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The propagation of a fast particle in a low-density gas at thermal equilibrium is studied in the
context of quantum mechanics. A quantum master equation in the Redfield form governing the
reduced density matrix of the particle is derived explicitly from first principles. Under some approx-
imations, this equation reduces to the linear Boltzmann equation. The issue of the positivity of the
time evolution is also discussed by means of a Lindblad form. The Born and Markov assumptions
underlying these equations, as well as other approximations regarding the bath correlation function,
are discussed in details. Furthermore, all these master equations are shown to be equivalent with
each other if the density matrix of the particle is diagonal in the momentum basis, or if the collision
rate is independent of the particle momentum.

I. INTRODUCTION

How does a quantum particle propagate in a particle
detector ? This question is not obvious from the per-
spective of quantum mechanics because, in principle, it
requires including the detector and all its constituents
in the wave function of the system. However, the many
degrees of freedom of such a system makes any direct so-
lution of the Schrödinger equation impossible in general.
A convenient way to address this issue is to resort to
approximate evolution equations for the reduced density
matrix of the particle, often referred to as quantum mas-
ter equations [1–3]. Famous examples include the Red-
field equation and the Lindblad equation [1–3]. The Red-
field equation is a Markovian equation governing the evo-
lution of systems weakly coupled to an environment. It
was historically developed in the context of nuclear mag-
netic resonance [4, 5]. However, the Redfield equation is
known to violate the positivity of the reduced density ma-
trix for certain initial conditions [2, 3]. This means that,
in special circumstances, some eigenvalues of the density
matrix, representing probabilities, could be negative or
larger than one. This issue is a very active topic in the
literature [6–11], and is typically addressed by resorting
to a master equation in the Lindblad form [12–14], at
the cost of additional assumptions. Indeed, as shown in
the literature [12, 13], the Lindblad equation is the most
general Markovian master equation preserving the posi-
tivity, and even the complete positivity, of the reduced
density matrix.

Regarding the propagation of a particle in a gaseous
environment, a good candidate is the Boltzmann equa-
tion [15–19]. This essential equation of non-equilibrium
statistical mechanics is especially well suited to describe
the kinetics of gases. Attempts to generalize the non-
linear Boltzmann equation to quantum gases date back
to the 1920s with the historical papers by Nordheim [20]
and Uehling and Uhlenbeck [21]. These quantum Boltz-
mann equations include modifications to account for the
Fermi-Dirac or the Bose-Einstein statistics of the quan-
tum gas [22]. However, they are nonlinear in the distri-
bution function, and actually even more nonlinear than
the original Boltzmann equation. They are beyond the

scope of the present work, since the quantum statistics
of gas molecules may generally be neglected in particle
detectors.

In general, quantum master equations can be used
to study decoherence in open systems. Decoherence is
defined as the decay over time of the off-diagonal ele-
ments of the reduced density matrix of the system due
to the entanglement with a quantum environment [1–
3, 23]. In the context of collisional decoherence [2, 24–
34], entanglement is caused by the collisions between
the particle of interest and the gas scatterers. In prac-
tice, the resulting diagonalization of the density matrix
leads to the decrease of the visibility of interference pat-
terns [23, 24, 28, 29]. Decoherence was originally pro-
posed by Zeh and Joos as a key ingredient to understand
quantum measurement [35–38]. Indeed, these processes
share several common characteristics, especially the fact
that they are both irreversible in most practical situa-
tions [2, 3, 23, 38–40]. Collisional decoherence is now
a well established theory which is successfully confirmed
by experiments on matter-wave interferometry, even for
very large molecules [24, 41–54]. However, this theory
has never been applied to the case of fast particles of a
few MeVs which is considered in the present work.

The main purpose of this paper is to derive a quan-
tum master equation for the reduced density matrix of a
fast particle propagating in a gas at thermal equilibrium.
In particular, this equation is desired to be consistent
in the Wigner representation with the linear Boltzmann
equation. To this end, the derivation will resort to the
Redfield equation, and will assume that the interaction
potential between the particle and the scatterers is in-
variant under spatial translations. In the framework of
the Lindblad equation, it is known that such an assump-
tion provides constraints on the structure of the master
equation [55–57]. A similar structure is found in this pa-
per but for the Redfield equation. Furthermore, it turns
out that the results of this paper are consistent with the
master equations obtained in the literature on the quan-
tum Brownian motion of a slow particle [25–31]. This
consistency suggests that the assumption of a fast par-
ticle does not play a significant role in the derivation.
This is indeed the case, as shown in this paper. The
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long-term goal of this work is to develop a fully quantum
model for the propagation of ionizing fast particles, in-
cluding alpha particles from typical radioactive sources,
in a gaseous detector such as a cloud chamber or an ion-
ization chamber [58–60].

This paper is organized as follows. Preliminary re-
marks and assumptions introducing the quantum system
are presented in Sec. II. In particular, the momentum
states are defined in Sec. IIA, the full Hamiltonian of
the system in Sec. II B, and the thermal state of the gas
in Sec. II C. Section IID gives a reminder about binary
collisions, especially the Fermi golden rule and the cross
section. Then, the derivation of the quantum master
equations is presented in Sec. III, and is based on the
Redfield equation introduced in Sec. IIIA. The expan-
sion of the collision terms ultimately leads to the sim-
plified Redfield equation in the end of Sec. III B, which
is the main result of this paper. The issue of the non-
positivity of this equation is discussed in Sec. III C with
respect to an approximate Lindblad form. Finally, the
simplified Redfield equation is shown to reduce to the
linear Boltzmann equation in Sec. IIID. Conclusions are
drawn in Sec. IV.

Throughout this paper, SI units are used. In partic-
ular, h is the Planck constant, ℏ = h/2π is the reduced
Planck constant, and kB is the Boltzmann constant. All
the calculations will be performed in arbitrary dimension
d ∈ {1, 2, 3, . . .}. Quantum operators will be denoted as

Â to distinguish them from the associated eigenvalue A.

II. PRESENTATION OF THE MODEL

A. Momentum states

First, one assumes that all the particles in the system
are contained in the cubic region V of side L. Conse-
quently, the momentum eigenstates are defined for all
r ∈ V as

⟨r|k⟩ = 1√
V

eik·r , (1)

where V = Ld is the volume of the region V. If periodic
boundary conditions are imposed on the wave function,
then the momentum is quantized to the cubic Bravais
lattice

k =
2π

L
(n1, n2, . . . , nd)

⊺
, (2)

where (n1, n2, . . . , nd) ∈ Zd. Therefore, the orthogonality
relation reads〈

k
∣∣k′〉 = ∫

V

1

V
ei(k

′−k)·r dr = δk−k′ , (3)

where δx denotes the single-argument Kronecker delta,
which is equal to one if x = 0, and zero otherwise. Fur-
thermore, according to Eq. (3), the norm of the momen-
tum states is just ⟨k|k⟩ = 1. The momentum states |k⟩

are thus dimensionless, as it should be for a properly
normalized quantum state. In the limit of infinite quan-
tization volume (V → ∞), the momentum spectrum be-
comes continuous and the orthogonality relation (3) can
be approximately expressed in term of the Dirac delta

〈
k
∣∣k′〉 ≃ (2π)d

V
δ(k− k′) . (4)

This is only approximate because the limit V → ∞ can-
not be rigorously taken at this stage. Note that, in
contrast to δ(x), the square of δx is properly defined:
δ2x = δx. This is why the discrete basis (1) will be pre-
ferred for the calculations.
This way of normalizing the momentum eigenstates

prevents possible infinities from occurring when evaluat-
ing integrals [25, 27]. This is also physically motivated
by the fact that plane waves are actually idealizations
of wave packets with finite spatial extension, especially
when the particles are confined in a sealed enclosure rep-
resenting the gaseous detector. The confinement is cru-
cial to properly define the density of the gas n = N/V ,
but also to ensure that the collision rate with the incident
particle is finite. This is why the incident particle is also
assumed to be contained in the region V.
The resolution of identity resulting from the orthogo-

nality relation (3) reads

1̂ =
∑
k

|k⟩ ⟨k| ≃ V

(2π)d

∫
Rd

|k⟩ ⟨k|dk . (5)

The sum in Eq. (5) implicitly runs over the wave vectors
of the cubic Bravais lattice (2). Except otherwise men-
tioned, all the sums over the momentum in this paper
will run over the cubic Bravais lattice. Another corollary
of Eq. (1) is the trace over the momentum states

Tr Â =
∑
k

⟨k| Â |k⟩ ≃ V

(2π)d

∫
Rd

⟨k| Â |k⟩dk . (6)

More generally, any sum over the discrete momentum ba-
sis can be replaced in the continuum limit by an integral
according to the rule:∑

k

→
∫
Rd

V

(2π)d
dk . (7)

However, each factor V that will appear in this way will
have to be compensated by a V in the denominator in
order to regularize the limit V → ∞.

B. Hamiltonian and assumptions

One considers a model for a spinless quantum particle
of mass ma interacting with a gas composed of N mobile
scatterers of mass mb. In the nonrelativistic regime, the
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Hamiltonian of the whole system reads

Ĥ =
p̂2
a

2ma︸︷︷︸
Ĥa

+

N∑
i=1

p̂2
i

2mb︸ ︷︷ ︸
Ĥb

+

N∑
i=1

u(r̂− x̂i)︸ ︷︷ ︸
Û

, (8)

where (r̂, p̂a) are the position and the momentum of the
particle, and (x̂1, x̂2, . . . , x̂N ) and (p̂1, p̂2, . . . , p̂N ) are
the positions and the momenta of the scatterers, respec-
tively. The wave functions of both the particle and the
scatterers are subject to the periodic boundary condi-
tions discussed in Sec. IIA. This allows the use of the
quantized momentum states |k⟩ defined in Eq. (1) and
the subsequent formalism.

Furthermore, the potential u(r) in Eq. (8) is supposed
to be a spherically symmetric bump function of range R
such that

R ≪ ς , (9)

where ς (sigma) denotes the mean distance between near-
est neighboring scatterers defined as

ς =

(
V

N

) 1
d

. (10)

Note that the short-range constraint of Eq. (9) excludes
Coulomb interactions which nevertheless play an impor-
tant role in the propagation of fast charged particles in
matter [58–60].

In addition, the mean free path ℓs defined as [3, 16, 19,
58–64]

ℓs =
1

nσ
, (11)

is assumed to be large enough compared to the particle
wavelength:

ka,0ℓs ≫ 1 . (12)

In Eq. (12), ka,0 = 2π/λa,0 denotes the initial wavenum-
ber of the particle. The condition (12) is generally
referred to in the literature as the weak scattering
regime [62] or the weak disorder regime [61]. This con-
dition will be particularly important in Sec. III B and in
Appendix A.

The density matrices of the entire system, of the gas,
and of the particle will be denoted as ρ̂, ρ̂b, and ρ̂a, re-
spectively. In particular, the reduced density matrix of
the incident particle is given by

ρ̂a(t) = Trb ρ̂(t) , (13)

where Trb denotes the partial trace over the states of the
scatterers. At every time t, the quantum state of the
particle is completely described by the density matrix
ρ̂a(t). At the beginning (t = 0), the particle is assumed
to be in the pure momentum state ρ̂a(0) = |ka,0⟩ ⟨ka,0|.

Under the effect of the collisions between the particle
and the scatterers, the partial trace (13) is expected to
decrease the purity of the density matrix ρ̂a(t). This
process is known as the collisional decoherence [24–26,
28, 29, 34], and is the focus of this paper.
Furthermore, having in mind a gaseous particle detec-

tor, the particle of mass ma represents the incident ion-
izing radiation. This particle is thus significantly more
energetic than the scatterers at the beginning of the in-
teraction. In this way, the particle slows down under the
effect of collisions until it reaches thermal equilibrium
with the gas. According to Eq. (8), the only way for the
particle to loose its energy is through the recoil of the
scatterers. This recoil is supposed to approximate more
realistic energy loss processes such as the excitation or
the ionization of the gas molecules.
Finally, the Hamiltonian (8) neglects the possible in-

teractions between the scatterers of the gas themselves.
This assumption is reasonable for an ideal dilute gas.

C. Thermal state of the gas

Regarding the gas of scatterers, it is characterized by
the thermal de Broglie wavelength λT, and equivalently
by the thermal wavenumber kT. They are respectively
defined as [18, 65]

λT =
h√

2πmbkBT
and kT =

1

ℏ
√
2πmbkBT , (14)

where T is the absolute temperature. One assumes that
the thermal wavelength is much smaller than the mean
interscatterer distance

λT ≪ ς , (15)

so that the gas may be described at equilibrium by the
classical Maxwell-Boltzmann statistics, instead of quan-
tum statistics such as the Bose-Einstein or the Fermi-
Dirac statistics. Although quantum master equations
may also be derived without this assumption [22], it is
perfectly reasonable in the framework of gaseous parti-
cle detectors where condition (15) is generally fulfilled.
Therefore, one assumes that the gas is at thermal equi-
librium and that its density matrix is given by

ρ̂b =
1

Z
e−βĤb , (16)

where Z = Z(β) is the partition function and β = 1/kBT
is the inverse temperature. Given the equilibrium as-
sumption (16), the gas will often be referred to as the bath
in which the particle is immersed. In fact, this assump-
tion is not necessary for the development of the quantum
master equations made in Sec. III. It mainly helps to
interpret the partial trace (13), as one will see soon.
The partition function of Eq. (16) is given by

Z = Tr(e−βĤb) =
∑

k1,...,kN

e
− ℏ2

2mbkBT

∑N
i=1 k2

i . (17)
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With the factor (17), the density matrix (16) is normal-
ized according to Trb ρ̂b = 1. In principle, the overcount
of indistinguishable quantum states under the exchange
of particles should be corrected by the permutation fac-
tor N !. However, this correction is here omitted because
it is compensated nearly everywhere and thus has no con-
sequence on the sought quantum master equations. Us-
ing the continuum approximation (6) of the sum over
k1, . . . ,kN and the thermal wavenumber (14), the parti-
tion function (17) becomes

Z =

(
L

2π

∫
R
e−πk2/k2

T dk

)Nd

=

(
L

2π
kT

)Nd

=

(
V

λd
T

)N

.

(18)
Note that the ratio V/λd

T can be interpreted as the num-
ber of ways that a gas particle whose quantum state ex-
tends over the effective volume λd

T can occupy the volume
V . The powerN comes from the N independent particles
to be placed in the volume V , knowing that the particles
are independent of each other. As mentioned above, the
permutation factor N ! has been omitted in Eq. (18).

The density matrix (16) has the particularity of being
diagonal and factorizable in the momentum basis since
[ρ̂b, p̂i] = 0 ∀i but also [p̂i, p̂j ] = 0 ∀i, j. Therefore, one
can write

⟨k1, . . . ,kN | ρ̂b |k1, . . . ,kN ⟩ = ρb(k1,k2, . . . ,kN )

=

N∏
i=1

ρb(ki) ,
(19)

where ρb(kb) denotes the Maxwell-Boltzmann distribu-
tion for a generic bath particle of momentum kb. This
distribution is given by

ρb(kb) =
λd
T

V
e−πk2

b/k
2
T . (20)

The distribution (20) is normalized according to∑
kb

ρb(kb) = 1 . (21)

It is also useful to look at the position-basis represen-
tation of the density matrix (16). In contrast to the
momentum representation, the position representation is
not diagonal, but can nevertheless be factorized as fol-
lows

⟨x1, . . . ,xN | ρ̂b |x̃1, . . . , x̃N ⟩ =
N∏
i=1

ρb(xi, x̃i) . (22)

The single-particle density matrix, ρb(x, x̃), in Eq. (22)
is given by the Fourier transform

ρb(x, x̃) =
1

(2π)d

∫
Rd

ρb(kb) e
ikb·(x−x̃) dkb

=
1

V
e−

1
4π k2

T(x−x̃)2 .

(23)

The density matrix (23) is symmetric with respect to
the matrix transpose x ↔ x̃, and is equal to 1/V along
the diagonal (x = x̃). It also quickly vanishes for large
separation distance ∥x− x̃∥ ≫ λT. The characteristic
decay length is known as the coherence length and can
be defined as [66, 67]

Λ(x̃)2 =

∫
Rd ∥x− x̃∥2 |ρb(x, x̃)|2 dx∫

Rd |ρb(x, x̃)|2 dx
. (24)

In the case of the thermal density matrix (23), one finds
the constant value

Λ2 =
d

4π
λ2
T . (25)

This shows that the coherence length of one of the gas
particle is of the order of the thermal wavelength λT.
Therefore, the quantum-wave nature of the gas particle is
only meaningful for distances smaller than λT. This fact
is also supported by the remark below Eq. (18) that the
quantum state of the gas particle occupies the effective
volume λd

T in the medium.
Last but not least, it is illuminating to calculate the

partial trace of the potential Û =
∑N

i=1 u(r̂ − x̂i) over
the bath, in order to get a better understanding of the
partial trace (13). Using the facts that Û is diagonal in
the position basis and that the density matrix can be
factorized with Eq. (22), one gets

Trb

(
ρ̂bÛ

)
= N

∫
V
ρb(x,x)u(r̂− x) dx . (26)

In the case of a thermal state, the scatterer density is
ρb(x,x) = 1/V according to Eq. (23). Therefore, the
average (26) is just

Trb

(
ρ̂bÛ

)
=

N

V

∫
V
u(r̂− x) dx = N ⟨u⟩ , (27)

which is practically independent of the position r̂ of the
particle for short-range potentials.
One notices that the integrals in Eqs. (26) and (27)

can be interpreted as the average potential generated by
the scatterers. More generally, this means that the par-
tial trace over the bath states essentially reduces to an
average over the scatterer positions. This is an impor-
tant remark, because it shows that the density matrix
of the particle of interest, which is given by the par-
tial trace (13), is completely analogous to the average
of the density matrix over the random configurations of
the scatterers considered in the framework of the Lorentz
gas model in Refs. [63, 64]. However, in contrast to those
papers, the average is here physically motivated by the
quantum uncertainty over the scatterer positions in the
gas. Indeed, from the physical point of view, the partial
trace (13) makes more sense than an abstract statistical
average which does not necessarily represent the actual
situation in a given random realization of the positions
(x1,x2, . . . ,xN ).
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It should be noted that this physical interpretation of
the configurational average is only valid for gases in which
the disorder is of dynamical origin. This would not be the
case for random impurities in solids at low temperature,
for instance, because this kind of disorder is quenched
due to the absence of free motion. In this latter case, the
configurational average is less physically motivated than
in gases.

D. Binary collision and cross section

Before going to the derivation of the quantum master
equations, let us take a closer look at the binary collision
between the particle and a single scatterer. To this end,
the general Hamiltonian (8) must be restricted to N = 1

Ĥ =
p̂2
a

2ma
+

p̂2
b

2mb
+ u(r̂− x̂) , (28)

where (r̂, p̂a) are the position and the momentum of the
particle, and (x̂, p̂b) are the position and the momen-
tum of the scatterer. The effect of the potential term
in Eq. (28) can be determined at the leading order of

perturbation theory by treating Ĥ0 = Ĥa + Ĥb as the
unperturbed Hamiltonian and Û = u(r̂ − x̂) as the ide-
ally small perturbation. The result of this calculation is
the well-known Fermi golden rule which yields the rate
of the transition |α⟩ → |β⟩ between eigenstates of the
unperturbed Hamiltonian [68–72]

w(β | α) = 2π

ℏ

∣∣∣⟨β| Û |α⟩
∣∣∣2 δ(Eβ − Eα) . (29)

In Eq. (29), Eα and Eβ are the energy eigenvalues asso-
ciated with the eigenstates |α⟩ and |β⟩, respectively. One
can write

Ĥ0 |α⟩ = Eα |α⟩ and Ĥ0 |β⟩ = Eβ |β⟩ . (30)

At higher order of perturbation theory, the Fermi golden
rule (29) still holds formally by replacing the potential Û

by the transition operator T̂ (Eα) defined by the Dyson
series [61, 62, 73–75]

T̂ (E) = Û + ÛĜ0(E)Û + ÛĜ0(E)ÛĜ0(E)Û + · · · , (31)

where Ĝ0(E) = (E − Ĥ0)
−1 is the Green operator asso-

ciated with the unperturbed Hamiltonian. If the states
|β⟩ constitute a quasi-continuum basis, such as the mo-
mentum basis, then the Dirac delta in Eq. (29) can be
eliminated by integration over |β⟩, as one will see soon.
When applied to the binary collision governed by the

Hamiltonian (28), the Fermi golden rule (29) leads to the
differential cross section, which is a key ingredient of the
master equations, especially of the Boltzmann equation.
Although it is a relatively standard result of scattering
theory, this derivation is presented here because closely
related calculations are invoked in Sec. III for the many-
scatterer Hamiltonian (8). This follows from the fact that

collisions involving different scatterers are independent.
According to Eq. (29), the transition rate of the collision
process (ka,kb) → (k′

a,k
′
b) is given by

w(k′
a,k

′
b | ka,kb) =

2π

ℏ

∣∣∣〈k′
a,k

′
b

∣∣ Û |ka,kb⟩
∣∣∣2 δ(D) ,

(32)
where D is a compact notation for the energy difference

D = Ek′
a
+ Ek′

b
− Eka

− Ekb
. (33)

The energies in Eq. (33) are related to the momenta by

Eka
=

ℏ2k2
a

2ma
and Ekb

=
ℏ2k2

b

2mb
, and similarly for Ek′

a
and

Ek′
b
. One considers separately the matrix element and

the energy-conservation Dirac delta in Eq. (32). First, to
calculate the matrix element of the potential in Eq. (32),
one uses the Fourier expansion of the potential

Û = u(r̂− x̂) =
1

V

∑
q

ū(q) eiq·(r̂−x̂) , (34)

where ū(q) is defined as

ū(q) =

∫
V
u(r) e−iq·r dr . (35)

Note that the Fourier decomposition (34) is discrete due
to the finite quantization volume V . From Eq. (34), the

matrix element of Û in the momentum basis can be eval-
uated using the fundamental property

eiq·r̂ |ka⟩ = |ka + q⟩ . (36)

This property is derived by projecting both sides of
Eq. (36) onto the position basis, and simply means that

eiq·r̂ adds up the momentum q to the particle momen-
tum. Of course, a similar operator, eiq·x̂, also exists for
the scatterer. The momentum translation operator eiq·r̂

defined in Eq. (36) will play a key role in Sec. III. Using
Eqs. (34) and (36), one gets

〈
k′
a,k

′
b

∣∣ Û |ka,kb⟩ =
1

V
ū(k′

a − ka)δk′
a+k′

b−ka−kb
. (37)

In Eq. (37), it is clear that the Kronecker delta expresses
the conservation of the total momentum and is due to
the translational invariance of the potential Û . Elimi-
nating one of the momenta with the delta, the transition
rate (32) becomes

wq(ka,kb) =
2π

ℏ
1

V 2
|ū(q)|2 δ(Dq) , (38)

with

Dq = Eka+q + Ekb−q − Eka − Ekb
. (39)

In Eq. (38), the notation q stands for the momentum
transferred to particle “a” by the collision with “b”. The
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energy difference can also be expressed in the center-of-
mass frame as

Dq =
ℏ2

2m

[
(k+ q)2 − k2

]
, (40)

where

m =
mamb

ma +mb
(41)

is the reduced mass of the binary system, and

k =
mbka −makb

ma +mb
(42)

is the relative momentum between the colliding particles.
This momentum k also represents the momentum of par-
ticle “a” in the center-of-mass frame. Since Dq = 0 due
to energy conservation, Eq. (40) implies that the trans-
ferred momentum q is constrained to a sphere of center
−k and of radius k = ∥k∥. Accordingly, the final relative
momentum k′ = k+q is constrained to a sphere centered
at the origin and of radius k, and can thus be written as
k′ = kΩ with ∥Ω∥ = 1. This means that, in the center-
of-mass frame, the particle momentum changes only in
direction but not in magnitude.

To get rid of the Dirac delta in Eq. (38), one consid-
ers that the containment volume V is so large that the
momentum spectrum in Eq. (2) is quasi-continuous. The
collision rate then becomes a differential element defined
on the continuum as

dw(k′ | k) = V

(2π)d
w(k′ | k) dk′ , (43)

where the differential element dk′ represents the vol-
ume (2π)d/V occupied by the final momentum state, and
w(k′ | k) is given by

w(k′ | k) = 2π

ℏ
1

V 2

∣∣ū(k′ − k)
∣∣2 δ(Ek′ − Ek) , (44)

with Ek = ℏ2k2

2m and similarly for Ek′ . In this way, the
rate (44) is equal to wq(ka,kb) in Eq. (38). Expressing
the volume element in spherical coordinates with dk′ =

k′
d−1

dk′ dΩ, dividing each side by dΩ, and integrating
over k′, one gets the angular collision rate

dw

dΩ
(Ω | k) = V

(2π)d

∫ ∞

0

w(k′Ω | k)k′d−1
dk′ . (45)

Furthermore, one introduces the differential cross sec-
tion which is defined as the ratio between the differen-
tial collision rate and the magnitude of the relative flux
J = 1

V (va − vb) of incident particles before the colli-
sion [73, 74]

dσ(Ω | k) = dw(Ω | k)
1
V ∥va − vb∥

, (46)

where the velocities are related to the momenta by va =
ℏka

ma
and vb = ℏkb

mb
. One can also use the fact that the

relative velocity between the particle and the scatterer is
related to the relative momentum by

va − vb =
ℏk
m

, (47)

where m is the reduced mass defined in Eq. (41). One
gets from Eq. (45)

dσ

dΩ
(Ω | k) = V 2

(2π)d
m

ℏk

∫ ∞

0

w(k′Ω | k)k′d−1
dk′ . (48)

Therefore, evaluating the integral (48) with the collision
rate (44) leads to the differential cross section

dσ

dΩ
(Ω | k) = π

2

kd−3

(2π)d

∣∣∣∣2mℏ2 ū(kΩ− k)

∣∣∣∣2 . (49)

In dimension three (d = 3), Eq. (49) reduces to the known
expression for the cross section at the leading order of
perturbation theory [73–75]. Finally, from Eq. (49), one
can determine the total cross section in the standard
way [73–75]:

σ(k) =

∮
Sd

dσ

dΩ
(Ω | k) dΩ , (50)

where Sd represents the unit sphere in the space Rd.

III. DERIVATIONS OF MASTER EQUATIONS

In this section, the derivations of several quantum mas-
ter equations for the density matrix of particle “a” are
presented as well as the relations between them. As-
sumptions focus on the case of an incident particle faster
than the scatterers of the gas.
The derivation proceeds in four steps: first, one de-

rives the Redfield equation, which is a general Marko-
vian master equation obtained at next-to-leading order
of perturbation theory [2–5, 29]. To this end, the pro-
cedure of Ref. [7] is followed. Second, one exploits the
Fourier expansion (34) to expand the collision terms in
the formalism of quantum operators and to highlight the
bath correlation function. Under the assumption of weak
scattering regime, this step leads to a simplified Redfield
equation. Third, a reduction of the Redfield equation to
the Lindblad form is presented and discussed. Finally,
the Wigner transform is applied to restore the spatial
dependence of the master equation and reveal a linear
Boltzmann equation. These steps turn out particularly
useful to stress the underlying assumptions behind the
master equations.

A. Redfield equation

The starting point is the quantum Liouville equation
governing the time evolution of the density matrix of the
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full system in the Schrödinger picture

∂ρ̂

∂t
= Lρ̂(t) , (51)

where L is the Liouvillian superoperator [2, 7, 14] defined
as

LX̂ = 1
iℏ [Ĥ, X̂] , (52)

where Ĥ is the general Hamiltonian (8) and X̂ means any
operator, but especially the density matrix ρ̂(t). Analo-
gously, one defines the following Liouvillians

LaX̂ = 1
iℏ [Ĥa, X̂] , LbX̂ = 1

iℏ [Ĥb, X̂] , L0 = La+Lb ,
(53)

and the potential superoperator

LUX̂ = 1
iℏ [Û , X̂] . (54)

In Eq. (51), the Liouvillian superoperator L can also be
decomposed into a free part and an interaction part

∂ρ̂

∂t
= (L0 + LU) ρ̂(t) . (55)

Treating LU as a perturbation of L0, one introduces the
interaction-picture density matrix ρ̂I(t) as

ρ̂(t) = eL0tρ̂I(t) . (56)

Inserting Eq. (56) into the Liouville equation (55) gives
us

∂ρ̂I
∂t

= LI(t)ρ̂I(t) , (57)

where the interaction Liouvillian is given by

LI(t) = e−L0tLU eL0t . (58)

Note that LI(t) explicitly depends on time. The super-
operator LI(t) in Eq. (58) can be expressed more directly
in terms of a single commutator. Indeed, one has

LI(t)X̂ = 1
iℏ

[
ÛI(t), X̂

]
, (59)

where UI(t) denotes the interaction-picture potential de-
fined as

UI(t) = e+
i
ℏ Ĥ0tÛ e−

i
ℏ Ĥ0t . (60)

The Liouville equation (57) can be integrated in time to
get

ρ̂I(t) = ρ̂(0) +

∫ t

0

dt′LI(t
′)ρ̂I(t

′) , (61)

where ρ̂(0) = ρ̂I(0) is the initial condition at t = 0. Sub-
stituting Eq. (61) back into the right-hand side of the
Liouville equation (57) leads to

∂ρ̂I
∂t

= LI(t)ρ̂(0) +

∫ t

0

dt′LI(t)LI(t
′)ρ̂I(t

′) . (62)

Note that Eq. (62) is still exact as it does not rely on a
perturbative approximation.
If the particle is supposed to be independent of the

environment at the beginning, then the initial state fac-
torizes as

ρ̂(0) = ρ̂a(0)⊗ ρ̂b , (63)

where the initial bath state ρ̂b is taken to be the thermal
equilibrium state (16). The outer product symbol “⊗”
will be omitted in the following calculations. In principle,
the factorization property (63) cannot be preserved at all
time for ρ̂(t) because of the quick entanglement with the
scatterers due to the collisions. At later times (t > 0),
the density matrix of the particle should be given by the
partial trace over the bath

ρ̂a,I(t) = Trb ρ̂I(t) . (64)

Note that this definition applies to the interaction pic-
ture, but is also consistent with definition (13) in the
standard picture. Under the partial trace, Eq. (62) be-
comes

∂ρ̂a,I
∂t

= Trb
(
LI(t)ρ̂(0)

)
+

∫ t

0

dt′ Trb
(
LI(t)LI(t

′)ρ̂I(t
′)
)
.

(65)
Let us consider the first term in the right-hand side of
Eq. (65). According to Eq. (58), this term reads

Trb
(
LI(t)ρ̂(0)

)
= Trb

(
e−L0tLU eL0tρ̂a(0)ρ̂b

)
. (66)

Expression (66) can be simplified using several proper-
ties. The first one is

eL0t = eLat eLbt , (67)

and comes from the commutation relation [Ĥa, Ĥb] = 0.
Note that the quantities related to particle “a”, such as
eLat and ρ̂a, can get out of the partial trace Trb. The sec-
ond one is the time invariance of the thermal equilibrium
state

eLbtρ̂b = ρ̂b . (68)

More generally, property (68) also applies to any station-

ary state of the form ρ̂b = f(Ĥb), which is not necessary
an equilibrium state. The third one is due to the cyclic
property of the trace, and the unitarity of the mapping

eLbtX̂ = e−
i
ℏ ĤbtX̂ e+

i
ℏ Ĥbt. Whatever the operator X̂, it

reads

Trb

(
eLbtX̂

)
= Trb X̂ . (69)

Note that the cyclic property of Trb only concerns the
operators associated with the bath. Using Eqs. (67)–
(69), the first-order term (66) reduces to

Trb
(
LI(t)ρ̂(0)

)
= e−Lat Trb

(
LUρ̂b

)
eLatρ̂a(0) . (70)
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Expression (70) can be rewritten more explicitly using
Eq. (54). One gets

Trb
(
LI(t)ρ̂(0)

)
= e−Lat

1

iℏ

[
Trb

(
ρ̂bÛ

)
, eLatρ̂a(0)

]
.

(71)

According to Eq. (27), the term Trb(ρ̂bÛ) is equal to the
average potentialN⟨u⟩. Since the medium is uniform and
subject to periodic boundary conditions, the average po-
tential ⟨u⟩ is a constant independent from the position.
Therefore, the commutator in Eq. (71) identically van-
ishes:

Trb
(
LI(t)ρ̂(0)

)
= 0 . (72)

In other words, the first-order term in Eq. (65) does not
contribute to the time evolution of the density matrix.
It only changes the zero energy reference, but without
affecting the equation of motion. From Eq. (65), the
relevant equation is thus

∂ρ̂a,I
∂t

=

∫ t

0

dt′ Trb
(
LI(t)LI(t

′)ρ̂I(t
′)
)
. (73)

Using Eqs. (58), (67) and (69), the integral term in
Eq. (73) reads

∂ρ̂a,I
∂t

= e−Lat

∫ t

0

dt′ Trb

(
LU eL0(t−t′)LU eL0t

′
ρ̂I(t

′)
)
.

(74)
Now, one considers a first approximation to close Eq. (74)
for ρ̂a(t). The density matrix in the right-hand side of
Eq. (74) is assumed to be reasonably approached by

ρ̂I(t
′) = ρ̂I(t) +O(Û) , (75)

for all time t′ ∈ [0, t]. Note that the approximation (75)
can be understood as a perturbative approximation at
zeroth order of Û . The fact that ρ̂I(t

′) is replaced by
ρ̂I(t) in this approximation, instead of ρ̂I(0) for instance,
is motivated by the fast expected decay in t′ of the inte-
gral (74) around the current time t. This expectation
is closely related to the Markov assumption which is
further discussed in Sec. III B for a fast incident parti-
cle. Using the fact that ρ̂I(t) = e−L0tρ̂(t), according to
Eq. (56), and considering the change of integration vari-
able τ = t− t′ [7], one can write from Eq. (74)

∂ρ̂a,I
∂t

= e−Lat

∫ t

0

dτ Trb
(
LU eL0τLU e−L0τ ρ̂(t)

)
+O(Û3) .

(76)

The density matrix ρ̂(t) in the integral of Eq. (76) can

be further approximated at zeroth order of Û with

ρ̂(t) = ρ̂a(t)ρ̂b +O(Û) , (77)

where ρ̂b is the thermal equilibrium state (16). This
expression derives from the initial condition (63) and

Eq. (75), but it does not mean that the particle and the
bath can be factorized at any time because the correction
term O(Û) always couples the two subsystems. Inserting
Eq. (77) into Eq. (76) yields

∂ρ̂a,I
∂t

= e−Lat

∫ t

0

dτK(τ)ρ̂a(t) +O(Û3) , (78)

where K(τ) is the correlation superoperator, which acts
only on ρ̂a(t) and is defined as [7]

K(τ) = Trb
(
LU eL0τLU e−L0τ ρ̂b

)
. (79)

Finally, the derivative in the left-hand side of Eq. (76)
can also be related to the Schrödinger-picture state at
time t according to

ρ̂a(t) = Trb ρ̂(t) = Trb
(
eL0tρ̂I(t)

)
= eLatρ̂a,I(t) . (80)

This series of equalities comes from Eqs. (13), (56), (67),
(69) and (64) in that order. According to Eq. (80), one
has

∂ρ̂a,I
∂t

= e−Lat

(
∂ρ̂a
∂t

− Laρ̂a(t)

)
. (81)

Substituting Eq. (81) into Eq. (78), one finds [2–5, 7, 29]

∂ρ̂a
∂t

= Laρ̂a(t) +

∫ t

0

dτK(τ)ρ̂a(t) +O(Û3) . (82)

Note that Eq. (82) is based solely on the perturbative
approximation, but not yet on the Markovian approxi-
mation. Furthermore, if the particle dynamics is consid-
ered on a much longer time than the characteristic decay
time of K(τ), known as the bath correlation time, then

it is justified to take the limit
∫ t

0
→
∫∞
0

in Eq. (82) [2–
5, 7, 9–11, 14]. Therefore, the particle dynamics will be
resolved only on a time scale much longer than the bath
correlation time. In this way, one obtains the Redfield
equation [2–5]

∂ρ̂a
∂t

= Laρ̂a(t) +

∫ ∞

0

dτK(τ)ρ̂a(t) +O(Û3) . (83)

This equation is Markovian, in contrast to Eq. (82).

Regarding the other fundamental properties of Eq.
(83), one can check that it preserves the trace of the den-
sity matrix through ∂t Tra ρ̂a = 0, as a consequence of
Tra Laρ̂a = 0 and TrLUX̂ = 0. Therefore, the Redfield
equation conserves the total probability

Tra ρ̂a(t) = 1 ∀t > 0 . (84)

Moreover, it also preserves the Hermiticity of the density
matrix: ρ̂†a(t) = ρ̂a(t). However, it is not guaranteed to
preserve the positivity of ρ̂a(t) [2, 3].
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B. Collision terms

In this subsection, one expands the collision terms
of the Redfield equation (83). According to Eqs. (54)
and (58), this expression is actually a double commuta-
tor with the potential

∂ρ̂a
∂t

= Laρ̂a +
1

(iℏ)2

∫ ∞

0

dτ Trb

[
Û ,
[
ÛI(−τ), ρ̂aρ̂b

]]
,

(85)

where ÛI(t) is the interaction-picture potential defined in
Eq. (60). Even more explicitly, the double commutator
in Eq. (85) contains four terms which can be compactly
written as

∂ρ̂a
∂t

= Laρ̂a + ĈG + Ĉ†
G − ĈL − Ĉ†

L , (86)

with the terms

ĈG =
1

ℏ2

∫ ∞

0

dτ Trb

(
ÛI(−τ)ρ̂aρ̂bÛ

)
, (87)

and

ĈL =
1

ℏ2

∫ ∞

0

dτ Trb

(
Û ÛI(−τ)ρ̂aρ̂b

)
. (88)

These terms can be physically interpreted based on the
sign of their contribution: plus sign means a gain term,
and minus sign means a loss term, hence the notation.
As discussed later in Sec. IIID, the two terms of each
type combine to give the gain or loss term in the classical
Boltzmann equation.

1. Gain term

First, let us take a closer look at the gain term (87).
In order to expand this term, one approach is to use
the Fourier decomposition of the full particle-scatterer
potential

Û =

N∑
i=1

u(r̂− x̂i) =
1

V

N∑
i=1

∑
q

ū(q) eiq·(r̂−x̂i) , (89)

where ū(q) is defined according to Eq. (35). Expres-
sion (89) if very handy because the imaginary exponential

eiq·(r̂−x̂i) can be factored into the system and the bath
operators. This factorization is allowed by the commuta-
tion [r̂, x̂i] = 0. Substituting Eq. (89) into Eq. (87), one
gets

ĈG =

∫ ∞

0

dτ

ℏ2V 2

N∑
i,j

∑
q,q̃

ū(q)ū∗(q̃)

×Trb

(
e−

i
ℏ Ĥ0τ eiq·(r̂−x̂i) e

i
ℏ Ĥ0τ ρ̂aρ̂b e

−iq̃·(r̂−x̂j)
)
.

(90)

It is possible to simplify Eq. (90) without projecting ev-

erything onto the eigenbasis of the free Hamiltonian Ĥ0.

One option is to commute the first two exponentials in
the trace using the momentum translation property

e−iq·(r̂−x̂i)f(k̂a, k̂i) e
iq·(r̂−x̂i) = f(k̂a + q, k̂i − q) , (91)

for any function f(x,y). Property (91) solely derives
from Eq. (36). According to Eq. (91), one can write

e−
i
ℏ Ĥ0τ eiq·(r̂−x̂i) = eiq·(r̂−x̂i) e−

i
ℏ Ĥ′

0τ , (92)

where Ĥ ′
0 is the modified Hamiltonian of the form

Ĥ ′
0 = Ek̂a+q + Ek̂i−q +

N∑
j(̸=i)

Ek̂j
. (93)

Equation (93) represents the system energy after the col-
lision process (ka,ki) → (ka + q,ki − q) with the i-th
scatterer. Furthermore, it is convenient to define the
Hamiltonian difference

D̂q,i = Ĥ ′
0 − Ĥ0 = Ek̂a+q + Ek̂i−q − Ek̂a

− Ek̂i
, (94)

in the same way as Eq. (39). Note, however, that D̂q,i is
a quantum operator. With this notation, Eq. (90) reads

ĈG =

∫ ∞

0

dτ

ℏ2V 2

N∑
i,j

∑
q,q̃

ū(q)ū∗(q̃)

× eiq·r̂ Trb

(
eiq̃·x̂j e−iq·x̂i e−

i
ℏ D̂q,iτ ρ̂b

)
ρ̂a e

−iq̃·r̂ ,

(95)

where one has used the cyclicity of the bath operators
within the trace Trb. Expression (95) can be simplified
further by means of a useful additional property. Let-
ting Â =

∑
k Ak |k⟩ ⟨k| be an operator diagonal in the

momentum basis, the trace of the translated operator
eiq·r̂Â will be zero, except for q = 0. In other words, one
has the property

Tr
(
eiq·r̂Â

)
= δq Tr Â . (96)

Applied to the trace of Eq. (95) with Â = e−
i
ℏ D̂q,iτ ρ̂b

playing the role of the diagonal operator in the momen-
tum basis, Eq. (96) becomes

Trb

(
eiq̃·x̂j e−iq·x̂iÂ

)
= [δq−q̃δij + δqδq̃(1− δij)] Trb Â .

(97)
Expression (97) translates the following statement: if
i = j, then the momenta q and q̃ must be equal to
each other so as to eliminate the exponentials, other-
wise if i ̸= j, then q and q̃ must both be equal to zero.
Obviously, the second case corresponds to a trivial col-
lision with no actual change of the system state. Al-
though these terms i ̸= j are not zero, they can be omit-
ted from the calculation, because they will be eliminated
anyway by the corresponding opposite contributions from
the loss terms in Eq. (86). After simplifying Eq. (95) with
Eq. (97), one last step comes from the observation that
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each term of given i is identical. Therefore, one can re-
place the sum over i by a factor N , and rename ki to
kb for convenience since it now corresponds to a generic
bath particle. Finally, one obtains

ĈG =
∑
q

eiq·r̂
(∫ ∞

0

dτK̂q(τ)

)
ρ̂a e

−iq·r̂ , (98)

where K̂q(τ) is the system-bath interaction operator de-
fined as

K̂q(τ) =
N

ℏ2V 2
|ū(q)|2 Trb

(
e−

i
ℏ D̂qτ ρ̂b

)
, (99)

in order to gather all the dependencies on the time τ .
The Hamiltonian difference operator in Eq. (99) reads

D̂q = Ek̂a+q + Ek̂b−q − Ek̂a
− Ek̂b

. (100)

It should be noted that K̂q(τ) in Eq. (99) is actually a
non-Hermitian operator which does not commute with
ρ̂a or eiq·r̂ in general.

2. System-bath interaction operator

In this subsection, one shows that the operator (99)
decreases fast enough in τ for the time integral in Eq. (98)
to converge. This operator can be written as

K̂q(τ) =
N

ℏ2V 2
|ū(q)|2 e−

i
ℏ (Ek̂a+q−Ek̂a

)τκq(τ) , (101)

where κq(τ) is the bath correlation function given by the
trace over the bath in Eq. (99)

κq(τ) =
∑
kb

e−
i
ℏ (Ekb−q−Ekb

)τρb(kb) , (102)

and the single-particle bath distribution ρb(kb) intro-
duced in Eq. (20). In the continuum limit (V → ∞),

one gets in terms of the velocity vb = ℏkb

mb

κq(τ) = e
−i ℏq2

2mb
τ
∫
Rd

eivb·qτfb(vb) dvb , (103)

where fb(vb) is the usual Maxwell-Boltzmann velocity
distribution normalized to unity. The result of the inte-
gral in Eq. (103) is

κq(τ) = e
−i ℏq2

2mb
τ
e
− q2τ2

2βmb . (104)

This shows that Eq. (101) decays with τ and that the
time integral in Eq. (98) is meaningful, as it should be.
The characteristic time of this decay is known as the bath
correlation time and is defined in this paper for the given
momentum transfer q as

τb =

√
βmb

q2
=

√
d

vbq
, (105)

where v2b = ⟨v2
b⟩ = d/(βmb) is the mean square velocity

of the scatterers. On the one hand, one notices that the
time τb has no upper bound because the transferred mo-
mentum q can be arbitrarily small. On the other hand,
τb possesses a rough lower bound given by

τb ≳
R

vb
, (106)

where R is the range of the potential u(r). Indeed, the
correlation function Eq. (101) is weighted by the Fourier
transform ū(q), which, for well behaved potentials, is
expected to decay at momenta larger than 1/R. Fur-
thermore, the lower bound R/vb can be compared to the
duration of a single collision between the incident parti-
cle and a scatterer: τa ∝ R/va. If the incident particle
is fast (va ≥ vb), then Eq. (106) implies that τb ≳ τa.
If, in addition, there is no longer time scale relevant to
the collision than τa, then one can consider τb as arbi-
trarily large and safely take the limit τb → ∞ in the
calculations.
This result contrasts with the assumption of infinitely

small τb, which would be needed to consider the bath as
delta-correlated and to motivate the reduction to a Lind-
blad equation [7, 11, 29, 76]. According to Eq. (105),
the assumption τb → 0 would hold only if the bath ve-
locities are very large compared to the incident particle
(vb ≫ va). However, assuming a delta-correlated bath in
the present calculation would lead to a flawed equation
continuously increasing the particle energy with no fric-
tion and no thermalization. Therefore, this approach is
not followed here.
Now, one has to account for the time integral in the

Redfield equation (98). The integral over τ will be given
by [77]∫ ∞

0

e±
i
ℏ D̂qτ dτ = lim

ε→0+

±iℏ
D̂q ± iε

= πℏδ(D̂q)± iℏPv
1

D̂q

,

(107)
where Pv denotes the Cauchy principal value. It should
be noted that Eq. (107) is very general and can be used
to integrate Eq. (98) regardless of the particle velocity.
Therefore, the rest of the derivation is not restricted to
a fast particle. According to Eq. (107), the time integral
in Eq. (98) splits into two terms:∫ ∞

0

dτK̂q(τ) =
1

2
Ŵq − iŶq . (108)

The operator Ŵq contains the Dirac delta of Eq. (107),

and Ŷq contains the principal value. These operators
respectively read

Ŵq = Wq(k̂a) =
2π

ℏ
n

V
|ū(q)|2 Trb

(
δ(D̂q)ρ̂b

)
, (109)

and

Ŷq = Yq(k̂a) =
n

ℏV
|ū(q)|2 Trb

(
Pv

1

D̂q

ρ̂b

)
, (110)
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where n = N/V is the number of scatterers per unit vol-

ume. Note that Ŵq and Ŷq are Hermitian and have the

units of an inverse time. Moreover, Ŵq can be inter-
preted as a rate operator for the collision ka → ka + q
and is defined this way to be consistent with the binary
collision rate (38) up to a factor N . In particular, Ŵq

can be expressed directly in terms of Eq. (38) as follows

Ŵq = N Trb

(
wq(k̂a, k̂b)ρ̂b

)
. (111)

With the notations (109) and (110), the gain term (98)
becomes

ĈG =
∑
q

eiq·r̂
(
1

2
Ŵq − iŶq

)
ρ̂a e

−iq·r̂ . (112)

Finally, one can also split the gain term notation ĈG into
the rate and principal value parts for easier manipulation

ĈG = R̂G − iP̂G , (113)

with the notations

R̂G =
1

2

∑
q

eiq·r̂Ŵqρ̂a e
−iq·r̂ , (114)

and

P̂G =
∑
q

eiq·r̂Ŷqρ̂a e
−iq·r̂ . (115)

3. Simplified Redfield equation

The calculation of the loss term (88) follows a very

similar reasoning to that of ĈG. One finds the result

ĈL =
∑
q

(
1

2
Ŵq − iŶq

)
ρ̂a , (116)

where the operators are given by Eqs. (109) and (110).

As the gain term, one can split ĈL into the rate and
principal value parts

ĈL = R̂L − iP̂L , (117)

with

R̂L =
1

2

∑
q

Ŵqρ̂a , (118)

and

P̂L =
∑
q

Ŷqρ̂a . (119)

Now, all the collision terms can be grouped into Eq. (86)
to get

∂ρ̂a
∂t

= Laρ̂a + R̂G + R̂†
G − R̂L − R̂†

L

− i
(
P̂G − P̂ †

G − P̂L + P̂ †
L

)
.

(120)

The principal value terms in the second line of Eq. (120)
can be interpreted as coherent quantum contributions. It
is shown in Appendix A that these principal value terms
are negligible in the weak scattering regime (kaℓs ≫ 1).
Therefore, it is reasonable to omit them at this point, and
only retain the rate terms in the first line of Eq. (120).
Finally, from Eqs. (114), (118) and (120), one obtains

the sought quantum master equation

∂ρ̂a
∂t

= Laρ̂a +
1

2

∑
q

(
eiq·r̂{Ŵq, ρ̂a} e−iq·r̂ − {Ŵq, ρ̂a}

)
,

(121)

where {Â, B̂} = ÂB̂ + B̂Â denotes the anticommutator.
Equation (121) will also be referred to as the simplified
Redfield equation because it neglects the principal value
terms. Due to this approximation, it is not equivalent
to the original Redfield equation (83). In the limit of
infinite quantization volume (V → ∞), Eq. (121) can be
expressed on the continuum spectrum of momenta using
the replacement rule (7). However, this step is deferred
to Sec. IIID.

C. Comment on positivity

The Redfield equation (121) is not guaranteed to pre-
serve the positivity of the particle density matrix ρ̂a, since
it is not of the Lindblad form [2, 3, 12–14]. The reason is

that the rate operator Ŵq in the gain term of Eq. (121)
acts on one side of ρ̂a or the other, but not on both sides
at the same time as in the Lindblad equation. As a con-
sequence, some of the eigenvalues of ρ̂a can possibly reach
negative values. This can be considered as a problem or
not depending on the physical context [2, 3, 6–11]. In this
section, it is shown by means of an approximate Lindblad
form that this issue does not compromise the validity of
Eq. (121) in the framework of fast particles. Indeed, it
is possible to obtain an approximate Lindblad equation
from Eq. (121) by factoring the rate operator as

Ŵq = Â†
qÂq = ÂqÂ

†
q , (122)

for some non-Hermitian operator Âq. In general, this
operator can be expressed as

Âq =

√
Wq(k̂a) e

iϕq(k̂a) , (123)

where ϕq is a real function which possibly depends on

ka. It should be noted that Âq is not unique because
the complex phase ϕq cannot be fixed in this way. More
generally, instead of Eq. (122), one could consider the
following factorization of the rate operator:

Ŵq = Trb

(
Aq(k̂a, k̂b)

†Aq(k̂a, k̂b)ρ̂b

)
. (124)

Doing so, a different scattering amplitude can be at-
tributed to each collision process (ka,kb) → (ka+q,kb−
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q). In particular, the factorization (124) would be needed
to relate Eq. (121) to the quantum Boltzmann equation
in Lindblad form of Ref. [26]. The downside of Eq. (124)
is that it requires to factor the Dirac delta of energy
conservation in Eq. (109). However, the square root of a
delta cannot be properly defined. This problem is closely
related to the delta squaring issue encountered in the
collisional decoherence literature [24–26, 29, 34, 37, 78].
This cannot be addressed by the approach presented in
this paper. This is why Eq. (124) will not be used here.
On the other hand, this issue can be avoided in general
with the use of Eq. (122), because it amounts to evalu-
ate the square root of a smooth distribution of q aver-
aged over the thermal bath ρ̂b. This does not pose the
mathematical problem encountered with the factoriza-
tion (124). However, as mentioned before, the complex

phase of Âq in Eq. (123) is arbitrary and hence the result-
ing Lindblad equation will not be uniquely determined.

Using Eq. (122), the first anticommutator in Eq. (121)
can be written as a completely positive map plus some
correction terms:

{Ŵq, ρ̂a}
2

= Âqρ̂aÂ
†
q +

Âq[Â
†
q, ρ̂a]− [Âq, ρ̂a]Â

†
q

2
. (125)

Therefore, if one defines the quantum jump operator

L̂q = eiq·r̂Âq , (126)

then the Redfield equation (121) can be rewritten exactly
as

∂ρ̂a
∂t

= Laρ̂a+
∑
q

(
L̂qρ̂aL̂

†
q − 1

2
{L̂†

qL̂q, ρ̂a}
)
+ Î , (127)

where Î contains the correction coming from Eq. (125),
that is

Î =
∑
q

eiq·r̂
Âq[Â

†
q, ρ̂a]− [Âq, ρ̂a]Â

†
q

2
e−iq·r̂ . (128)

If the correction Î is neglected, then the master equa-
tion (127) is of the Lindblad form, ensuring the com-
pletely positive evolution of ρ̂a. In order to interpret the
nature of the correction Î in the context of a fast incident
particle, it is useful to assume that the deviation of the
particle momentum around some central momentum ka,0

is small:

k̂a = ka,0 +∆k̂a with
∥∥∥∆k̂a

∥∥∥≪ ∥ka,0∥ . (129)

Therefore, the amplitude operator Aq(k̂a) can be ex-

panded at the first order of ∆k̂a. One has

Aq(k̂a) = Aq(ka,0)+∆k̂a·∇ka
Aq(ka,0)+O(∆k̂

2

a). (130)

Substituting Eq. (130) into Eq. (128) leads to the result

Î =
∑
q

eiq·r̂

(
−iWq(ka,0)

∂ϕq

∂ka,i
(ka,0)[∆k̂a,i, ρ̂a]

+
Sij

2

[
∆k̂a,i, [∆k̂a,j , ρ̂a]

]
+ i

Aij

2

{
∆k̂a,i, [∆k̂a,j , ρ̂a]

})
e−iq·r̂ ,

(131)

where the summations over the repeated indices i and
j have been implied. The quantities Sij and Aij in Eq.
(131) are respectively the symmetric and antisymmetric
tensors defined as

Sij =
1

2

(
∂Aq

∂ka,i

∂A∗
q

∂ka,j
+

∂A∗
q

∂ka,i

∂Aq

∂ka,j

)
ka,0

,

Aij =
1

2i

(
∂Aq

∂ka,i

∂A∗
q

∂ka,j
−

∂A∗
q

∂ka,i

∂Aq

∂ka,j

)
ka,0

.

(132)

The three terms of Eq. (131) can be interpreted respec-
tively as a positional drift term, a positional diffusion
term, and a momentum-dependent drift term. In partic-

ular, a term of the form [∆k̂a,i, [∆k̂a,j , ρ̂a]], responsible
for the particle diffusion in position space, is known in
the literature to restore the complete positivity of the
Caldeira-Leggett master equation [2, 28–31, 34].
All the terms in Eq. (131) rely on gradients of Aq(ka)

with respect to ka, and involve commutators [∆k̂a, ρ̂a].

Therefore, the correction Î can be neglected in two cir-
cumstances: either Aq(ka) slowly varies with ka, or ρ̂a
is nearly diagonal in the momentum basis. On the one
hand, the former cannot be guaranteed in general be-
cause the complex phase of Aq is not known. On the
other hand, the latter is reasonable if the incident wave
packet is much larger than its own wavelength. As this
condition can be fulfilled for ionizing fast particles, given
their small wavelength of subatomic scale, this implies
that the positivity of ρ̂a is approximately preserved by
the Redfield equation (121).
Finally, if the incident wave is a plane wave, then one

has [∆k̂a, ρ̂a] = 0 and equivalently [k̂a, ρ̂a] = 0. Further-
more, since the medium is uniform, ρ̂a remains diagonal
in the momentum basis. In that special case, the evolu-
tion prescribed by the Redfield equation (121) is guaran-
teed to be completely positive.

D. Linear Boltzmann equation

In this section, it is shown that the Redfield equa-
tion (121) reduces to a linear Boltzmann equation, and
thus describes the transport of particle “a” within the
gas. For this purpose, the space dependence is restored
through the Wigner transform which is defined as the
Fourier transform of the off-diagonal part of the density
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matrix [65, 79–81]. When the density matrix is repre-
sented in momentum basis, the Wigner transform reads

f(r,k) = W(ρ̂) =

∫
Rd

〈
k+ s

2

∣∣ ρ̂ ∣∣k− s
2

〉 eis·r

(2π)d
ds , (133)

where f(r,k) is known as the Wigner function. This is a
real function of the position r and the momentum k. This
function is also referred to as a quasi-probability distri-
bution because of its similarity with the classical phase-
space distribution. However, in contrast to a usual prob-
ability distribution, f(r,k) may be negative, typically in
the presence of quantum interferences.

The Wigner transform can be directly applied to the
Redfield equation (121). In particular, the free propaga-
tion term becomes

W(Laρ̂a) = −va ·∇rfa(r,ka) , (134)

where va = ℏka

ma
is the particle velocity. Therefore, the

Wigner transform of Eq. (121) reads

∂fa
∂t

(r,ka) + va ·∇rfa(r,ka) = W
(
R̂
)
, (135)

where R̂ gathers all the collision terms in Eq. (121) which
have to be transformed. First, let us consider the loss
term for a given value of q:

W
(

{Ŵq,ρ̂a}
2

)
=

∫
Rd

〈
ka +

s
2

∣∣ {Wq(k̂a),ρ̂a}
2

∣∣ka − s
2

〉 eis·r

(2π)d
ds .

(136)

More explicitly, using the notation ρa(x,y) = ⟨x| ρ̂a |y⟩
for the density matrix, Eq. (136) reads

W
(

{Ŵq,ρ̂a}
2

)
=

∫
Rd

Wq(ka +
s
2 ) +Wq(ka − s

2 )

2

× ρa(ka +
s
2 ,ka − s

2 )
eis·r

(2π)d
ds .

(137)

In general, the integral over s in Eq. (137) cannot be
evaluated and expressed in terms of fa(r,ka), as in the
classical Boltzmann equation. For this purpose, one has
to make the additional assumption that the density ma-
trix ρa is close to being diagonal in momentum basis. If
the medium is uniform and if the envelope of the wave
function does not vary too quickly in space, then this
assumption is justified. An important consequence of
this assumption is that the relevant values of ∥s∥ are
∥s∥ ≪ ∥ka∥. A complementary assumption is that the
collision rate Wq(ka) little depends on the particle mo-
mentum ka. This assumption is reasonable if there is
no scattering resonance. Therefore, the rate factor in
Eq. (137) can be expanded in series of s around s = 0 as
follows:

Wq(ka +
s
2 ) +Wq(ka − s

2 )

2

= Wq(ka) +

d∑
i,j

sisj
8

∂2Wq(ka)

∂ka,i∂ka,j
+ · · · .

(138)

The zeroth order term in Eq. (138) does no longer depend
on s, and thus one gets the Wigner function fa(r,ka).
The second order term quadratically depends on s, lead-
ing to a Hessian matrix with respect to the position∫
Rd

sisjρa(ka +
s
2 ,ka − s

2 )
eis·r

(2π)d
ds = − ∂2

∂ri∂rj
fa(r,ka) .

(139)
Combining Eqs. (138) and (139) into Eq. (137) yields

W
(

{Ŵq,ρ̂a}
2

)
= Wq(ka)fa(r,ka)

− 1

8

d∑
i,j

∂2Wq(ka)

∂ka,i∂ka,j

∂2

∂ri∂rj
fa(r,ka) + · · · .

(140)

Following the same approach, the Wigner transform of
the gain term in Eq. (121) reads

W
(
eiq·r̂

{Ŵq,ρ̂a}
2 e−iq·r̂

)
= Wq(ka − q)fa(r,ka − q)

− 1

8

d∑
i,j

∂2Wq(ka − q)

∂ka,i∂ka,j

∂2

∂ri∂rj
fa(r,ka − q) + · · · .

(141)

This is the same expression as Eq. (140) but replacing ka

by ka−q according to the unitary transformation (91). In
the following calculations, the second lines of Eqs. (140)
and (141) will be neglected, because it can be made ar-
bitrarily small for a sufficiently large wave packet, and
is exactly zero for an incident plane wave. In addition,
these lines are also negligible if the total collision rate
Wq(ka) does not depend on ka. Remarkably, the same
assumptions have already been exploited in Sec. III C to
derive the Lindblad form (127). Therefore, under either
of these assumptions, the linear Boltzmann equation ob-
tained here also approximately describes a completely
positive evolution for the density matrix.

Using Eqs. (140) and (141), the Wigner transform of
the collision terms reads

W
(
R̂
)
=
∑
q

Wq(ka − q)fa(r,ka − q)

−
∑
q

Wq(ka)fa(r,ka) .
(142)

The total collision rate Wq(ka) for the collision ka →
ka + q can be related to the binary collision rate
wq(ka,kb) by Eq. (111) which is reformulated here

Wq(ka) = N
∑
kb

wq(ka,kb)ρb(kb) , (143)

As a reminder, wq(ka,kb) represents the rate of the col-
lision (ka,kb) → (ka + q,kb − q). In Eq. (143), ρb(kb)
is normalized to unity as

∑
kb

ρb(kb) = 1. Inserting
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Eq. (143) into Eq. (142) leads to

W
(
R̂
)

=
∑
kb,q

Nwq(ka − q,kb)fa(r,ka − q)ρb(kb)

−
∑
kb,q

Nwq(ka,kb)fa(r,ka)ρb(kb) .

(144)

These two sums can be combined by tweaking the first
one a bit. In this regard, one successively performs the
two substitutions q → −q and kb → kb − q in the first
sum of Eq. (144). The result is

W
(
R̂
)

=
∑
kb,q

Nw−q(ka + q,kb − q)fa(r,ka + q)ρb(kb − q)

−
∑
kb,q

Nwq(ka,kb)fa(r,ka)ρb(kb) .

(145)

The interest of these substitutions is that the following
property of the binary collision rate can be used:

w−q(ka + q,kb − q) = wq(ka,kb) . (146)

Property (146) can be derived from definition (38), and
is a consequence of the time-reversal symmetry of the
microscopic collision. Then, the two collision terms in
Eq. (145) can be gathered as follows

W
(
R̂
)
=
∑
kb,q

Nwq(ka,kb)

×
[
fa(r,k

′
a)ρb(k

′
b)− fa(r,ka)ρb(kb)

]
,

(147)

where the notations are k′
a = ka + q and k′

b = kb −
q, as in Sec. IID. Now, one takes the limit of infinite
quantization volume (V → ∞) so that the sums over
the momenta turn into integrals. Using the differential
collision rate (43) and integrating over k′ = k+q instead
of q, one gets

W
(
R̂
)
=

∫
Rd

dkb

∫
Rd

dk′ N
dw

dk′ (k
′ | k)

×
[
fa(r,k

′
a)fb(k

′
b)− fa(r,ka)fb(kb)

]
,

(148)

where the notations implicitly became k′
a = ka+(k′−k)

and k′
b = kb − (k′ − k). Note that, from Eq. (147) to

Eq. (148), ρb(kb) has been replaced by fb(kb), which
is normalized according to

∫
Rd fb(kb) dkb = 1. Then,

splitting the radial and angular parts of the integral (148)
over k′ with k′ = k′Ω, integrating over k′, and using
Eq. (46) to make appear the center-of-mass differential
cross section, one finds

W
(
R̂
)
=

∫
Rd

dkb

∮
Sd

dΩ nv
dσ

dΩ
(Ω | k)

×
[
fa(r,k

′
a)fb(k

′
b)− fa(r,ka)fb(kb)

]
,

(149)

where v = ∥va − vb∥ is the relative velocity of the collid-
ing particles, which is directly proportional to the relative
momentum k according to Eq. (47). The notations are
now {

k′
a = ka + (kΩ− k) = ma

M K+ kΩ ,

k′
b = kb − (kΩ− k) = mb

M K− kΩ ,
(150)

whereK = ka+kb is the total momentum of the colliding
particles, and M = ma +mb is their total mass. Finally,
substituting Eq. (149) into Eq. (135) leads to the tradi-
tional form of the Boltzmann equation in the absence of
external forces [15–19]

∂fa
∂t

+ va ·∇rfa =

∫
dkb dΩ nv

dσ

dΩ
(Ω | k)

×
[
fa(r,k

′
a)fb(k

′
b)− fa(r,ka)fb(kb)

]
.

(151)

It may look surprising that Eq. (151) has the same form
as the classical linear Boltzmann equation. However, it
should be noted that fa(r,ka) is still a Wigner func-
tion able to describe distributions of quantum nature. In
particular, nothing prevents fa(r,ka) from being locally
negative due to quantum interferences. In some way,
one could say that the Boltzmann equation may also be
thought of as a quantum master equation.

IV. CONCLUSIONS

In this paper, several quantum master equations have
been derived explicitly to describe the propagation of a
fast quantum particle in a gas at thermal equilibrium,
namely the simplified Redfield equation (121), the Lind-
blad form (127), and the Boltzmann equation (151). The
starting point of the derivation was the quantum Liou-
ville equation (51) of the full multiparticle problem. The
Hamiltonian of the system, given in Eq. (8), neglects the
interaction between individual scatterers.
First, the Redfield equation (83) was derived using per-

turbation theory on the interaction potential at next-to-
leading order and the Markov assumption. Then, the
collision terms of the Redfield equation were expanded
using the Fourier decomposition (89) of the potential. In

the process, the system-bath interaction operator K̂q(τ)
defined in Eq. (99) was shown to decay to zero in time,
hence ensuring the convergence of its time integral. In
the case of a fast particle, the time scale of this decay
turns out to be much longer than the collision time. This
shows that the assumption of a delta-correlated bath,
which could possibly be made for a very slow particle
(va ≪ vb) and which would lead to a Lindblad equation,
is not relevant for a fast particle. Despite this, the time
integral of K̂q(τ) can be evaluated regardless of the par-
ticle velocity, leading to energy conservation Dirac deltas
and principal values. In Appendix A, the principal val-
ues were shown to be negligible in the weak scattering
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regime (ka,0ℓs ≫ 1). This approximation led to the sim-
plified Redfield equation (121) which is the central result
of this paper. The best feature of Eq. (121) is its four-
term structure, made of two adjoint gain terms and two
adjoint loss terms, which directly comes from Eq. (62),
the exact equation of the full problem. Therefore, due
to this similarity, one should expect Eq. (121) to reliably
approach the populations and coherences of the full prob-
lem governed by the quantum Liouville equation (51).

On the other hand, the four-term structure of Eq. (121)
prevents it from being of the Lindblad form and thus
from guaranteeing the completely positive evolution of
the density matrix in all circumstances. It was shown
in Sec. III C that Eq. (121) can be cast in the Lindblad

form (127) by factorization of the rate operator Wq(k̂a).
The reduction to a Lindblad equation is exact in the sense
Î = 0 only when ρ̂a is diagonal in the momentum basis, or
when Wq(ka) does not depend on ka. In particular, the
first condition seems reasonable in the framework of ion-
izing fast particles as their wavelength is typically much
smaller than the spatial extent of the wave packet. This
supports the idea that Eq. (121) approximately preserves
the complete positivity of the density matrix of fast par-
ticles.

Last but not least, the linear Boltzmann equation (151)
was derived in Sec. IIID from the simplified Redfield
equation. This derivation highlights the consistency be-
tween the simplified Redfield equation (121) and the
Boltzmann equation regarding the transport of the par-
ticle. In addition, this derivation is based on the same
assumptions as for the Lindblad form (127), namely ei-
ther ρ̂a is diagonal in the momentum basis, or Wq(ka) is
independent of ka. This concordance shows that the evo-
lution predicted by the linear Boltzmann equation is also
completely positive in first approximation. Furthermore,
Eq. (151) has the same form as the classical Boltzmann
equation, but it governs the evolution of the Wigner func-
tion of the particle, which is a quantum distribution.
Therefore, the Boltzmann equation can also be consid-
ered as a different kind of quantum master equation for
the propagation of a particle in a gas, beside the Redfield
and Lindblad equations.

In the future, it would be useful to study the differences
of predictions between the master equations derived in
this paper and the quantum Liouville equation of the full
multiparticle problem. One important issue concerns the
spatial diffusion induced by the non-commutation of the
rate operator Ŵq and the density matrix ρ̂a. This effect
is expected to be significant for wave packets of small
spatial extent compared to their central wavelength. In
this paper, terms contributing to spatial diffusion have
been highlighted in the Redfield equation (121) and the

Lindblad equation (127) with Î = 0, but seem absent
from the Boltzmann equation (151). Such terms have
long been conjectured in the collisional decoherence lit-
erature [2, 3, 28–32, 34] to ensure the completely positive
time evolution of the density matrix. However, they have
never been the subject of a precise comparison with the

predictions of the quantum Liouville equation of the full
problem, so that their physical significance is still an open
question today.
Finally, in a later paper, one plans to study the prop-

erties of the Redfield equation (121) in more details, es-
pecially the friction, the deflection, and the decoherence
of a fast particle in a gas.
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Appendix A: Principal value terms

In this appendix, one estimates the total contribu-
tion of the four principal value terms which emerged in
Sec. III B from the time integral

∫∞
0

dτ in the Redfield
equation. In particular, it is proved that this contribu-
tion is negligible in the weak scattering regime, that is,
when the mean free path is much larger than the wave-
length (kℓs ≫ 1). The total contribution is given by the
last bracket of Eq. (120), that is

P̂ =
(
P̂G − P̂ †

G

)
−
(
P̂L − P̂ †

L

)
. (A1)

According to Eqs. (115) and (119), one can write

P̂ =
∑
q

eiq·r̂[Ŷq, ρ̂a] e
−iq·r̂ − [Ŷq, ρ̂a] . (A2)

In addition, the unitary operators e±iq·r̂ can be applied
directly in the commutator:

P̂ =
∑
q

[
eiq·r̂Ŷq e

−iq·r̂, eiq·r̂ρ̂a e
−iq·r̂

]
− [Ŷq, ρ̂a] . (A3)

In order to get an estimate of Eq. (A3), one considers the
following rough approximations for the density matrices:

eiq·r̂ρ̂a e
−iq·r̂ ≈ ρ̂a ,

eiq·r̂ρ̂b e
−iq·r̂ ≈ ρ̂b .

(A4)

In principle, these approximations require that q is much
smaller than the inverse coherence length Λ−1 defined in
Eq. (24) for both the particle and the scatterers. Under
the first approximation of Eq. (A4), Eq. (A3) can be
written as the commutator

P̂ = [Π̂, ρ̂a] , (A5)
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where the operator Π̂ is defined as

Π̂ =
∑
q

eiq·r̂Ŷq e
−iq·r̂ − Ŷq . (A6)

Furthermore, under the second approximation of
Eq. (A4), one finds the nontrivial approximate property

eiq·r̂Ŷq e
−iq·r̂ ≈ −Ŷ−q , (A7)

which comes from definition (110) and the facts that

eiq·(r̂−x̂b)
1

Ek̂a+q + Ek̂b−q − Ek̂a
− Ek̂b

e−iq·(r̂−x̂b)

=
1

Ek̂a
+ Ek̂b

− Ek̂a−q − Ek̂b+q

,

(A8)

and that |ū(q)|2 = |ū(−q)|2. If one uses the change of
variable q → −q under the summation symbol, then
Eq. (A6) reduces to

Π̂ = −2
∑
q

Ŷq . (A9)

Using Eq. (110) and the notation ⟨X̂⟩b = Trb(ρ̂bX̂) for
the average over the bath states, one gets

Π̂ = − 2n

ℏV
∑
q

|ū(q)|2
〈
Pv

1

D̂q

〉
b

. (A10)

The sum over q can be replaced by a sum over the final
momentum by means of k′ = k+ q. One writes

Π̂ = − 2n

ℏV
2m

ℏ2
∑
k′

〈∣∣∣ū(k′ − k̂)
∣∣∣2 Pv 1

k′2 − k̂
2

〉
b

, (A11)

where k̂ = (mbk̂a − mak̂b)/(ma + mb) is the relative
momentum operator according to Eq. (42). In the con-
tinuum limit (V → ∞) and splitting the integral into the
radial and angular parts, Eq. (A11) reads

Π̂ =− 2n

ℏ(2π)d
2m

ℏ2

∫ ∞

0

dk′ k′
d−1

∮
Sd

dΩ

×
〈∣∣∣ū(k′Ω− k̂)

∣∣∣2 Pv 1

k′2 − k̂2

〉
b

.

(A12)

To evaluate these integrals, it is convenient to generalize
the differential cross section initially defined in Eq. (49)
to collisions off the energy shell:

dσ

dΩ
(k′Ω | k) = π

2

k′
d−3

(2π)d

∣∣∣∣2mℏ2 ū(k′Ω− k)

∣∣∣∣2 . (A13)

In this way, the angular part of the integral in Eq. (A12)
reduces to the off-shell total cross section:

σ(k′ | k) =
∮
Sd

dσ

dΩ
(k′Ω | k) dΩ . (A14)

Therefore, Eq. (A12) simplifies into

Π̂ = −2n

ℏ
2

π

ℏ2

2m
Pv

∫ ∞

0

dk′

〈
k′

2

k′2 − k̂2
σ(k′ | k̂)

〉
b

.

(A15)
The remaining integral in Eq. (A15) cannot be found
in closed form in the general case, because of the de-

pendence on an unknown cross section σ(k′ | k̂). Since

one is seeking for an order of magnitude for Π̂, one sup-
poses that the integral in Eq. (A15) is of the order of

k̂σ(k̂), where σ(k) is the on-shell total cross section from

Eq. (50). Indeed, one expects σ(k′ | k̂) in Eq. (A15) to

have a peak around k′ = k̂, and to quickly vanish when

k′ strongly deviates from k̂. Therefore, one finds the ap-
proximation

Π̂ = −2n

ℏ
ℏ2

2m
C
〈
k̂σ(k̂)

〉
b
, (A16)

where C is a dimensionless prefactor. As this pa-
per focuses on the case of fast particles, one assumes
that the incident particle travels much faster than the
scatterers (va ≫ vb). Therefore, the relative veloc-

ity, v̂ = ∥v̂a − v̂b∥ = ℏk̂/m, can be approximated by

v̂a = ℏk̂a/ma, and one can write from Eq. (A16)

Π̂ = −2n

ℏ
ℏ2

2ma
Cσ0k̂a , (A17)

where σ0 = ⟨σ(k̂)⟩b. Note that, strictly speaking, the

total cross section σ0 still depends on k̂a. However, this
dependency is neglected so that σ0 is treated as a con-
stant. One last approximation is that the deviation of
the particle momentum around some central momentum
is small:

k̂a = ka,0Ω0 +∆k̂a with
∥∥∥∆k̂a

∥∥∥≪ ka,0 . (A18)

In Eq. (A18), ka,0Ω0 denotes the average momentum of
the incident particle. This approximation is consistent
with the high-velocity assumption for the particle. Ac-
cording to Eq. (A18), any power γ ∈ R of the momentum

k̂a can be approximated as follows

k̂γa = kγa,0 + γkγ−1
a,0 Ω0 ·∆k̂a +O(∆k̂

2

a) . (A19)

In particular, expansion (A19) can be used for γ = 1 in
Eq. (A17). The commutator in Eq. (A5) then reads

P̂ = [Π̂, ρ̂a] = −2n

ℏ
ℏ2

2ma
Cσ0Ω0 · [∆k̂a, ρ̂a] . (A20)

Expression (A20) turns out to be closely similar to the

free propagation term [Ĥa, ρ̂a] in the quantum Liouville
equation. This similarity becomes even more apparent if
one uses the approximation (A19) for γ = 2 to approach

the Hamiltonian Ĥa =
ℏ2k̂2

a

2ma
. The result is

[Ĥa, ρ̂a] =
ℏ2

2ma
2ka,0Ω0 · [∆k̂a, ρ̂a] . (A21)
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In fact, Eq. (A21) is proportional to Eq. (A20) according
to

P̂ = [Π̂, ρ̂a] = −1

ℏ
C
nσ0

ka,0
[Ĥa, ρ̂a] . (A22)

Therefore, the contribution of the principal value terms
to the Redfield equation (120) can be approached by

∂ρ̂a
∂t

=

(
1− C

nσ0

ka,0

)
Laρ̂a + R̂ . (A23)

This result shows that the principal value terms affect
the propagation velocity of the particle by a correction
of the order of the dimensionless factor Cnσ0/ka,0. This
correction is small under the condition

nσ0

ka,0
≪ 1 , (A24)

which is equivalent to the weak scattering condition (12).
In this regime, the principal value terms are negligible
compared to the free motion of the particle. Since con-
dition (A24) is typically fulfilled for particles of a few
MeVs in a gas, the approximation made near Eqs. (120)
and (121) is well justified.
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