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Abstract
Aim: To date, few studies have examined the phylogenetics of Corbicula clams in 
their native range and the environmental parameters influencing their distribution, 
although this could provide great insights into the biological adaptation and invasion 
dynamics of Corbicula clams. We sought to identify the genetic lineages of native 
Corbicula clams and elucidate the environmental factors shaping the distributions of 
identified lineages.
Location: China, mainly the Yangtze River Basin.
Methods: The alignment comprised 558 COI sequences including samples from China 
and 222 COI sequences from published studies. This dataset was used to generate 
phylogenetic trees and compare population diversity. We used dbRDA method to as-
sess the relationship between these COI data and environmental factors measured to 
identify the important factors affecting Corbicula's distribution.
Results: The COI phylogenetic tree delineated the monophyly of 3 major COI clades 
and 77 distinct COI haplotypes in the Yangtze River Basin. The invasive lineage C/S 
(FW17) was not identified in our sampling in China, while invasive lineages A/R 
(FW5 = Hap6), B (FW1 = Hap17) and Rlc (FW4 = Hap43) were identified, abundant 
and widely distributed in the middle and lower reaches of Yangtze River. Focusing on 
populations from Yangtze River Basin, both the COI haplotype and nucleotide diver-
sity in the lakes along the Yangtze River increased with longitude, except for the river 
mouth population. The AMOVA tests showed significant differentiation between the 
middle and lower reaches of the Yangtze River and among populations. The dbRDA 
results suggested that the parameter chloride explained most of the spatial COI haplo-
type distribution variation in the Yangtze River Basin, with the three invasive lineages 
tolerating broad fluctuations of salinity (chloride levels ranging from 4 to 60 mg/L).
Conclusions: The Corbicula COI haplotypes found within the Yangtze River Basin had 
distinct distribution preferences, with the invasive androgenetic lineages being the 
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1  |  INTRODUC TION

Biological invasions have been unambiguously shown to be 
among the major causes of global biodiversity decline (Courchamp 
et al.,  2017; Diagne et al.,  2021). Genus Corbicula, also known as 
Corbicula complex, is considered one of the most ecologically and 
economically costly freshwater invaders (Haubrock et al.,  2022; 
Pigneur, Falisse, et al., 2014; Strayer, 2010). The original distribution 
of Corbicula (Bivalvia, Cyrenidae; formerly Corbiculidae) seems to be 
confined to Asia, Africa and Australia (Araujo et al., 1993); since the 
mid-20th century, they have established a global distribution that 
spans all continents except the Antarctic (Bespalaya et al.,  2018; 
Crespo et al.,  2015). In general, Corbicula clams are regarded as 
high-impact freshwater invaders due to their ability to detrimentally 
alter community and ecosystem dynamics, through nutrient cycling 
and energy flow, phytoplankton depletion and competition for re-
sources and substrate modification (Pigneur, Falisse, et al.,  2014; 
Sousa et al.,  2014). Its diverse reproductive strategies (androge-
netic hermaphrodite, sexual dioecism, cross-fertilization and self-
fertilization) is another issue of interest in their invasion biology 
(Pigneur et al.,  2012). Although the rapid expansion of Corbicula 
across its invasive range is mostly linked to anthropogenic-mediated 
dispersal (Coughlan et al., 2017), the invasive Corbicula lineages all 
appear to be hermaphrodites reproducing through androgenesis, 
and one individual is sufficient to establish a new population (re-
viewed in Pigneur et al., 2012). These Cyrenidae are therefore con-
sidered a potential model taxon for the general study of rapid bivalve 
radiations into inland environments (Graf, 2013).

Few studies have attempted to assess the phylogenetics and 
phylogeography of sympatric Corbicula clams within their native 
habitats, in Asia, Africa or Australia. As a result, the evolutionary 
processes that have shaped historical radiation and adaptation in 
Corbicula, as well as their contemporary interactions with environ-
mental preferences, remain unclear. One of the dominant drivers 
of species distribution is habitat (McDowell et al.,  2014). Because 
of their global distribution and high invasive efficiency (Crespo 
et al.,  2015), the Corbicula's habitat preference for environmental 
factors such as temperature, turbidity and salinity has been studied 
(Avelar et al.,  2014; McMahon,  1979; Müller & Baur,  2011; Sousa 
et al., 2006). Low temperature (<2°C), high temperature (>25°C) and 
high turbidity (>150 nephelometric turbidity units, NTU) could cause 

a decline in their survival rates (Avelar et al., 2014; McMahon, 1979; 
Müller & Baur, 2011), and it was also reported that changes in salin-
ity could influence their abundance and biomass (Sousa et al., 2006). 
The consequences of these environmental factors could directly 
shape their distribution and colonization (Ferreira-Rodríguez 
et al., 2017), but it remains unclear whether different effects exist 
between species (lineages) within the genus.

Despite an almost global distribution, the taxonomy of this genus 
is poorly understood, primarily due to the extraordinary range of 
morphological variation and unique reproductive modes, includ-
ing both sexual dioecy and androgenetic hermaphrodite species 
(Gomes et al.,  2016; Komaru et al.,  2013; Peñarrubia et al.,  2017; 
Pigneur et al., 2011). In recent years, with the development of se-
quencing methods, molecular markers have been employed to solve 
taxonomical difficulties (e.g. Bespalaya et al.,  2018; Haponski & 
Ó Foighil,  2019; Vastrade et al.,  2022). Two Corbicula mitochon-
drial lineages are now considered to be widely distributed within 
Asian freshwater environments using COI, forms A/R and B (Park 
& Kim,  2003; Pigneur, Etoundi, et al.,  2014; Wang et al.,  2014). 
However, discrepancies remain between genetic and morphological 
identifications (Lee et al., 2005; Siripattrawan et al., 2000), as well 
as between nuclear and mitochondrial markers (Hedtke et al., 2008; 
Lee et al.,  2005; Peñarrubia et al.,  2017; Pfenninger et al.,  2002; 
Vastrade et al., 2022). The taxonomical identification of Corbicula 
also remains difficult because of their androgenetic mode of repro-
duction and polyploidy.

Despite the limitations of relying on a single molecular marker, 
the widely used COI marker has shown to be reliable for Corbicula, 
and was used in this study. Hence, in this study, we sampled Corbicula 
clams from the middle and lower Yangtze River Basin and produced 
mitochondrial COI sequences, downloaded available COI sequences of 
Corbicula clams from the NCBI database and identified the mitochon-
drial lineages present in the native and non-native regions. The spatial 
distribution of these lineages was further investigated in the popula-
tions of the middle and lower Yangtze River, and environmental indica-
tors were used to investigate the drivers influencing their distributions. 
We tested the hypothesis of whether salinity was the main factor influ-
encing the distribution of Corbicula in the Yangtze River Basin. These 
results will improve our understanding of the adaptive mechanisms of 
their invasion and provide information for biodiversity conservation in 
invaded areas to control their colonization.

Youth Innovation Promotion Association 
CAS, Grant/Award Number: 2020316; 
Irish Research Council, Grant/Award 
Number: GOIPD/2022/861

Editor: Elizabeta Briski

most abundant and widely distributed. Genetic diversity was higher in this native re-
gion than in invaded areas in Europe and America, while it decreased with increasing 
distance from the river mouth. Salinity appeared to be the main environmental factor 
shaping the COI haplotype distribution of Corbicula lineages within their native range.

K E Y W O R D S
Asian clam, evolutionary adaptation, genetic diversity, haplotype distribution, lineages, 
oceanic origin
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    |  3ZENG et al.

2 | METHODS

2.1  |  Sample collection

Corbicula specimens were collected with hand net or dredge from 
seven freshwater lakes and the Yangtze River mouth (YzM, n = 60). 
Sampled lakes included five of the largest freshwater lakes in China: 
Chao Lake (ChL, n = 4), Dongting Lake (DoL, n = 126), Hongze Lake 
(HzL, n = 20), Poyang Lake (PoL, n = 19) and Tai Lake (TaL, n = 30), 
as well as two other lakes situated within the Yangtze River Basin: 
Datong Lake (DaL, n  =  55) and Dianshan Lake (DsL, n  =  22) (see 
Figure S1 and S2a–g for the location of sampled lakes and estuary 
and sampling localities within the lakes, respectively, and Table S1 for 
the sampling time). Lakes Datong (DaL), Dongting (DoL) and Poyang 
(PoL) are located in the middle reaches of the Yangtze River Basin, 
while the other four lakes are situated in the lower reaches. Currently, 
only Dongting Lake and Poyang Lake are directly connected with the 
Yangtze River, the other lakes are indirectly connected through a net-
work of tributary rivers, except Hongze Lake. Located in the lower 
reaches of the Huai River Basin, Hongze Lake is directly connected to 
the Yangtze River by the Beijing-Hangzhou Grand Canal. Specimens 
were washed on-site using a 0.5 mm mesh sieve with clean water and 
were immediately preserved in ethanol until DNA extraction.

2.2  |  DNA extraction and sequencing

Genomic DNA was extracted from each specimen's mantle tissue 
using the TIANamp tissue DNA kit (Tiangen Biotech Co., Ltd.). A 
710-base-pair (bp) fragment of the mitochondrial COI gene was then 
amplified using the universal primers LCO1490/HCO2198 (Folmer 
et al., 1994). PCRs were conducted in a final reaction volume of 25 μl 
consisting of 100 ng template DNA, 25 mM MgCl2, 1 × PCR buffer, 
2.5 mM each dNTP, 10 μM each of primers, 2.5 U of Taq DNA poly-
merase (Tiangen) and ddH2O. The reactions were conducted in 
an Applied Biosystems 2720 thermal cycler (Singapore), with an 
initial denaturation step at 94°C for 5 min, followed by 35 cycles 
at 94°C for 1 min, 50°C for 1 min and 72°C for 1 min, with a final 
extension step of 72°C for 5 min. Following this, 3 μl of PCR prod-
ucts were electrophoresed and visualized on 1% ethidium bromide 
(EB)-stained agarose gels to confirm single products. PCR products 
were purified using a TIANgel Midi Purification Kit (Tiangen Biotech 
Co., Ltd.). Products were sequenced by Sangon Biotechnology 
(Shanghai) Co., Ltd. (China) using Applied Biosystems™ 3730xl DNA 
Analyzer, and the sequences were subjected to quality control in-
dependently in Geneious (R11, Biomatters Ltd.), BioEdit (Hall, 1999) 
and Sequencher 4.1.4 (Gene Codes Corporation).

2.3  |  Phylogenetic analysis and haplotype network

As morphological traits cannot be relied upon for taxonomi-
cal identifications in Corbicula due to phenotypic plasticity, COI 

sequences were used here to identify lineages within this complex. 
To examine the phylogenetic relationship of Corbicula clams, other 
COI sequences from specimens collected throughout China were 
obtained from the NCBI database and the literature, including a 
few reference sequences (Table  1). However, as the sequences 
obtained from GenBank varied in length, only sequences with a 
length >550 bp were considered in our analyses. All sequences 
from Chinese Corbicula individuals were aligned using the plugin 
ClustalW Alignment (Thompson et al.,  1994) in Geneious (Gap 
Open Cost = 100 and Gap Extend Cost = 10: R11, Biomatters Ltd.). 
Moreover, the COI sequences of the four identified invasive line-
ages in Europe and America (Hedtke et al., 2008; Park & Kim, 2003; 
Pigneur et al., 2011; Pigneur, Etoundi, et al., 2014; Siripattrawan 
et al., 2000; Vastrade et al., 2022), being FW5 (form A/R, NCBI ID: 
AF196268) (Siripattrawan et al., 2000), FW1 (form B, AF196269) 
(Siripattrawan et al.,  2000), FW4 (form Rlc, AF269096) (Renard 
et al., 2000) and FW17 (form C/S, AF269095) (Renard et al., 2000), 
were added to the alignment and phylogenetic reconstruction to 
compare native Chinese and invasive Corbicula specimens using 
COI. Furthermore, Corbicula spp. not previously documented in 
China were also included in the alignment and COI phylogeny: C. san-
dai (AF196272), C. japonica (AF196271) (Siripattrawan et al., 2000), 
C. loehensis (AY275666), C. matannensis (AY275663), C. moltkiana 
(AY275657), C. possoensis (AY275661) (Glaubrecht et al., 2003) and 
Batissa violacea (Outgroup, DQ837727) (Glaubrecht et al., 2006).

All sequences in the alignment were trimmed to the same length. 
COI haplotypes were generated using DnaSP v 6.12.03 (Rozas 
et al.,  2017), while the haplotype network was produced using 
the median-joining network method with POPART 1.7 (Leigh & 
Bryant, 2015). Phylogenetic relationships were studied between the 
COI haplotypes by constructing a maximum-likelihood (ML) phylo-
genetic tree. The best nucleotide substitution model was selected 
based on the lowest AICc value by ModelFinder (Kalyaanamoorthy 
et al., 2017) and was used to build the maximum-likelihood phyloge-
netic tree using IQ-TREE (Nguyen et al., 2015).

Furthermore, to visualize the spatial genetic variation and the 
abundance of Corbicula clams residing within the middle and lower 
reaches of the Yangtze River Basin, haplotypes from DnaSP were 
mapped along the Yangtze River using ArcGIS 10.2 (ESRI Inc).

2.4  |  Genetic diversity

This study focused on Corbicula from the middle and lower reaches 
of the Yangtze River, and only populations associated with the 
Yangtze River were retained for the following analyses, including 
ChL, DaL, DsL, DoL, HzL, PoL, TaL, and YzM. COI genetic diversity 
was evaluated for all the Corbicula specimens recovered from the 
Yangtze River Basin (Table  3), the analyses computed the number 
of haplotypes (h), the haplotypic diversity (hd) and the nucleotide 
diversity (π) in DnaSP.

Considering the sampling size, which is uneven here, the ChL 
(n = 4) population was further excluded in the structure analysis to 
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4  |    ZENG et al.

avoid bias. The Yangtze River is usually divided into middle (=Middle) 
and lower (=Lower) reaches by the Hukou (which is the boundary 
for middle and lower reaches of Yangtze River), so this study as-
signed DaL, DoL and PoL into Middle Yangtze River Basin and the 
other lakes (DsL, HzL, TaL and YzM) into Lower Yangtze River Basin. 
An analysis of molecular variance (AMOVA) was performed to de-
termine the amount of genetic variability using F-statistics among 
geographic populations and among clades. The significance of the 
covariance components associated with the different possible levels 
of genetic structure was tested by 10,000 permutations. AMOVA 
was performed in Arlequin v3.5.2.2 (Excoffier & Lischer, 2010). For 
the uneven sampling size, we performed another AMOVA analy-
sis considering the populations with sample size >30 for all popu-
lations and populations of clade II (see Table S2a,b) and compared 

the results with the first analysis. Both analyses yielded similar re-
sults and therefore the first analysis was retained within this study 
(Table 4).

2.5  |  Environmental parameter measurements and 
statistical analyses

To assess the extent to which Corbicula haplotypes and environ-
mental parameters influence the spatial distribution of Corbicula 
COI lineages, 18 environmental parameters were measured, includ-
ing temperature (Temp), transparency (Trans), pH, dissolved oxy-
gen (DO), conductivity (Cond), Chlorophyll-a (Chla), turbidity (Turb), 
chloride (Cl), calcium (Ca), magnesium (Mg), potassium (K), sodium 

Sites Code

Specimens 
(collected in this 
study)

Sequences 
(downloaded 
from NCBI) Total

(a) Samples and sequences from China

Chao Lake ChL 4 0 4

Dongting Lake DoL 126 16a 142

Dianshan Lake DsL 22 0 22

Datong Lake DaL 55 0 55

Fujiang River FuR 0 30c 30

Hong Kong HoK 0 3d 3

Hongze Lake HzL 20 78e 98

Poyang Lake PoL 19 14a 33

Qingshan Lake QiL 0 13a 13

Tai Lake TaL 30 36c 66

Taiwan TaW 0 28a 28

Yalu River YaR 0 1f 1

Yangtze River Mouth YzM 60 0 60

Yunan YuN 0 3g 3

Total 336 222 558

(b) Sequences for references

Corbicula loehensis AY275666 0 1 4h

C. matannensis AY275663 0 1

C. moltkiana AY275657 0 1

C. possoensis AY275661 0 1

C. japonica AF196271 0 1 2i

C. sandai AF196272 0 1

FW1 Form B AF196269 0 1 3a

FW4 Form Rlc AF269096 0 1

FW5 Form A/R AF196268 0 1

FW17 Form C/S AF269095 0 1 1j

Batissa violacea DQ837727 0 1 1h

Note: Specimens sampled and sequences retrieved from GenBank from China, published data are 
marked with subscript letters, references: aPark & Kim, 2003; bWang et al., 2014; cIida et al., 2012; 
dPfenninger et al., 2002; eLi et al., 2015; fYamada et al., 2014; gPigneur, Etoundi, et al., 2014; 
hGlaubrecht et al., 2003; iSiripattrawan et al., 2000; jRenard et al., 2000.Sequences available in 
GenBank for reference, citations and accession numbers are provided.

TA B L E  1  Sources of Corbicula 
specimens and sequences used in the 
present study
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    |  5ZENG et al.

(Na), total phosphorus (TP), total nitrogen (TN), nitrate (NO3−-N), 
nitrite (NO2

2−-N), ammonium (NH4
+-N), orthophosphate (PO4

3−-P) 
and permanganate index (CODMn), for Chao Lake, Datong Lake, 
Dianshan Lake, Dongting Lake, Hongze Lake, Poyang Lake and 
Tai Lake. These 18 environmental parameters for each lake were 
collected at different times, and the specific sampling details are 
shown in Table  S1 and Figure  S2, and finally, the average of all 
time points was used for subsequent analysis (Table 2). Temp, pH, 
DO, Cond and Turb were measured using an YSI 6600 V2-4 Multi-
Parameter Water Quality Sonde, and Trans was measured in the 
field using Secchi disk. Chloride (Cl) was determined by ion chro-
matography, and Ca, Mg, K and Na were measured using ICP-AES. 
Samples for the determination of NH4

+-N, NO3−-N, PO4
3−-P and 

Chla concentration were filtered using Whitman GF/F filters. Chla 
was determined spectrophotometrically after extraction in 90% hot 
ethanol. TP, TN, NO3−-N, NO2

2−-N, NH4
+-N, PO4

3−-P and CODMn 
were measured in the laboratory based on standard methods (Rice 
et al.,  2012). The measurements and analyses of these environ-
mental parameters were completed by the Nanjing Institute of 
Geography and Lakes, Chinese Academy of Sciences. The data are 
displayed in Table 2.

The relationship between our COI haplotypes and environmen-
tal data was tested using distance-based multivariate linear model 
analysis (DistLM) in the statistical software Primer-e PERMANOVA+ 
(Anderson et al.,  2008). The relationships between COI haplotype 
frequencies and environmental parameters were initially examined 
by analysing each predictor separately (marginal tests), and then se-
quentially using an adjusted R2 selection procedure while avoiding 
collinearity between environmental data. Matrices in DistLM anal-
yses were built using Bray–Curtis resemblance matrices of haplo-
typic abundances and Euclidean distance resemblance matrices of 
normalized 18 environmental parameters. The p-values for indi-
vidual predictor variables were obtained using 9999 permutations 
(Leduc et al.,  2012). Distance-based redundancy analysis (dbRDA) 
plots were also generated using PERMANOVA+ to visualize the re-
sults once the best DistLM model of each population was obtained. 
Specimens recovered from unmentioned lakes were excluded from 
this analysis as no corresponding environmental data were available 
for the locations.

3  |  RESULTS

A total of 336 specimens were collected from seven lakes, as well as 
the Yangtze River mouth. All specimens were successfully amplified 
and sequenced to obtain COI barcodes for each individual (Table 1). 
After combined with sequences extracted from databases and pre-
vious studies presented in the literature (Table 1), the final alignment 
comprised 558 COI sequences of 526 bp including samples from 
China and 222 mitochondrial DNA samples documented by other 
studies from Corbicula sampled in other regions of the world. The 
526 bp COI sequences comprised only 77 haplotypes.

3.1  |  Haplotype phylogenetics

The COI phylogenetic tree obtained through ML delineated the 
monophyly of three major clades with relatively high support values: 
clades I, II and III (Figure 1). There was also additional Corbicula spp. 
that clustered outside these three major clades based on the exam-
ined sequences, such as C. possoensis, C. loehensis, C. matannensis 
and C. moltkiana from Malaysia and C. sandai from Japan (Figure 1). 
The COI haplotype FW17 retrieved in invasive lineage C/S also 
clustered outside the three clades (Peñarrubia et al., 2017; Pigneur, 
Etoundi, et al., 2014) and was not identified in our sampling in China, 
neither in other Chinese populations retrieved from other studies. 
Clade III occupied a basal position relative to clades I and II and clus-
tered together 35 COI haplotypes from our study with the brackish 
water species C. japonica from Japan (Figure 1). Clade I included hap-
lotype FW5 of invasive lineage A/R (corresponding to Hap 6 in our 
study) that is widely distributed in Europe and America (Peñarrubia 
et al.,  2017; Pigneur, Etoundi, et al.,  2014) and five additional COI 
haplotypes from China (Figure 1). FW5 (Hap6) was the only haplo-
type of clade I detected in our sampled lakes along the middle and 
lower Yangtze River (Figure 2). Clade II included not only 36 COI hap-
lotypes from China but also FW1 of invasive Corbicula lineage B and 
FW4 of invasive lineage Rlc.

3.2  |  Population diversity in middle and lower 
Yangtze River Basin

Among all 77 COI haplotypes we retrieved, the most common hap-
lotype in our Chinese studied populations was COI FW5 (Hap6) of 
invasive lineage A/R (frequency: 126/558, Figure 1) and COI FW1 
(Hap17) of invasive lineage B (frequency: 120/558, Figure  1). The 
most common COI haplotype in the estuarine clade III was Hap24 
(frequency: 46/558, Figure 1).

Focusing on populations from Yangtze River Basin, COI haplotypes 
from the present study belonging to clade I were only observed in the 
middle reaches of the Yangtze River Basin and a few specimens in 
Hongze Lake (HzL), including only FW5 (Figure 2, a and b). Haplotypes 
from clade III were restricted to the lower reaches of the Yangtze River 
Basin and the estuary, comprising the estuarine lineages (Figure  2, 
e and f). In contrast, haplotypes from clade II were found across the 
whole middle and lower Yangtze River Basin, except in the Yangtze 
River mouth (YzM) (Figure 2, c and d) and included invasive Corbicula 
lineages B and Rlc, corresponding here to haplotypes Hap 17 (FW1) 
and Hap 43 (FW4) respectively. COI haplotypes FW1 and FW4 exhib-
ited only one nucleotide difference and were both distributed widely 
in the middle and lower reaches of the Yangtze River (Figure 2, c and 
d). Haplotypes from clade II were found in sympatry with individuals 
from the other two clades (I and III). No lakes in the Yangtze River Basin 
were found to be inhabited by clams with COI haplotypes belonging to 
all three clades, except HzL, which does not belong to the basin but is 
connected by the Beijing-Hangzhou Grand Canal.
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    |  7ZENG et al.

Among different Corbicula populations, Dianshan Lake (DsL) 
displayed the highest COI haplotype (0.957) and nucleotide diver-
sity (0.0464) in the Yangtze River Basin (Table 3). The lowest COI 

haplotype diversity (0.599) and the lowest nucleotide diversity 
(0.0080) were observed, respectively, in the Datong Lake (DaL) 
and the Yangtze River mouth (YzM), located at both extremities 

F I G U R E  1  Phylogenetic tree inferred from ML analyses and haplotype geographic distribution of COI haplotypes for Corbicula lineages. 
Bootstrap values (%) are indicated at each node. Each haplotype shared by different populations and its number of sequences displayed in 
the right panel; a and b being, respectively, middle and lower reaches of Yangtze River, and c representing populations outside of Yangtze 
River that we did not sample (QiL without specific location).
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8  |    ZENG et al.

of our sampling region. Both the haplotype and nucleotide diver-
sity in the lakes along the Yangtze River increased with longitude, 
except for the river mouth population (Table 3), reflecting an in-
crease in COI genetic diversity in the downstream direction of the 

river course (i.e. flowing from west to east) (Figure 2). The AMOVA 
tests showed significant differentiation between the middle and 
lower reaches of the Yangtze River and among populations using 
the COI data (p < .001, Tables  4a and S2a). For Corbicula in the 

F I G U R E  2  COI haplotype distributions of clades I (a and b), II (c and d) and III (e and f) in each Corbicula population along the middle and 
lower Yangtze River with populations outside of Yangtze River excluded. (a), (c) and (e) were haplotype networks per clade, (b), (d) and (f) 
were maps of part of the Yangtze River with the populations/sampling sites pointed with the haplotype distribution and abundance. In (a), 
(c) and (e), “H,” standing for “Hap,” with numbers corresponding to haplotype names in Figure 1; circle size being proportional to the number 
of sequences per haplotype, black dots and numbers next to solid lines representing undetected or hypothetical haplotypes and mutational 
steps between haplotypes respectively. In (b), (d) and (f), numbers in parentheses represent the number of sequences. The double solid red 
lines represent Hukou, which is the boundary for middle and lower reaches of Yangtze River.
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    |  9ZENG et al.

Yangtze Basin, all samples in clade I belonged to the same COI Hap 
6, displaying no differentiation. In clade II, including haplotypes 
from almost the entire middle and lower basin regions, 85.60% 
of the genetic COI differentiation came from within populations 
(p < .001, Table 4b). In clade III, restricted to the lower basin re-
gion, a significant differentiation was observed among popula-
tions in the region (p < 0.001, Table 4c).

3.3  |  Environmental factors shaping the 
haplotype's spatial distribution

Following the removal of the 12 variables that did not explain the 
distribution (Temp, Trans, pH, DO, Ca, K, Na, TN, NO3

−-N, NO2
2−-N, 

NH4
+-N and CODMn), marginal tests resulting from DistLM analysis 

of COI population genetic variation at the regional scale showed that 
the 98.72% of the spatial COI haplotype distribution variation could 
be explained by chloride (Cl, 50.93%), turbidity (Turb, 23.00%), total 
phosphorus (TP, 17.37%) and magnesium (Mg, 7.42%) (Figure  3). 

Chloride, whose concentrations were shown to increase with so-
dium and conductivity, was positively correlated with the COI dis-
tribution of Corbicula from Tai Lake (TaL) and Dianshan Lake (DsL) 
and negatively with Datong Lake (DaL), Dongting Lake (DoL) and 
Poyang Lake (PoL). The composition of COI haplotypes in Hongze 
Lake (HzL) was possibly impacted by the high turbidity. Accordingly, 
the COI variation observed between geographic populations and the 
significant p-value of chloride suggested that salinity likely affected 
Corbicula's distribution and dispersal along the river.

4  |  DISCUSSION

4.1  |  Three COI corbicula clades detected in China

Based on the phylogenetic tree and haplotype networks constructed 
using the mitochondrial COI marker, only three major Corbicula 
clades were grouped within the Yangtze River Basin (Figures 1 and 
2). Previous studies documented seven freshwater Corbicula species 

Population N h Hd π Longitude

DaL 55 6 0.599 ± 0.052 0.0117 ± 0.0013 112.54° E

DoL 142 8 0.634 ± 0.025 0.0139 ± 0.0002 112.93° E

PoL 33 4 0.665 ± 0.050 0.0146 ± 0.0006 116.27° E

ChL 4 3 0.833 ± 0.222 0.0440 ± 0.0210 117.57° E

HzL 98 22 0.877 ± 0.018 0.0423 ± 0.0022 118.72° E

TaL 66 22 0.916 ± 0.018 0.0441 ± 0.0009 120.16° E

DsL 22 16 0.957 ± 0.029 0.0464 ± 0.0033 120.97° E

YzM 60 15 0.851 ± 0.024 0.0080 ± 0.0005 121.96° E

Abbreviations: h, number of haplotypes; hd, haplotype diversity; N, sample size; π, nucleotide 
diversity.

TA B L E  3  Genetic diversity of Corbicula 
among different geographic populations

Source of variation Df Sum of squares Components Percentage

(a) All geographic populations

Between region 1 2003.496 7.816 50.46***

Among populations 6 458.213 1.392 8.98***

Within populations 472 2964.699 6.281 40.55*

Total 479 5426.408 15.489

(b) Geographic populations in clade II

Between region 1 6.587 0.04693 7.69

Among populations 5 7.514 0.04096 6.71*

Within populations 198 103.431 0.52238 85.60***

Total 204 117.532 0.61027

(c) Geographic populations in clade III

Among populations 4 135.321 1.07106 34.95***

Within populations 164 326.880 1.99317 65.05

Total 168 462.201 3.06423

Note: Populations of the AMOVA analysis: DaL, DoL, PoL, ChL, HzL, TaL, DsL and YzM and the 
regions included in the analysis: middle reaches and lower reaches of Yangtze River. Only one 
haplotype (Hap6) was detected in the collected geographic populations in clade I, and the AMOVA 
test was therefore not applicable. Samples in clade III were only found in the lower region of the 
Yangtze River, and the hierarchical level of the region was not applicable.*p < 0.05; ***p < 0.001.

TA B L E  4  AMOVA analysis of different 
geographic populations in the Yangtze 
Basin
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10  |    ZENG et al.

in China based on morphological characteristics: C. fluminea, C. 
nitens, C. aurea, C. largillierti, C. fluminalis, C. tenuis and C. scholas-
tica (Wang et al., 2014). C. fluminea was described with the broad-
est distribution, inhabiting most river basins and lakes in China (Shu 
et al., 2014). Similarly, C. nitens, C. aurea and C. largillierti had a wider 
distribution than C. fluminalis which had only been reported within 
the Yangtze River Basin (Lin, 1962; Tchang et al., 1965). Specimens 
of C. tenuis and C. scholastica had also been detected within the Yuan 
River and the Huai River respectively (Huang & Li, 2003). High poly-
morphism and phenotypic plasticity within Corbicula have resulted 
in the delimitation of distinct morphotypes that appear highly similar 
genetically, making identification of distinct Corbicula species prob-
lematic and often resulting in multiple synonyms for a single lineage 
(Lin, 1962; Tchang et al., 1965). Similarly, specimens sampled from 
Dongting Lake, Poyang Lake and Qingshan Lake were previously 
grouped into two separate subclades and were regarded as C. flu-
minea and C. leana (Park & Kim,  2003). However, the macrozoob-
enthos surveys around these areas only found C. fluminea based on 
morphological examination (Shu et al., 2014).

Although only three major COI Corbicula clades were detected 
by the present study of Chinese lakes and Yangtze River mouth, sev-
eral distinct COI haplotypes were retrieved within clades II and III 
with 77 distinct COI haplotypes in total. Since only the COI marker 
was used here, we did not study the nuclear genetic diversity and 
we could not detect potential cytonuclear mismatches or hybrids oc-
curring in Corbicula when androgenetic lineages occur in sympatry. 
The biological species concept, which defines species as units that 
exhibit barriers to reproduction, is widely used to delimit taxonom-
ical units. The different reproductive strategies found in Corbicula 

(androgenetic hermaphrodite, sexual dioecism, cross-fertilization 
and self-fertilization (Gomes et al.,  2016; Peñarrubia et al.,  2017; 
Pigneur, Etoundi, et al.,  2014)), as well as possible hybridization 
between distinct lineages (Hedtke et al.,  2008; Lee et al.,  2005; 
Pigneur, Etoundi, et al., 2014; Vastrade et al., 2022), make species 
delimitation in general using the biological species concept problem-
atic in this genus. Genetic lineages defined using the COI marker, 
as in the present study, can identify distinct mitochondrial lineages 
within the genus Corbicula as evidenced by other studies (e.g. Park & 
Kim, 2003; Peñarrubia et al., 2017; Pigneur, Etoundi, et al., 2014), but 
species cannot be identified as discussed in Hedtke et al. (2011) or 
Vastrade et al. (2022) who included nuclear markers and identified 
discordances due to cross-species hybridizations.

4.2  |  Genetic spatial distribution and diversity

The haplotype and nucleotide diversity of sampled Corbicula clams 
residing within the Yangtze River Basin in the present study ranged 
between 0.599 and 0.957 and 0.0080 and 0.0464, respectively 
(Table  3), being higher than in the invasive populations in Europe 
and America where only four distinct COI Corbicula haplotypes 
were detected: form A/R (FW5), form B (FW1), form Rlc (FW4) 
and form C/S (FW17) (Gomes et al., 2016; Peñarrubia et al., 2017; 
Pigneur, Etoundi, et al., 2014), and recently form D (Haponski & Ó 
Foighil, 2019). The highest COI diversity in our study was detected 
in Dianshan Lake (DsL) located at the lower reaches of the Yangtze 
River: 16 distinct haplotypes belonging to clades II (5 haplotypes) 
and III (11 haplotypes) were found in this lake. Hongze Lake (HzL), 

F I G U R E  3  dbRDA analysis plot 
showing the relationship between 
population distribution and environmental 
variables. Environmental variables 
are indicated by the grey line pointing 
in the direction of increasing values, 
including chloride (Cl), turbidity (Turb), 
total phosphorus (TP) and magnesium 
(Mg). Populations are indicated by blue 
dots. Blue bar (top-right) represents 
proportion of explained variation by each 
environmental variable, and line chart 
represents cumulative proportion.
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outside but connected with the Yangtze River Basin, also displayed a 
high diversity with haplotypes of the three clades found in this lake. 
A similar pattern of COI genetic diversity was found in the Corbicula 
populations of Ebro River (Iberian Peninsula, Europe), with higher 
haplotype and nucleotide diversity in estuarine populations than 
inland populations, showing an increased diversity downstream 
(Peñarrubia et al., 2017). The COI haplotype and nucleotide diversity 
of Dongting Lake (DoL) in the present study were similar to those 
evaluated using the COI marker by Wang, Li, et al. (2018) but higher 
than those assessed by the Cytb marker (Wang, Zhu, et al., 2018), 
which may be attributed to differences in molecular markers or sam-
pling. The COI genetic diversity of HzL was also similar to previously 
reported data (Li et al., 2015).

The low genetic divergence of Corbicula clams within their in-
vaded range when compared to the native regions likely results from 
either a founder effect, whereby only a limited number of specimens 
were introduced from their native range, or through a short-lived 
bottleneck event followed by a fast population expansion of a few 
lineages through androgenesis (Pigneur, Etoundi, et al., 2014). The 
monomorphism found here in clade I (only haplotype 6 = FW5) rep-
resents the clonal or androgenetic invasive lineage A/R, which was 
widespread in the invasive range but also in the native region and 
within the Yangtze River Basin. Polymorphism in clade II was repre-
sented by 36 COI haplotypes found in the Yangtze Basin, including 
the invading lineages B (haplotype 17 or FW1) and Rlc (haplotype 43 
or FW4). Invasive lineage B, as abundant as lineage A/R in Chinese 
lakes, was found in all the lakes sampled in this study except Yangtze 
River Mouth, while invasive lineage Rlc was sampled in four distinct 
lakes (Figure 1). A high diversity was also detected in clade III, with 35 
distinct COI haplotypes retrieved in the Yangtze River and cluster-
ing with the brackish sexual species C. japonica that was only found 
in Japan and Korea (Okamoto & Arimoto, 1986; Park et al., 2002). 
The relatively high COI genetic diversity observed in clades II and III 
could be linked to possible sexual reproduction or frequent origins 
of asexual Corbicula lineages from sexually reproducing populations 
(Pigneur, Etoundi, et al.,  2014). Biflagellate sperm is a diagnostic 
marker of androgenesis in Corbicula (Pigneur et al., 2012), and pre-
vious reports detected it in Corbicula populations in the middle and 
upper Yangtze River (Qiu et al., 2001; Wang, Li, et al., 2018), but not 
in population in the Yangtze River mouth (Zhan, 2020). This spatial 
variation of reproduction may provide indirect evidence to explain 
genetic diversity differences.

4.3  |  Radiation of Corbicula from marine into 
freshwater habitats

Previous studies on the phylogeny of the family Cyrenidae revealed 
invasions of freshwater environments by marine/brackish Corbicula 
lineages (Glaubrecht et al., 2006; Graf, 2013). Similar results were de-
tected by the present study, supporting the hypothesis of Corbicula 
radiation from marine into freshwater habitats. First, clade III was 
mostly found in estuarine lakes such as Tai (TaL) and Dianshan (DsL) 

lakes in the lower reaches of the Yangtze River Basin (where the chlo-
ride concentration was 43.79 ± 15.49 mg/L and 63.68 ± 16.22 mg/L, 
respectively), as well as the Yangtze River mouth. Both lakes have 
originated from the closely residing East China Sea over time. As 
a geologically recent waterbody, Tai Lake was a large embayment 
of the East China Sea as recent as 1 million years ago and gradually 
became separated, while Dianshan Lake remains connected with the 
East China Sea through the Huangpu River (Gu et al.,  2019). Two 
haplotypes of clade III also invaded Chao Lake (ChL) where the chlo-
ride is much lower (21.96 ± 4.07 mg/L), while distinct haplotypes of 
clade III (10 haplotypes in total) invaded Hongze Lake (HzL) where 
the chloride reaches 42.91 ± 8.83 mg/L. Second, marginal tests re-
sulting from DistLM analysis of COI population genetic variation at 
the regional scale suggested that environmental parameters largely 
explained the spatial COI haplotype distribution, with chloride levels 
explaining most variations. We, however, did not study the nuclear 
genetic diversity of Corbicula and therefore the impact of chloride 
on the spatial genetic variation within the Yangtze River Basin should 
be considered preliminary. At the global scale, the temperature has 
been suggested as the critical factor shaping Corbicula distribution 
(Crespo et al.,  2015; Gama et al.,  2016). However, at local scales, 
salinity is considered a major abiotic factor influencing the success 
and velocity of invasion into new environments in Corbicula as sug-
gested also by other studies (Crespo et al., 2017; Sousa et al., 2006). 
Notably, salinity has been observed to directly affect the physiologi-
cal processes of Corbicula (Baba et al., 1999; Crespo et al., 2017). 
Third, the two invasive lineages A/R and B, abundant in the Chinese 
lakes studied here, were sampled from freshwater and estuarine 
lakes (with chloride ranging from 4.58 ± 1.17 to 42.91 ± 8.83 mg/L 
for lineage A/R and 4.58 ± 1.17 to 63.68 ± 16.22 mg/L for lineage B). 
Invasive lineage Rlc was found in lakes where chloride ranged be-
tween 5.31 mg/L and 42.91 mg/L. The three invasive lineages, there-
fore, seem to show a wide tolerance towards varying salinity levels, 
explaining their abundance and widespread distribution within the 
Yangtze River Basin (Figure 2; Table 2) and also abroad.

Environmental factors other than salinity may have shaped 
the colonization of clams during dispersal. High turbidity has the 
potential for decreased feeding, reduced reproduction and even 
to reduce shellfish survival (Avelar et al.,  2014; Tuttle-Raycraft & 
Ackerman, 2020; Wilber & Clarke, 2001). Besides, as filter-feeding 
bivalves, the survival of Corbicula depends heavily on the abun-
dance of some phytoplankton species (Sousa et al., 2014). The avail-
ability of phosphorus is an important factor that directly controls the 
phytoplankton growth, biomass and species composition (reviewed 
in Xu et al.,  2010), and therefore may indirectly affect Corbicula 
populations. Finally, Mg, being essential for the shell formation of 
Corbicula (Zhao et al., 2017), could also impact the distribution of 
Corbicula clams. Although these factors may only have a low contri-
bution to the spatial distribution of clams when compared to salinity, 
their impact should be considered in further analyses.

Environmental factors may vary with regional changes, but salin-
ity usually varies with distance from the estuary, both in invaded and 
native areas. Salinity was observed here to have the highest impact 
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on the success of Corbicula radiation and may support genetic bar-
riers that shape an uneven distribution through the limitation of 
gene flow among different Corbicula lineages, depending on their 
salinity tolerance (e.g. Crespo et al., 2017). The present study, how-
ever, emphasizes that invasive Corbicula lineages found in Europe 
and America, are also abundant in the native range, combining an 
androgenetic mode of reproduction with a high salinity tolerance, 
corroborating their high invasion capacity.

4.4  |  Implications for freshwater biodiversity 
conservation

Control and management of invasive species are highlighted as 
a priority for biodiversity conservation (Coughlan et al.,  2020; 
Guareschi et al.,  2021). Corbicula lineages A/R and B are abun-
dant and widely distributed in native and invaded regions (Gomes 
et al.,  2016; Park & Kim,  2003; Peñarrubia et al.,  2017; Pigneur, 
Etoundi, et al., 2014), and their peculiar reproductive mode (includ-
ing androgenesis, self- and cross-fertilization) may be one of the 
main reasons for their invasive capacities in freshwater ecosystems 
(Gomes et al., 2016; Kraemer et al., 1986; Lee et al., 2005; Vastrade 
et al., 2022). Importantly, our findings here revealed that these two 
lineages had a wide tolerance to salinity being able to colonize from 
estuary to inland rivers and lakes, increasing their invasion poten-
tial in different water systems. Conservation managers should pay 
close attention to populations inhabiting environments with a high 
or fluctuating salinity, as these populations may cryptically radiate 
upstream into freshwaters overtime. However, whether those fur-
ther upstream can disperse in a downstream direction and show 
tolerance to increased salinity levels still requires further investi-
gation to confirm. Distribution and dispersal modelling for these 
invasive lineages should be updated to reflect this improved under-
standing of Corbicula tolerance to salinity, as study findings based 
on field data corroborate and expand upon what has so far only 
been observed under laboratory conditions. Therefore, the two 
invasive lineages require special caution to control and manage, 
as these lineages have the potential to establish a new population 
through only one individual (reviewed in Pigneur et al., 2012), cause 
biomass and production reduction in primary producers but also 
habitat competition with native species in the invaded ecosystems 
(Pigneur, Falisse, et al.,  2014; Sousa et al.,  2014; Strayer,  2010). 
Given that these two lineages have a high capacity for invasion, it 
is critical to detect them early during their invasion so that the loss 
of native species and the cost of management could be reduced. 
Although detecting Corbicula at an early stage is difficult due to 
few individuals and small larvae, techniques such as environmental 
DNA provide a viable method to achieve rapid and sensitive detec-
tion (Simberloff et al., 2013). Design of suitable detection primers 
and kits in the future would directly benefit the biodiversity conser-
vation in invasive areas, as well as the implementation of improved 
biosecurity protocols (Coughlan et al., 2020).
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