiticus G22 and Streptomyces iakyrus G10 618 

with 14.75 μg/ml, 12.37 μg/ml and 12.25 μg/ml, respectively. However, the lowest 619 

production amount was recorded by Streptomyces xantholiticus G33 at 7.44 μg/ml (Djebaili et 620 

al., 2020). These results are slightly lower than those obtained in our study.  621 

Fig. 2. Screening for IAA production within twenty-eight Streptomyces-like strains  622 

Means were contrasted using a one-way ANOVA (p <0.05). Values consist of the average and 623 

standard deviations for three biological replicates of each experiment. According to Tukey, 624 

values that share a letter within a column are not statistically different. 625 

 626 

3.2. Morphological and physiological characterization of AW22 627 

Strain AW 22 displayed typical morphological features of Streptomyces genus (van der Aart et 628 

al., 2019). The cultural aspects of AW22 are noted in Table 7. Strain AW22 exhibited 629 

abundant growth on ISP2, ISP3, ISP5, ISP6 and ISP7, and various pigments were observed on 630 

integral test media. Soluble and diffusible pigments from dark brown to navy blue, reddish-631 

orange, and pink to purple were observed on ISP2, ISP3 and ISP5. However, AW 22 growth 632 

was moderate on ISP1, good on ISP4 and ISP9, with light blue pigment observed exclusively 633 



32 
 

on ISP1. Colony diameter and phenotype of aerial mycelium vary from one medium to 634 

another, with an abundant coloured sporulation rate observed on all tested media.  635 

Table 7 records the primary physiological and biochemical attributes of AW 22, as these 636 

evaluations are critical assets for classifying and identifying actinobacteria. A pH ranging 637 

between 5-11 enabled the strain to grow. 638 

No growth at pH13, with optimum growth at pH comprised between 6,8-9.2. Besides, AW22 639 

displayed up to 7% NaCl tolerance. AW 22 was able to grow at temperatures ranging 640 

between 15- 40 °C. However, no bacterial development was noticed at 4°C or 45°C. The 641 

optimum temperature was revealed to be 28°C. After correlating the physiological and 642 

biochemical traits of strain AW 22 to those of model organisms belonging to the genus, the 643 

strain was categorized as a Streptomyces. 644 

 645 

Table 7. Relative cultural characteristics of strain AW 22 on nine ISP media. 646 

Medi

um 

Aerial mycelium Spore color Substrate 

mycelium 

Soluble 

pigment 

Colony 

size 

Growth 

status 

ISP1 White to light 

greyish blue 

Light blue 

 

 

Creamy white to 

light blue 

Light blue to 

green 

Small + 

 

ISP2 Light blue to light 

grey, then dark 

grey 

Dark grey Orange to intense 

brown 

Brown, then 

Navy blue to 

purple 

Big +++ 

ISP3 Creamy white to 

Orange 

Dark Grey Orange, 

burgundy, then 

dark brown 

Pink to light 

blue to reddish-

purple 

Mediu

m 

 

+++ 

ISP4 Salmon to 

reddish grey 

Light Grey Orange to red to 

grey 

None Mediu

m 

 

++ 
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ISP5 Greyish white Greyish 

white 

Pink to dark red Pink to purple 

 

Small +++ 

ISP6 Creamy to orange Orange Creamy white None Small +++ 

ISP7 

 

 

Reddish orange 

to yellow to grey 

White to 

grey 

Orange to red to 

brown 

None Small +++ 

ISP9 Creamy white to 

grey 

White to 

grey 

Creamy white None Small ++ 

Note: "+++" indicates growth very good, "++" indicates growth good, "+" indicates growth is moderate, 648 

"-" indicates no growth. 649 

 650 

3.3. Enzyme production and biochemical characteristics 651 

Phenotyping for enzyme production from the AW 22 strain under in vitro conditions showed 652 

that most results were positive (Table 8).  653 

Table 8. Enzymatic profile, biochemical and physiological characteristics of strain AW 22. 654 

 655 

Enzyme’s 

production 

Result Biochemical tests Result Physiological 

tests 

Result 

Amylases ++ Nitrate reductase ++ Temperature  

Cellulases ++ Simmons Citrate + 4°C - 

Lignin oxidases UD Peptonisation of 

Skim milk 

+ 15°C + 

Xylanases UD Toletrance to 

[NaCl]  

 20°C  ++ 

Urease + 1% +++ 25°C +++ 

Chitinases + 2% +++ 30°C  +++ 

Catalase + 2.5% +++ 35°C + 
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Protease 

(Caseinase) 

+ 3% +++ 40°C +/- 

Gelatinase - 4% +++ 45°C - 

Lipase - 5% +++ Tolerance to   

Lipoproteinases ++ 6% ++ Tellurite 0.5% + 

Lecithinase ++ 7% + Sodium Azide 0.1% - 

Esterase + 8% + Phenol 0.2% + 

  Twain 20 + 9% + Growth at   

  Twain 80 + 10% - pH5.6 +++ 

    pH6.8 +++ 

    pH9.2 +++ 

    pH11 +++ 

    pH13 - 

Note: In the Enzymes test items, the "+" means positive, "-" indicates negative, and "UD" indicates 656 

undetectable activity. In the other tests, "+++" indicates growth very good, "++" indicates growth good, 657 

"+" indicates growth is moderate, "-" indicates no growth. 658 

Strain AW 22 showed significant proteolytic activity and produced cellulase, amylase, lipase, 659 

lipoproteinase, and esterase activities. Strain AW 22 exhibited nitrate reduction and positive 660 

responses to the catalase and urease tests. Amylases, the thermostable enzymes, efficiently 661 

degrade organic matter and hasten the composting process (Turan et al., 2017). Through the 662 

cleavage of cell wall proteins, microbial proteases play a crucial part in the interactions 663 

between the various soil microbiomes (Stach et al., 2018; Vranova et al., 2013). Lipases are 664 

extensively prevalent amongst microbes with substantial industrial value since triglycerides’ 665 

hydrolysis considerably contributes to the composting of sewage sludge (Pascoal et al., 2018). 666 
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Catalase preserves cells from reactive oxygen species oxidative damages by catalyzing the 667 

destruction of hydrogen peroxide into H2O and O2. This feature gives the strain remarkable 668 

resilience to several external mechanical and chemical limitations (Mushtaq et al., 2019). 669 

Furthermore, biosynthesis of the chitinolytic enzymes was detectable in the CCA medium. 670 

Actinobacteria strains' enzymatic activities exert a direct phytostimulation and biocontrol of 671 

pathogens, thus preventing plant pathologies. Nonetheless, degradation of lignin and Xylan 672 

was undetectable in this strain, despite the moderate growth of this strain on their respective 673 

test media. Hydrolytic enzymes are essential for improving soil fertility and characteristics. 674 

Soil enzymes degrade complex polysaccharides and proteins into simpler molecules (Turan 675 

et al., 2017). These enzymes are biotechnologically interesting and of significant commercial 676 

value (Islam et al., 2015; Reetha et al., 2014). The chitinolytic activity of Streptomyces AW 22 677 

may be implicated in the fungal cell wall digestion. The chitinase synthesis effectively 678 

inhibits fungal growth.  The aptitude of AW22 to secrete chitinases suggests its implication 679 

in the biocontrol of fungal phytopathogens and nutrient competition (Gherbawy et al., 2012). 680 

However, different mechanisms, like antibiosis, hyperparasitism, and proteolytic and 681 

lipolytic enzymes (Xu et al., 2017), are less studied. However, these mechanisms are also 682 

involved in the antagonism of plant-associated fungi.  683 

3.4. Plant sugar and nitrogen utilization profile of selected strain 684 

Physiologically, most reported actinomycetes isolates utilised different carbohydrates as the 685 

carbon source. This characteristic is pivotal in the actinobacteria taxonomic analysis 686 

(Pridham and Gottlieb, 1948). For instance, strain AW 22 efficiently assimilated D-glucose, D-687 

Xylose, D-Galactose, D- Mannose, Maltose, α-Lactose, D-fructose, D- Ribose, L-Rhamnose, 688 

Inositol and D-Mannitol. The strain could utilize a low proportion of L-Arabinose, Melibiose, 689 



36 
 

Sucrose and Sorbitol as carbon sources. However, AW 22 was unable to metabolise 690 

Raffinose. The results indicate broad carbon assimilation from various vegetal substrates and 691 

SCG (Table 9).   692 

AW 22 showed an extensive plant sugar utilization profile and a wide array of hydrolytic 693 

enzymes. The high proportion of sugars present in SCGs, notably mannose, galactose, 694 

glucose, and arabinose, explains the strain's ability to develop on an SCGs extract broth. 695 

Further, the IAA production of this strain on SCGs extract has been described for the first 696 

time in this report. This multi-functionality of Streptomyces strains may be accredited to their 697 

large genome and epigenetic factors, such as the location and the high contents of organic 698 

matter in wheat fields. 699 

 700 

Table 9. Carbon and nitrogen source utilization profile of AW 22. 701 

Carbon test items Result Carbon test 

items 

Result Nitrogen test 

items 

Result 

L-Rhamnose +++ D-Mannitol +++ Glycine + 

Sucrose ++ D-Xylose +++ Tyrosine +++ 

D-Glucose +++ L-Arabinose + L-Asparagine ++ 

Maltose +++ Raffinose - Proline ++ 

D- Ribose +++ D- Mannose ++ Casein ++ 

Melibiose ++ D- Galactose +++ L-Methionine + 

Lactose anhydrous +++ Starch +++   

Inositol +++ D-Fructose +++   

Sorbitol ++ α- Lactose +++   

Note: "+++" indicates growth in carbon or nitrogen source is excellent, "++" indicates growth in carbon 702 

or nitrogen source is good in general, "+" indicates growth in carbon or nitrogen source is weak, "-" 703 

indicates no growth in carbon or nitrogen sources. 704 

3.5. 16S rRNA Gene Sequencing 705 
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The AW22-related 16S rDNA sequence was deposited in the NCBI GenBank under the 706 

accession ID OP176004. Taxonomical analyses derived from 16S rRNA gene sequencing of 707 

AW22, the higher IAA producer, were compared with 98–99,99% similar sequences retrieved 708 

from the GenBank database. Sequence alignment confirmed that the strain belongs to the 709 

order Streptomycetales and the genus Streptomyces. 16S rRNA locus similarity calculations, 710 

based on neighbour-joining analysis, specified that the neighbouring relatives for strain 711 

AW22 were: S. rubrogriseus (KX431235) and S. fradiae (AB184063) with similarity values of 712 

99,22 %, and Streptomyces violaceoruber (MH155969) and Streptomyces lividans (KY767029) with 713 

99.04% similarity. The phylogenetic tree constructed with the neighbour-joining method and 714 

Tamura-Nei model is shown in figure 3. Strain AW22 formed an independent clade with S. 715 

anthocyanicus KU973991 separated from S. rubrogriseus CS3KG4LA166 (OM971238).  716 

 717 
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718 
Figure 3. Phylogenetic tree based on NJ method of 16S rRNA gene sequences of S. 719 

rubrogriseus AW22 and related strains.  720 

 721 

Neighbour-joining-based tree displaying the taxonomic position of AW 22 compared to its 722 

interrelated Streptomyces species. The records at nodes indicate the percentage of replicate 723 

trees where associated taxonomic units clustered via the bootstrap test relying on 1000 724 

replicates, with collapsed bootstrap replicates when values < 50%.  The p-distance served to 725 

compute developmental distances representing the units of the number of base differences 726 

per site. Less than 50% of placement gaps and alignment openings, incomplete data or 727 

ambiguous bases were permitted at any position. Subsequently, positions with < 50% site 728 

coverage were eliminated. The scale bar illustrates 0.0524 substitutions per position of 729 

nucleotide. 730 

 731 

 732 
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3.6. TLC and HPLC analysis of putative IAA  733 

The spots developed separately on TLC plates were examined under UV light at 245 nm. The 734 

findings demonstrated that authentic IAA and presumed IAA fractions isolated with EA 735 

from AW 22 filtrate exhibited similar retention factor (RF) values of 0.69. 736 

Likewise, the HPLC profile of the authentic IAA peaked at a retention time of 3.508 min, and 737 

putative IAA recovered from AW 22 showed up as a prominent area peak at a comparable 738 

retention time of 3.711 min with 0.761 mg/mL, confirming that strain AW 22 produced IAA. 739 

These results correspond with preceding studies (Myo et al., 2019). 740 

3.7. Time course of IAA and biomass production from strain AW 22  741 

Changes in biomass and IAA production for AW 22 over ten days of incubation are 742 

illustrated in Figure 4. Under optimal conditions, two growth phases of the cycle can be 743 

identified from the evolution of biomass, AW 22 cells, a long phase and a short phase.  744 

The strain's growth rate peaked at 712,27±0,4 mg of dry weight on the fifth day of incubation 745 

and then stabilized for two days. Thus, the cell dry weight decreased by the seventh day to 746 

reach 432,87±1,0 mg. However, the biomass increased again and peaked a second time at 747 

794,47±0,3 mg on the eighth day of incubation, where the germination of new spores may 748 

explain this phenomenon. Subsequently, the biomass decreased until the last sampling day. 749 

Furthermore, the IAA synthesis time course of AW 22 was studied over ten days. L-Trp was 750 

supplemented with 0.2% (w/v) at an early stage of cell growth. On the first day of incubation, 751 

AW22 yielded only 8,84±1,18 µg/mL of IAA followed by a gradual enhancement in IAA 752 

secretion parallelly with cell growth over the first seven incubation days to attain 37,52 ±2,18 753 

µg/mL to reach its maximum yield of 41,79± 1,73 µg/mL by the day 9. The growth of 754 

Streptomyces rubrogriseus AW22 was almost identical whether Trp was present or absent in 755 

the medium. Meanwhile, only the cultures fed with Trp exhibited increased IAA content. 756 
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The comparison of the evolution of biomass and IAA production indicates that this strain's 757 

synthesis of secondary metabolites was closely proportional to cell proliferation. 758 

 759 

Figure 4. Time course for IAA and Biomass production under standard conditions. 760 

 761 

3.8. Effect of substrate concentration on IAA production 762 

To attain low-cost IAA production, SCG was preferred as an alternative affordable 763 

fermentation substrate to substitute laboratory-grade carbon sources (Tran et al., 2023).  764 

Our previous experiments indicated that GYM broth containing 0.2% L-tryptophan resulted 765 

in the maximum IAA yield of 41,79±1,73 µg/mL under optimal media and culture conditions. 766 

Subsequently, we briefly assessed the ability of strain AW 22 to produce IAA on a minimal 767 

medium containing different carbon sources, ranging from 10-50% for the SCG and CBP and 768 

from 0,2-1% for glucose. Depending on the strain, various carbon sources affect IAA 769 

production differently. In some cases, different bacteria have other preferences for using 770 
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sugars, which can also impact auxin production through bacterial growth (Mohite, 2013; 771 

Sridevi et al., 2008). 772 

Fermentation performed with crude SCG and CBP extracts obtained with the hydrothermal 773 

method showed greater IAA yield after the same incubation period (data shown in figure 5).  774 

 775 

 776 

Fig.5. Effect of substrate concentrations on IAA production (µg/mL). 777 

Means were contrasted using a one-way ANOVA (p <0.05). Values consist of the average and 778 

standard deviations for three biological replicates of each experiment. According to Tukey, 779 

values that share a letter within a column are not statistically different. 780 

 781 

The optimal IAA yield was detected at 50% CBP and 50% SCG, with respectively, 82,3 ±2,18 782 

µg/mL and 81,5 ±1,47 µg/mL, being 10-fold higher than the negative control and about 2-fold 783 

more elevated than the positive control.  Nevertheless, no significant difference was 784 

observed between both IAA productivity on these two components when they were 785 

amended to the medium at a concentration of 50%. Indeed, the greater the concentration of 786 

SCG and CBP, the greater the IAA yield from strain AW 22. From the experimental data, we 787 
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postulate a favourable impact of gradient concentration of CBP and SCG as the only carbon 788 

suppliers on IAA synthesis. 789 

The glucose concentration had a smaller effect on IAA production than SCG and CBP. 790 

Conversely, IAA production was minimal in the medium containing SCG 10% with 8,4±0,14 791 

and reaching only 17,5±0,14 μg/ml, 27,3±0,22 μg/mL, 23,3±0,17 μg/ml with SCG 20 %, 30%, 792 

CBP 10 %, respectively. Moderate IAA concentrations were obtained in medium containing 793 

Glucose 0.2%, SCG 40% and CBP 20% with respectively, 30,0±0,08 µg/mL, 39,8±0,22 µg/mL 794 

and 48,2±0,17 µg/mL. Therefore, 30-50% SCG and CBP concentrations were selected for IAA 795 

production by strain AW 22.  796 

Additionally, the production of IAA was significantly impacted by the precursor Trp, as 797 

indicated by the increased IAA level in the positive control consisting of Glucose 0.5% 798 

containing L-Trp compared with the negative control devoid of L-Trp. IAA content 799 

augmented from 8,7±0,30 to 41,4±0,96 µg/mL in the broth containing 0.2% Trp. 800 

These findings suggest that this strain may use both L-Trp dependant and independent 801 

pathways to synthesize Auxin in the culture medium. The low amount of IAA produced in 802 

the minimal medium from which carbon and nitrogen supplies were omitted demonstrates 803 

illustrates how these macronutrients affect the formation of IAA in AW22.  804 

The increase in the carbon source (CBP, SCG or glucose) is followed by an increase in IAA 805 

productivity. These results advocate the critical role of carbon source concentration and L-806 

Trp serving as a precursor in IAA production. Moreover, it highlights the positive correlation 807 

between carbon source concertation and IAA yield. This influence may not be directly 808 

related to IAA production but indirectly by stimulating bacterial growth suggested earlier 809 

from the kinetic of IAA production and biomass production.  810 
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Therefore, carbon sources (CBP and SCG) and L-Trp concentrations were optimized using 811 

the following statistical approaches to develop a low-cost medium. A recent study reported 812 

similar IAA levels using crude glycerol and feed-grade tryptophan as economic substitutes 813 

for analytical-grade glycerol and tryptophan (Bunsangiam et al., 2021). Chaudhary et al. 814 

(2021) reported 18.74 mg/L mixing corn flour and soybean meal by Kosakonia 815 

pseudosacchari TCPS-4. Another report described considerable amounts of IAA (148 μg/ml) 816 

produced by Saccharothrix texasensis MB15 using wheat wastes (leaves and roots) (Benadjila 817 

et al., 2022).  818 

3.9. Influential factors screen using Plackett-Burman design (PBD)  819 

The PBD strategy investigated the fermentation parameters most significantly affecting IAA 820 

generation. The previous experiments identified four potentially important variables (SCG, 821 

CBP, tryptophan and incubation time) and were subject to the statistical screen with the PBD 822 

methodology.  823 

Fig. 6 shows that factor combination 10 exhibited optimum IAA production values, reaching 824 

161,95±3,96 µg/ml. Nonetheless, strain AW22 produced 33,26±2,01 µg/ml from medium 825 

composition 4.  826 
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Fig. 6. PBD trials related IAA production (µg/mL). 829 

Means were contrasted using a one-way ANOVA (p <0.05). Values consist of the average and 830 

standard deviations for three biological replicates of each experiment. According to Tukey, 831 

values that share a letter within a column are not statistically different. 832 

 833 

Table 10 records the statistical metrics of the PBD approach and factor effects on Y, the 834 

response value (IAA yield). One-way ANOVA clearly indicated that p-values for SCG, 835 

tryptophan, pH and temperature were significant (0,031, 0,001, 0,010 and 0,006, respectively). 836 

This analysis indicates that among the fourteen variables, these four factors are key 837 

parameters impacting the IAA yield and were identified as critical factors for the RSM 838 

approach.  839 

Temperature is a physiological factor affecting fermentation and ATP regulation  (Yan et al., 840 

2018). High or low temperatures may impact the biological activity of actinomycetes due to 841 

their slow growth (Kanimozhi et al., 2017; Sohn et al., 2023). In turn, this variation modulates 842 

the regulatory metabolic pathways and the constitution of the cell wall, resulting in a variety 843 

of metabolic responses and the synthesis of a wide array of products (Talukdar et al., 2016).  844 

Different IAA biogenesis pathways are evolutionary in microbiomes and their host plants. Di 845 

et al.  (Di et al., 2016) outlined distinct IAA biosynthesis pathways in multiple species. 846 

Contrary to nutritional effects, Trp has a crucial role in almost all bacterial strains that 847 

produce IAA. Tryptophan monooxygenase converts Trp to indole-3-acetamide before being 848 

processed into IAA via indole acetamide hydrolase. The iaaM gene codes for tryptophan 849 

monooxygenase, whereas the iaaH gene codes for indole acetamide hydrolase (Casanova et 850 

al., 2005; Park et al., 2021). Scientists reported three additional Trp-dependent pathways. 851 

According to reports, plants can maintain a baseline level of Auxin through Trp-independent 852 

pathways (Ribnicky et al., 2002). 853 
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Trp is typically required for bacteria to produce IAA, but the ideal concentration and 854 

maximum productivity depend on the species. Nevertheless, investigations on these 855 

bacterial IAA biosynthesis pathways are scarce. Additionally, researchers have not fully 856 

characterised the Trp-independent pathway in plants (Di et al., 2016). 857 

Nonetheless, the p-values for CBP, Starch, Tryptone, Yeast E, NaCl, K2HPO4, MgSO4, CaCO3, 858 

Incubation time and Inoculation amount % were > 0,05, and none of these variables was 859 

significant. Therefore, in the subsequent RSM analysis, these elements weren’t excluded from 860 

the culture medium but kept at their central (zero) level in the following RSM experiment.  861 

The factors with the most significant influence on IAA productivity are summarized in the 862 

Pareto chart (Figure 7) (Hymavathi et al., 2010). 863 

The t-value indicates each factor's positive and negative effects (Talhi et al., 2022). A positive 864 

value indicates that the factor positively impacts IAA yield; if the value is negative, the 865 

opposite is true. Table 10 demonstrates that SCG, Tryptone, L-Trp, NaCl, MgS04, Inc. Time, 866 

T°, pH, and Inoculation amount had positive effects on the IAA production, while the CBP, 867 

Starch, Yeast E, K2HPO4, CaCO3 had adverse effects. 868 

Organic and inorganic sources of nitrogen also impact IAA productivity by bacteria 869 

differently. According to Chandra et al. (2018), combining dextrose and beef extract as 870 

carbon and nitrogen sources was optimal for higher IAA productivity. Nonetheless, organic 871 

and inorganic nitrogen sources had no significant effect on IAA production from strain AW 872 

22. 873 

The variance of the actual response was explained accordingly with the decision coefficient 874 

R2 values to verify the accuracy and fitness of the model. The model's ability to explain the 875 

variation in dependent variables reduces as the R-squared value decreases. In our case, R2 876 

values could account for 95% of the variation in the data (the model could not explain only 877 
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5% of the variation), indicating the suitability of the analysis and prediction of changes in 878 

IAA generation during fermentation.  879 

 880 

Table 10. ANOVA analysis and coded coefficients of the tested factors for IAA production. 881 

Terms Fd SS SM Effect Coef SE 

Coef 

T-

value 

F-

value 

p-

Value 

Model 14 28449,8 2032,1     6,78 0,022 

Linear 14 28449,8 2032,1     6,78 0,022 

Constant     103,67 3,87 26,78 0,00 0,000 

X1: CBP (%) 1 0,4 0,4 -0,29 -0,14 3,87 -0,04 8,85 0,972 

X2: SCG (%) 1 2651,2 2651,2 23,03 11,51 3,87 2,97 0,04 0,031 

X3: Starch 1 13,1 13,1 -1,62 -0,81 3,87 -0,21 1,70 0,843 

X4: Tryptone (g/L) 1 509,6 509,6 10,10 5,05 3,87 1,30 0,01 0,249 

X5: Yeast E (g/L) 1 3,3 3,3 -0,81 -0,41 3,87 -0,11 41,16 0,920 

X6: L-Trp (%) 1 12332,9 12332,9 49,66 24,83 3,87 6,42 0,22 0,001 

X7 : NaCl (g/L) 1 67,3 67,3 3,67 1,83 3,87 0,47 0,55 0,656 

X8: K2HPO4 (g/L) 1 164,0 164,0 -5,73 -2,86 3,87 -0,74 0,30 0,493 

X9: MgSO4 (g/L) 1 90,4 90,4 4,25 2,13 3,87 0,55 1,94 0,606 

X10 : CaCO3 (g/L) 1 580,6 580,6 -10,78 -5,39 3,87 -1,39 3,57 0,223 

X11: Incub. Time 

(Days) 

1 1068,3 1068,3 14,62 7,31 3,87 1,89 20,32 0,118 

X12: T° 1 6088,2 6088,2 34,89 17,45 3,87 4,51 16,20 0,006 

X13: pH 1 4854,4 4854,4 31,16 15,58 3,87 4,03 0,09 0,010 

X14: Inoc. amount % 1 26,0 26,0 2,28 1,14 3,87 0,29 6,78 0,780 

Error 5 1498,2 299,6       

Total 19 29948,0        

Model S R2 R2 

(prév) 

      

17,3102 95,00% 19,96%       
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 882 

 883 

 884 

Fig. 7. Pareto chart describing the normalized effects for IAA production. 885 

 886 

3.10. Modeling using the RSM-BBD  887 

The microbial fermentation process is complex, nonlinear, and unstructured. The yields of 888 

specific compounds can be affected by slight changes in the fermentation media composition 889 

and the operating culture parameters, altering the strain's metabolic profile (Kaur et al., 890 

2014). Ideal fermentation conditions can be challenging to determine, requiring experimental 891 

designs. RSM helps improve the culture medium composition and operating conditions, 892 

enhance IAA productivity and participate in the search for natural physiologically active 893 

substitutes for chemical agro-actives  (Arul Jose and Jebakumar, 2014; Mazarei et al., 2017).  894 
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The primary function of the Box-Behnken experimental design from RSM is to forecast which 895 

suitable quadratic model will better elucidate the correlation between inputs and outputs. 896 

BBD was carried out to optimise further the concentration of the four factors defined as 897 

significant using PBD analysis at three levels to identify the best fermentation conditions for 898 

the low-cost process. Figure 8 shows the IAA yield obtained from BBD trials. 899 

In this design, run 12 comprising in (w/v) L-Trp, 0,6% and SCG, 30% with T°, 30,5 and pH 900 

8,05 was ideal for IAA secretion, peaking to 184,36±7,85 μg/mL. Nonetheless, the least IAA 901 

amount of 18,56±1,26 μg/mL was notied in run 11 containing (w/v) L-Trp, 0,2% and SCG, 902 

40% with T°, 35 and pH 8,05, which is about 10-fold.  903 

 904 

 905 

Fig. 8. IAA production according to BBD trials (µg/mL). 906 

Means were contrasted using a one-way ANOVA (p <0.05). Values consist of the average and 907 

standard deviations for three biological replicates of each experiment. According to Tukey, 908 

values that share a letter within a column are not statistically different. 909 
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3.11. Postulated model and statistical validation 912 

The statistical metrics of factor significance, the coded coefficients of variables and other 913 

model details obtained from ANOVA are summarized in table 11. In contrast, table 4 lists the 914 

actual and predicted response values for IAA productivity.  915 

 916 

Table 11. Statistical metrics of the tested factors on IAA production for BBD experiment. 917 

Terms Fd SS SM Coef SE 

Coef 

T-

value 

F-

value 

p-

Value 

Modèle 14 55808,6 3986,3    2,99 0,028 

    Linear 4 42806,9 10701,7    8,02 0,002 

    Constant     120,3 18,3 6,58 0,000 0,000 

    L-Trp 1 30105,5 30105,5 50,1 10,5 4,75 0,000 0,000 

    T° 1 2309,5 2309,5 -13,9 10,5 -1,32 0,211 0,211 

    pH 1 7042,6 7042,6 24,2 10,5 2,30 0,039 0,039 

    SCG 1 3349,3 3349,3 -16,7 10,5 -1,58 0,137 0,137 

  Squares 4 6422,4 1605,6    1,20 0,356 

    L-Trp*L-Trp 1 4081,5 4081,5 -26,1 14,9 -1,75 3,06 0,104 

    T°*T° 1 3188,5 3188,5 -23,1 14,9 -1,55 2,39 0,146 

    pH*pH 1 149,8 149,8 -5,0 14,9 -0,33 0,11 0,743 

    SCG*SCG 1 6,6 6,6 -1,0 14,9 -0,07 0,00 0,945 

  Interactions  6 6579,3 1096,6    0,82 0,573 

    L-Trp*T° 1 901,7 901,7 -15,0 18,3 -0,82 0,68 0,426 

    L-Trp*pH 1 1084,1 1084,1 16,5 18,3 0,90 0,81 0,384 

    L-Trp*SCG 1 2314,4 2314,4 -24,1 18,3 -1,32 1,73 0,211 

    T°*pH 1 0,4 0,4 -0,3 18,3 -0,02 0,00 0,987 

    T°*SCG 1 1117,5 1117,5 16,7 18,3 0,91 0,84 0,377 

    pH*SCG 1 1161,2 1161,2 17,0 18,3 0,93 0,87 0,368 

Error 13 17357,1 1335,2      
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Lack of fit 10 8597,1 859,7    0,29 0,938 

Pure error 3 8760,1 2920,0      

Total 27 73165,8        

Model S R2 R2 (adj) R2 

(pred) 

    

36,5399 76,28% 50,73% 11,03%     

 918 

A p-value of less than 0,05 reveals the significance of the model. Furthermore, the probability 919 

value also shows that the model suits and fits the experimental data. Nevertheless, the low 920 

model F-value of 2,99 suggests a low model accuracy.  921 

3.12. Factors effects and fitted model 922 

From these data, the model terms L-Trp and pH were significant (p<0,05), while values 923 

greater than 0,1000 were insignificant. The linear effects were substantial, as revealed by the 924 

monomial coefficients L-Trp and pH having a p-value less than 0,05. The other terms' p-value 925 

was greater than 0,05, indicating a negligible linear impact. The lack of a significant 926 

interaction between L-Trp and pH shows no interaction between the two variables. 927 

Moreover, an F-value and a p-value of the lack of fit of the response function are 928 

respectively 0,29 and 0,938, suggesting the model fitting was not satisfying. In our 929 

investigation, the F0 of 0,29 is inferior to Fcritic (0.05, 10.3) = 8.79. Therefore, we 930 

cannot settle that the model does not adequately fit the data in this instance 931 

(Montgomery, 2019).  932 

An ANN-GA modeling based on nonlinear regression will be implemented to understand 933 

the given data further. The determination coefficient R-squared, which had a value of 76,28% 934 

and indicated that the model did not account for 23,72% of the total variation in IAA 935 
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production, was used to evaluate the significance and correctness of the model developed in 936 

this study. The adj R2 value of 50,73% indicates low reliability between the experimental 937 

output values and those predicted by the model. These results further demonstrated the 938 

model's low accuracy, suggesting that the equation used to create the model does not 939 

suitably reflect the test value. As a result, the regression model was assumed to not 940 

adequately and effectively analyze and predict the IAA generation of the S. rubrogriseus AW 941 

22.  942 

The regression was conducted to fit the response function to the empirical data. 943 

Subsequently, the second-order polynomial regression equation analyzing the regression 944 

model and describing the predicted response (Ypred=IAA in µg/mL) generated from RSM is 945 

represented as follows (Eq. 14).  946 

 947 

IAA (µg/mL) = 120,3 + 50,1 L-Trp - 13,9 T° + 24,2 pH - 16,7 SCG - 26,1 L-Trp*L Trp- 23,1 T°*T° 948 

- 5,0 pH*pH - 1,0 SCG*SCG - 15,0 L-Trp*T° + 16,5 L-Trp*pH - 24,1 L-Trp*SCG - 0,3 T°*pH 949 

+ 16,7 T°*SCG + 17,0 pH*SCG                                                      (Eq. 14) 950 

 951 

3.13. Contour plots 952 

The contour plots (2D) in Figure 9 designate the graphical representation of the correlations 953 

between the significant process factors, optimal values and the specific output variability 954 

(Baş and Boya, 2007). These graphics help understand and describe the two variables' 955 

combined effect on IAA production by AW 22. According to the contour plot forms, it is 956 

possible to instantly verify the significance of the interaction, which may be high if the 957 

contour plot is elliptical and saddle or, on the contrary, low if it represents a circular shape 958 



52 
 

(Berkani et al., 2019). At the same time, the remaining pair of factors were kept at their centre 959 

point, thus efficiently determining the maximum response value under the influence of the 960 

operating inputs. 961 

The contour plots are elliptical, describing the significant impact of interactions between T°-962 

L-Trp, pH- L-Trp and SCG- L-Trp. The maximum IAA yield was achieved at low 963 

temperatures, and high L-Trp with pH and SCG were fixed at the zero level, as shown in 964 

figure 9 (a). However, figure 9 (b) explains a maximum production at alkaline pH and high 965 

L-Trp concentration. Moreover, when SCG concentration was low and accompanied by a 966 

high concentration of the precursor L-Trp, IAA reached its maximum level, as shown in 967 

figure 9 (c). Elliptical interactions were also noticed for (pH, T°), (SCG, T°), represented 968 

respectively in figure 9 (d), (e), inform that low T° with alkaline pH and low T° with low 969 

SCG concentration respectively can lead to elevated IAA concentrations. For SCG and pH, 970 

represented in figure 9 (f), contour lines were rounded, suggesting the absence of 971 

significance. 972 

 973 
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 974 

Fig. 9. Contour plots of the IAA production implicating binary independent variables as the 975 

coordinates. 976 

3.14. Process modeling using ANN-GA  977 

The primary motive of this study resides in developing a suitable ANN model for the IAA 978 

production process using SCG as a low-cost culture medium while minimizing the average 979 

error calculated between actual and predicted output values (Smaali et al., 2021)  980 

The BBD experimental data (Table 4) and an extra forecasted data set points (200) generated 981 

from the second-order polynomial regression equation (Eq. (13)) were processed to create an 982 

accurate, robust and reliable ANN model. These data sets were carefully divided into three 983 

segments: training (70%), testing (15%), and validating (15%). 984 

To prevent over-fitting data, the ANN was trained using a maximal set of data, along with 985 

self-tests and validations at each iteration. The ANN’s global performance will vary 986 

depending on the transfer functions implemented to train the network (Bhattacharya et al., 987 



54 
 

2017). Thus, in this investigation, both the tangent-sigmoidal transfer function and the pure-988 

linear transfer function at the hidden layer node and at the output layer node, respectively, 989 

were applied. Thus, these functions were more efficient than others by giving the lowest 990 

MSE and the highest R2 values. 991 

The suitable number of hidden neurons was carefully chosen according to previous studies 992 

since the number of hidden neurons significantly affects simulation performance and the 993 

ideal network topology (Dhanarajan et al., 2014). The process of modeling is slow when 994 

number of neurons is low. Contrarily, extra neurons result in over-fitting, reflected by 995 

absorbing the noise in the data needed for training the network, which reduces the 996 

robustness and generalizability of the ANN model (Fan et al., 2017).  997 

Therefore, the “trial-error minimization” approach was employed to select the optimal hidden 998 

neurons’ number (Ebtehaj and Bonakdari, 2013). This approach compares the calculated 999 

network error with the output. It continuously adjusts the training network's weights and 1000 

biases until it reaches the lowest MSE achievable for a specific number of hidden neurons. 1001 

For modeling the IAA production process, (1–10) hidden neurons were tested to select the 1002 

optimal network topology according to the MSE value/number of neurons relationship.  1003 

The one hidden layer standard multilayer feed-forward network has been considered a 1004 

universal approximator (Lin et al., 2021; Zhang and Pan, 2014). However, this study 1005 

configures the model with two hidden layers. 1006 

According to figure 10 (a,b), the training converged after 129 epochs with the lowest mean 1007 

square error. Thus, upon iterative training of the ANN, the model achieved a maximum R-1008 

value of 0,999 (Figure 10a) along with a minimum MSE value of 1,86×10-5 (Figure 10b) at 129 1009 
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epochs for 6 neurons in the hidden layer with tangent-sigmoidal transfer function. Therefore, 1010 

the best network architecture of 4-6-1 is used for process optimization, representing 4 inputs 1011 

in the first layer, 6 neurons in the hidden layer, and one output in the last layer. The R2 value 1012 

close to 1 and a low MSE value indicate that the performance of the developed model was 1013 

satisfying and suitably fits the IAA experimental values.  1014 

 1015 

 1016 
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 1017 

Fig. 10. (a) Regression plot illustrating the correlation between predicted and experimental 1018 

output values; (b) Performance of the ANN model at the training's last stage exhibiting an 1019 

MSE of 1,86×10-5 at 129 epochs.  1020 

 1021 

3.15. GA-assisted optimization  1022 

Additionally, the GA algorithm was operated to optimize the ANN model and locate the 1023 

operating conditions' stationary points that would provide the maximum IAA yield. The GA 1024 

approach used temperature, initial pH, initial concentration of L-Trp, and SCG as the input 1025 

parameters to optimize, starting with a population of random regimes. The optimum points 1026 

of the process variables were selected between the lower and upper ranges presented earlier 1027 

in table 3. The findings revealed that the maximal IAA level was 226,04 µg/mL under the 1028 

optimized conditions of the four variables, summarized in table 12. 1029 

 1030 
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3.16. Experimental validation of results 1031 

The reliability of both postulated models to predict maximum output data was confirmed. 1032 

For occurrence, triplicate experiment sets were conducted considering the conclusions of 1033 

RSM-assisted optimization using the desirability function and the ANN-GA-predicted 1034 

optimal levels of process parameters. Experimental output values were subsequently 1035 

contrasted with their corresponding simulated responses predicted by the RSM-BBD and 1036 

ANN-GA modeling. 1037 

Predicted optimum levels of inputs, adjusted target output values, and actual response 1038 

values for RSM-BBD and ANN-GA postulated models are illustrated in table 12.   1039 

 1040 

Table 12. Factors configuration with the predicted and experimental response values.  1041 

Factors Actual value of 

predicted optimum 

Predicted max. 

Y value 

(µg/mL) 

Desirability Expreimental Y 

value (µg/mL) 

RSM-BBD 

L-Trp 0,572 184,363 1 183,45±0,18  

T° 31,25   

pH 9   

SCG 30   

ANN-GA 

L-Trp 0,6 226,04  188,290±0,38  

 T° 25,8   

pH 9   

SCG 30   
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According to table 12, the experimentally recorded IAA was 183,45±0,18 µg/mL, which was 1042 

close to the predicted value (184,363 µg/mL) for the RSM-BBD model. For the ANN-GA, the 1043 

observed IAA concentration obtained from validation experiments (188,290±0,38) closely 1044 

matched the expected value (226,04 µg/mL) with a slight difference, suggesting the adequacy 1045 

and validity of the model. However, the optimums obtained from ANN-GA permitted an 1046 

even higher IAA yield than with RSM-BBD-based modeling.  1047 

Moreover, strain AW22 produced substantially more IAA while utilizing the improved 1048 

medium. Enhancement in IAA productivity was up to 4,55-fold and 4,46-fold with ANN-GA 1049 

and RSM, respectively, compared with the one obtained using the unoptimized 1050 

medium. This difference between predicted and experimental values may not only be due to 1051 

the genotyping source but also some epigenetic factors such as medium characteristics. We 1052 

speculate that this value is the maximum value that strain AW22 can achieve on an SCGs 1053 

medium. 1054 

The ANN-GA presents higher prediction accuracy in terms of IAA response prediction, the 1055 

higher R2 and the lower MSE compared to RSM, regarding the neglected possibility of the 1056 

model getting into overfitting or underfitting after optimization. This performance is 1057 

attributed to the overall ability of ANN-GA to analyze the nonlinear behaviour of the 1058 

system. At the same time, the response surface model is limited by second-order polynomial 1059 

regression. Therefore, these findings confirm the suitability of the ANN-GA assisted 1060 

modelisation as an alternative to RSM-based models in predicting microbial metabolic 1061 

profiles, such as IAA. 1062 

 1063 
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4. Conclusion 1064 

Reports on the effective IAA production from rhizospheric and endophytic Streptomyces 1065 

strains are growing. Nonetheless, this is the first report on Streptomyces rubrogriseus AW 22 1066 

isolated for the first time from wheat rhizosphere in the unexplored region of Tiffeche in the 1067 

Souk-ahras province in Algeria. Moreover, this is the first study exploring its IAA 1068 

production potential that has never been reported till now. AW 22 showed pertinent 1069 

enzymatic activities and unique pigments on various culture media. Moreover, this study 1070 

describes the valorization of SCGs for in vitro and in silico low-cost medium engineering with 1071 

machine learning tools such as RSM and ANN-GA. This novel advanced approach aims to 1072 

maximize organic IAA production using SCG hydrothermal extract as a low-cost substrate to 1073 

predict optimal operation conditions for maximizing IAA yield while minimizing the 1074 

process costs and reducing the processing time and the number of experiments. These 1075 

findings demonstrate the higher reliability ANN-GA-based model compared to RSM. The 1076 

reason may be due to microbial growth and metabolism's nonlinear and complex 1077 

characteristics. The multi-functionality of S. rubrogriseus AW 22 opens up new prospects in 1078 

agricultural management approaches as organic plant growth promoters and its production 1079 

at the industrial scale. Thus, it is essential to elaborate a metabolic profile for AW 22, to 1080 

investigate its plant nutrient uptake improvement, such as phosphate solubilization, and to 1081 

evaluate the strain’s in vivo biocontrol potential of soil-borne pathogens. 1082 

This investigation gives exciting insights into the possible orientation of this bioprocess into 1083 

large-scale industrial production of Streptomyces-originated IAA for commercial purposes, 1084 

with an ambition to formulate a product with an extended shelf life. Furthermore, 1085 

formulation assays of the strain’s biomass will be an asset. Thus, determining the IAA 1086 

biosynthetic pathway in this strain would be the object of future investigation.  1087 
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