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Abstract

Accurate in silico prediction of conformational B-cell epitopes would lead to major improvements in disease diagnostics, drug design and
vaccine development. A variety of computational methods, mainly based on machine learning approaches, have been developed in the
last decades to tackle this challenging problem. Here, we rigorously benchmarked nine state-of-the-art conformational B-cell epitope
prediction webservers, including generic and antibody-specific methods, on a dataset of over 250 antibody-antigen structures. The
results of our assessment and statistical analyses show that all the methods achieve very low performances, and some do not perform
better than randomly generated patches of surface residues. In addition, we also found that commonly used consensus strategies that
combine the results from multiple webservers are at best only marginally better than random. Finally, we applied all the predictors to
the SARS-CoV-2 spike protein as an independent case study, and showed that they perform poorly in general, which largely recapitulates
our benchmarking conclusions. We hope that these results will lead to greater caution when using these tools until the biases and issues
that limit current methods have been addressed, promote the use of state-of-the-art evaluation methodologies in future publications
and suggest new strategies to improve the performance of conformational B-cell epitope prediction methods.
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Introduction
The ever-increasing amounts of biological data that are being
generated and deposited in publicly accessible databases [1, 2]
have boosted the development of machine learning (ML) models
that are being used to help in advancing a variety of problems in
the fields of genomics, proteomics and molecular evolution [3, 4].
The availability of three-dimensional (3D) structural information
from either experiments [5] or accurate prediction tools [6, 7] has
further led to substantial improvements of in silico prediction and
modeling tools. One of the fields that has seen the development
of a large number of structure-based ML models is B-cell epitope
prediction. B-cell epitopes are typically protein surface regions
which are bound by antibodies, and knowledge of the residues
that form an epitope is key for unraveling disease mechanisms
[8, 9] or for applications such as vaccine design, immunotherapy
and immunoassay development [10].

Several experimental methods are available to determine B-
cell epitopes [10], but they are expensive, time-consuming and
some require a high level of lab expertise. This is why the devel-
opment of in silico tools has attracted a lot of attention. Initial
methods focused on linear B-cell epitopes and relied on features
derived from antigen sequences, but early on their predictive
power was shown to be no better than random [11], a conclusion
that was further confirmed in a recent study [12]. As more X-ray

structures of antibody-antigen complexes were deposited in the
Protein Data Bank (PDB) [5], a number of structure-based meth-
ods were developed to predict conformational or discontinuous
B-cell epitopes, which contain residues that are not necessarily
contiguous along the protein sequence. Many of these methods
have reported significantly better than random predictive power
[13] (see [14] for a historic presentation of B-cell epitope prediction
methods).

Nevertheless, a number of voices [15–20] have raised concerns
regarding the feasibility of generic epitope predictions, i.e. predict-
ing all the epitopes on a given antigen for all possible antibodies.
Indeed, some evidence suggests that antibodies may be raised
against virtually any part of the surface of any given protein
[21–23], except in the case of chemical modifications such as
glycosylation which are known to often block antibody binding
[24–26]. The case of extensively studied proteins such as lysozyme,
HIV-gp120 and, more recently, the receptor-binding domain (RBD)
of the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) spike protein show that it is possible to find epitopes
on almost the entire surface of an antigen. If this were to be
the general case, generic epitope prediction approaches would be
futile.

As a result, a new trend has emerged in the field that challenges
the generic epitope prediction paradigm and instead attempts
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to develop antibody-specific epitope predictors [15]. The main
advantage of this approach is that it deals with a more constrained
and tractable task as opposed to generic epitope prediction. Its
downside is that it requires prior knowledge of the antibodies
that need to be screened, which greatly limits the number of
use cases compared with generic epitope prediction methods.
Moreover, current antibody-specific epitope predictors are not
fast enough to screen even a small fraction of the space of all
possible antibodies, which is currently estimated at 1012 for naive
antibodies and up to 1016–1018 for all possible antibodies [27].

To advance the field of B-cell epitope prediction, we have
benchmarked and analyzed some of the most popular generic
and antibody-specific B-cell epitope prediction methods by test-
ing whether they are able to accurately identify experimentally
validated epitopes. This evaluation was performed on a dataset
of over 250 nonredundant antibody-antigen structures using a
rigorous benchmarking methodology.

Materials and methods
Surface residues
Residues were considered as part of the surface if they have a
relative solvent accessible surface area (RSA) of at least 10%. The
RSA of a residue X in a given protein structure, expressed in %,
is defined as the sum of the accessible surface areas (ASA) of its
heavy atoms divided by its maximal ASA reached when included
in a Gly-X-Gly tripeptide in extended conformation. The ASA and
RSA values were computed using an in-house program [28].

Epitope residues
Antigen surface residues residues that undergo a change in RSA of
at least 5% upon binding with an antibody (�RSA = RSAunbound −
RSAbound ≥ 5%) were considered as epitope residues.

Structure datasets
The structures of complete antibodies (heavy and light chain)
in complex with protein antigens were downloaded from the
AntiBody DataBase [29] in PDB format. This represented 3000
complexes at the date of 10/2020. Structures with a resolution
greater than 3.0 Å, an R-factor greater than 0.30 or in which
less than 80% of the residues have atomic coordinates were
overlooked. Complexes in which the antigen has less than 50
residues were also dropped. This resulted in a quality filtered set
of 1151 antibody-antigen structures. The epitopes on the antigens
were determined as described in the previous subsection. This set
is referred to as EAg.

In order to avoid redundancy and correctly evaluate the bench-
marked generic B-cell epitope predictors, the antigens from the
EAg set were clustered according to their sequence identity using
CD-hit [30] with a 70% sequence identity threshold. This yielded
268 distinct antigen clusters. The representative antigen struc-
ture of each cluster was chosen to be the one identified by CD-
hit. The epitope residues of all antigens in a given cluster were
mapped onto the representative antigen structure by aligning
their sequences using Biopython’s local alignment algorithm [31]
with the same default parameter settings as EMBOSS [32] (substi-
tution matrix = BLOSUM62, open gap penalty = -10, extension gap
penalty = -0.5); epitope residues were only mapped if the aligned
residues were identical. The dataset of representative antigen
structures with all epitopes mapped onto them is referred to as
E rep

Ag .

The list of structures of the two datasets EAg and E rep
Ag along with

their PDB files are available at https://github.com/3BioCompBio/
BCellEpitope.

Evaluation metrics
To estimate the prediction performance of the benchmarked
predictors, we used a number of well-established performance
metrics [33], including the balanced accuracy (BAC), the Matthews
correlation coefficient (MCC), the area under the receiver
operating characteristic curve (ROC-AUC) and the area under
the precision-recall curve (PR-AUC), defined as

•
BAC = 1

2

(
TP

TP + FN
+ TN

TN + FP

)

• MCC = TP TN − FP FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

• ROC-AUC, i.e. the area under the curve (AUC) of the recall
or sensitivity (TP/(TP+FN)) versus the false positive rate or
specificity (FP/(FP+TN)).

• PR-AUC, i.e. the AUC of the positive predictive value (PPV)
or precision (TP/(TP+FP)) versus the recall or sensitivity
(TP/(TP+FN)).

where TP are correctly predicted epitope residues, FP non-epitope
residues incorrectly predicted as epitope residues, TN correctly
predicted non-epitope residues and FN epitope residues incor-
rectly predicted as non-epitope residues. The mean random value
is equal to 0.5 for BAC and ROC-AUC, and 0 for MCC; for PR-AUC
it is dataset-dependent.

Random epitope prediction procedure
In order to assess the statistical significance of the different meth-
ods against random predictions, we defined two procedures, one
that predicts random surface residues, and a second that predicts
random patches of surface residues, i.e. groups of residues that
are nearby in the 3D structure. Each procedure is repeated 2000
times in order to generate bootstrap distributions that are then
used to calculate P-values.

The first procedure randomly predicts Nr random surface
residues as epitopes on each antigen structure. We tested two
strategies for setting the value of Nr: (1) Nr = 18, which corresponds
to the average epitope size in our EAg dataset; (2) Nr chosen
dynamically to match the number of residues predicted by each
method for each structure. The latter strategy allowed us to
assess how our random procedure compares with each method in
the case of equivalent prediction thresholds, and led to method-
specific bootstrap distributions for each metric (MCC, BAC, ROC-
AUC, PR-AUC).

The above procedure is overly simplistic as epitope residues
are not randomly scattered across the protein surface, but rather
form patches of nearby surface residues. We therefore developed
a second procedure that predicts Np random patches of Nr surface
residues each. The patches were constructed by randomly select-
ing a surface residue and adding its Nr - 1 closest surface residues.
Here, we also used two strategies to set the values of Np and Nr:
(1) Np = 1 and Nr = 18; (2) dynamical number of epitope residues
N matching the number of predicted residues on a per-method
and per-structure basis, distributed in Np patches of Nr residues
as: Np = �N/18� and Nr = 18 for all patches but one for which
Nr = N − (Np − 1) ∗ 18.
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Table 1. Average performance of each of the benchmarked conformational B-cell epitope predictors. The highest score(s) of each
metric are in bold. Nantigens corresponds to the number of structures on which each method has been evaluated out of the total number
of eligible antigens. Fpredicted is the mean fraction (in %) of surface residues predicted as epitopes. Note that the reason why DiscoTope2
and BEpro have a low Fpredicted comes from the fact that these methods use very high prediction thresholds

Method ROC-AUC BAC MCC PR-AUC Nantigens Fpredicted

Sequence-based generic methods
BepiPred2 0.53 0.52 0.02 0.24 101/268 52 %
CBTOPE 0.46 0.47 -0.06 0.19 229/268 38 %

Structure-based generic methods
SEPPA3 0.53 0.51 0.00 0.23 105/268 47 %
DiscoTope2 0.58 0.53 0.06 0.26 220/268 19 %
ElliPro 0.56 0.53 0.04 0.23 259/268 63 %
EPSVR 0.53 0.52 0.03 0.26 236/268 52 %
BEpro 0.58 0.53 0.06 0.27 235/268 12 %
epitope3D 0.41 0.41 -0.17 0.09 221/268 3 %

Structure-based antibody-specific methods
EpiPred 0.50 0.50 -0.01 0.35 746/1151 49 %

Results and discussion
Epitope dataset analysis
We used two datasets: EAg that contains 1151 good-quality antigen
structures, each carrying a single epitope, and the nonredundant
and nonhomologous E rep

Ag dataset, which contains 268 represen-
tative antigen structures onto which we mapped all the epi-
topes identified on homologous structures in EAg (see Methods for
details). Mapping multiple known epitopes onto a single antigen
structure prevents as much as possible erroneous false positive
annotations that would arise if different epitopes from the same
antigen were evaluated independently from each other [34].

The number of mapped epitopes per antigen structure in E rep
Ag

follows a decreasing exponential-type distribution in which 85%
of the structures have less than five mapped structures (see
Supplementary Figure S1). For some extensively studied antigens
such as lysozyme and HIV-gp-120, this number increases to more
than 35. In the case of lysozyme, the epitopes cover almost the
entire surface: 70 out of 85 surface residues belong to at least
one of the many lysozyme epitopes found in our EAg dataset. The
generality of this observation is currently an open question; we
will come back to it in the discussion section.

Benchmarking methodology
We assessed conformational B-cell epitope prediction methods
with a functioning webserver. The list of methods that were
selected includes two generic sequence-based methods: Bepipred-
2.0 [35] and CBTOPE [36]; six generic structure-based methods:
SEPPA3 [37], DiscoTope2 [34], ElliPro [38], EPSVR [39], BEpro [40]
and epitope3D [41]; and one antibody-specific structure-based
predictor: EpiPred [42].

To evaluate each of the generic epitope prediction tools, we
used the subset of the E rep

Ag dataset that is not contained in the
training dataset of the method considered. More precisely, we
removed from E rep

Ag any antigen that has a sequence identity of
more than 99% with any antigen in the training dataset of the
method that is being assessed. Note that using a lower sequence
identity threshold of 70% has virtually no effect on the score
values reported in Table 1, as seen in Table S1. To assess the
antibody-specific epitope prediction tool EpiPred, we used the
EAg set from which we removed all the PDB structures that are
included in the method’s training set. Although this procedure

means that all the methods were assessed on different test sets,
it avoids biases due to evaluating training data.

Furthermore, we only considered the predictions made
for surface residues (as defined in Methods) in the assess-
ment, as core residues cannot be part of B-cell epitopes.
Note that the prediction scores would be much better if both
surface and core residues were considered. This does not
make sense for structure-based predictors and basically boosts
sequence-based predictor performance given that the identi-
fication of surface residues is an easier problem than epitope
prediction.

We used the threshold-independent metrics MCC and BAC to
evaluate the predictors as they account for all the categories
of the confusion matrix. In addition, we also used ROC-AUC
and PR-AUC as these performance metrics are independent of
any classification threshold value and thus give complementary
information.

Benchmarking results
We report the average BAC, MCC, ROC-AUC and PR-AUC scores of
the benchmarked methods in Table 1 and their statistical signif-
icance against different random procedures in Table S2a. Addi-
tional metrics for evaluating the methods, including sensitivity,
specificity, precision and F1 score, are available in Table S3. What
clearly comes out is that all the methods have very low perfor-
mances, as indicated by ROC-AUC and BAC values < 0.6 and
MCC values < 0.1. BEpro and DiscoTope2 are the highest scor-
ing methods, both achieving identical metrics (ROC-AUC=0.58,
BAC=0.53, MCC=0.06). In contrast, the scores of epitope3D are
even worse than random (ROC-AUC=0.41, BAC=0.41, MCC=-0.17),
because almost all its predicted epitope residues are situated in
the protein core. The first conclusion we can draw from these
results is that even the highest scoring methods have very little
predictive power.

Surprisingly, the antibody-specific epitope predictor, EpiPred,
does not show better overall performance than the best generic
epitope predictors in terms of ROC-AUC, BAC and MCC. However,
it does have the highest PR-AUC score, which indicates that the
knowledge of the antibody improves the precision of the predicted
epitopes.

Note that all these results are independent of the chosen
definition of epitopes. Indeed, comparing Table 1 with Table S4,
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we observe that the scores are almost identical whether using an
RSA- or distance-based definition of epitope residues, the latter
being another common definition used by many of the bench-
marked methods. Moreover, we analyzed how the definition of
surface residues influences the methods’ scores. For that purpose,
we computed the MCC scores as a function of the RSA thresholds
used for defining surface residues, as shown in Figure S2. We
see that all the prediction methods have systematically worse
scores as the threshold increases, which indicates that the more
we restrict the evaluation to residues that are truly at the surface,
the worse the methods perform. Conversely, considering buried
residues as belonging to the surface makes the predictions easier,
because it artificially increases the difference between epitopes
and non-epitopes by basically enriching the latter with hydropho-
bic residues much more than the former that are defined by an
additional threshold on �RSA (see Methods).

To determine whether these results are statistically signifi-
cantly better than random, we benchmarked the methods against
a procedure which randomly predicts Nr surface residues as
epitopes. We tested two strategies for the value of Nr: the first
considers Nr equal to the average size of an epitope, and the
second one uses a dynamic Nr that matches the number of epitope
residues predicted by each method for each antigen (see Methods
for details). As shown in Table S2a, when benchmarked against
these strategies, only Bepipred2, DiscoTope2, ElliPro, EPSVR and
BEpro are significantly better than our random procedure across
all four metrics. SEPPA3 and EpiPred are significantly better only
for some metrics, while CBTOPE and epitope3D are no better than
random across all metrics.

We also benchmarked the methods against a random
procedure that predicts patches of surface residues as epitopes
instead of random residues scattered across the antigen surface
(see Methods). This time only DiscoTope2, EPSVR and BEpro are
significantly better than our random patches procedure across
all metrics (Table S2a). BepiPred2, SEPPA3, ElliPro and EpiPred
are significantly better for some of the metrics, while CBTOPE
and epitope3D are no better than random patches across all
metrics. Note that the reason behind the differences between
the residue- and patch-based bootstrap distributions comes
from the fact that the patch-based random procedure has a
higher standard deviation than its residue-based counterpart
(see Figure 1). Indeed, predicting patches of residues leads
to a higher possibility of predicting either many correct or
incorrect residues than when predicting randomly scattered
residues, given true epitopes are themselves patches of nearby
residues.

One of the reasons that could explain why the majority of the
methods did not perform better than random is the presence
of false negative annotations in the dataset, corresponding to
epitopes not yet identified. In order to improve the confidence
in the epitope/non-epitope annotation of surface residues, we
repeated the above benchmarking on the subset of E rep

Ag consisting

of antigens bound by at least five epitopes, noted E rep(5)

Ag . EpiPred
was excluded from this analysis given it is not affected by the
issue of erroneous false negatives. The results are reported in
Figure S3 and Table S2b, which shows similar results than the
previous evaluation on the full benchmark set, with BepiPred2,
DiscoTope2 and BEpro performing better than random across all
metrics.

In conclusion, all the methods showed very poor performances
in absolute terms, and only two methods, namely DiscoTope2
and BEpro, achieved better than random performances across all
metrics and benchmarks.

Consensus predictions
Often, conformational B-cell epitopes are predicted using a com-
bination of several methods and a consensus scheme whereby a
residue is considered as an epitope if at least M methods predict
it as such (see [43–46] for recent examples). We therefore tested
whether combining the predictions of all the generic epitope
prediction methods gave better results than each one individually.

We first removed the structures that were in any of the selected
methods’ training datasets, resulting in a dataset of 65 structures
on which the consensus predictions were evaluated. We predicted
a residue as an epitope if at least M of the selected methods
agreed. This consensus strategy gave the highest results for M =
4, resulting in a ROC-AUC = 0.56, BAC = 0.56, MCC = 0.10 and
PR-AUC = 0.34, which is slightly better than any individual pre-
dictor. Nonetheless, one should keep in mind that this result was
obtained through optimization of the M value in direct validation
and is thus probably a bit overestimated.

In summary, even though consensus prediction schemes might
be slightly better than single-method approaches or randomly
predicted residues, they do not overcome the fundamental issue
of the under-performance of B-cell epitope prediction methods.

Epitope immunodominance
The question of whether antibodies can be raised against any part
of any antigen’s surface has currently no definitive answer, but
the poor performance of all the methods evaluated in the previous
sections suggest a positive answer to this question. Even if the
entire surface of any antigen can be bound by antibodies, some
regions are undoubtedly targeted much more often than others by
the immune system and more easily trigger the immune response.
This phenomenon, known as epitope immunodominance [47, 48],
is important, for example when designing epitope-based vaccines
that attempt to generate an immune response toward subdomi-
nant but functionally conserved sites where escaping mutations
are less likely to occur [49–51]. Knowledge of the immunodomi-
nant and subdominant epitopes of an antigen can therefore be of
great value.

One can reasonably expect that the scores attributed to each
surface residue by conformational B-cell epitope predictors are
correlated, at least to some extent, with residue immunodomi-
nance. To test this hypothesis, we estimated the immunodomi-
nance I of a given residue as the number of times it appears in
an epitope; for this purpose, we restricted ourselves to the E rep(5)

Ag

dataset which only contains antigen structures that are bound
by at least five different antibodies. As for the benchmarking,
antigen structures that were part of the training dataset of a
given method were removed. I was min-max scaled on a per-
antigen basis to adjust for differences in the number of epitopes
per antigen structure.

We computed the Spearman correlation between I and the
predicted scores of each method, with the exception of EpiPred
given immunodominance is irrelevant for antibody-specific
methods.

As shown in Table 2, six out of the eight evaluated methods
have a statistically significant Spearman correlation and are
therefore better than random. However, the correlation values
are very low, the highest being 0.20 for BepiPred2; note that
this is a sequence-based predictor. These results are in accor-
dance with the low prediction scores observed in the previous
subsection and indicate that the scores of the methods are
not accurate enough to be used to deduce which epitopes are
immunodominant.
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Figure 1. Matthews correlation coefficient (MCC) of the benchmarked conformational B-cell epitope prediction methods, along with the bootstrap
distributions obtained from a random procedure that generates 18 random surface residues (blue) or 1 random patch of 18 nearby surface residues
(orange) on each structure of the Erep

Ag dataset, repeated 2000 times.

Table 2. Spearman correlation coefficient rI−score between the
estimated immunodominance I and the per-residue epitope
score predicted by each method on the E rep(5)

Ag set. Nresidues

corresponds to the number of residues on which the correlation
was calculated. The highest correlation value is in bold. Due to
the large sample size, we considered correlations as statistically
significant if their P-value is ≤ 0.001, which are labeled with an
asterisk

Method rI−score Nresidues

BepiPred2 0.20∗ 3491
CBTOPE 0.08∗ 5799
SEPPA3 0.15∗ 3107
DiscoTope2 0.15∗ 6287
ElliPro 0.04 6910
EPSVR 0.09∗ 6490
BEpro 0.14∗ 6287
epitope3D -0.03 4795

Note that immunodominance is a highly complex phenomenon
and that the I value that we used to estimate it, though intu-
itive, is clearly an approximation. Indeed, our dataset is biased
toward most (e.g. clinically) promising antibodies, and moreover
contains highly engineered antibodies which do not necessarily
reflect the preferences of the immune system. In addition, I
does not account for natural biases of the immune system such
as antigenic imprinting [52] or original antigenic suppression
[53], where the immune system preferentially uses or avoids the
immunological memory based on previous infections.

SARS-CoV-2 case study
As a case study, we evaluated the B-cell epitope predictors on the
spike protein of the SARS-CoV-2 virus. This protein enables cell
invasion through binding to the host’s ACE2 receptor [54], and its

RBD has been shown to be the preferential target of the host’s
immune response [55]. The SARS-CoV-2 spike protein is included
neither in our EAg benchmark dataset nor in the training sets of
the methods, and therefore constitutes an independent test case.
Note that another series of epitope prediction tools applied to
SARS-CoV-2 has been reviewed in [56].

In order to evaluate the ability of the benchmarked methods
to predict the known epitopes in the spike protein, we gathered
83 spike protein-antibody complexes resolved by X-ray crystallog-
raphy or cryo-electron microscopy and deposited in the PDB [5]
(see [57, 58] for the list of PDB ids). We extracted 83 epitopes from
these complexes; 75 of them are localized on the RBD of the spike
protein, while the remaining eight target its N-terminal domain
(NTD). We evaluated the methods by mapping the 83 epitopes
on the PDB structure 6VYB, which is a complete trimeric spike
protein structure with one chain in open conformation [59]. Note
that we do not have the results for all the predictors evaluated in
the previous subsection as some of them failed to run on the large
protein trimer or their webserver was down.

The prediction scores of the methods are given in Table 3 and
the localization of the predicted and real epitopes in the 3D struc-
ture of the spike protein trimer are shown in Figure 2. Some of the
predictors have relatively good scores, especially when compared
with the performances on the large benchmark dataset ana-
lyzed in the previous subsection. EPSVR obtained the best results,
reaching an ROC-AUC of 0.75 and a score-immunodominance
correlation of 0.45. This can clearly be seen in Figure 2 where
EPSVR predicts very well a large portion of the RBD and NTD
epitope residues. The worse-performing method is again epi-
tope3D which, as previously observed, is biased toward non-
epitope core residues. The remaining methods did not perform
too well, as they either overpredicted (ElliPro), underpredicted
(DiscoTope2) or made predictions all over the surface (BepiPred2
and CBTOPE).
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Figure 2. Visual representation of all the true epitope residues of the SARS-CoV-2 spike protein trimer (green) and the residues predicted by each of the
evaluated conformational B-cell epitope prediction methods (red). All the figures were generated with PyMOL [60].

Table 3. MCC, ROC-AUC and Spearman correlation coefficient
rI−score between immunodominance I and prediction scores of
each method on the SARS-CoV-2 spike protein trimer.
Statistically significant results (P-value ≤ 0.001) are labeled with
an asterisk. The highest value for each metric is in bold

Method MCC ROC-AUC rI−score

BepiPred2 0.19 0.64∗ 0.30∗
CBTOPE 0.02 0.51 0.17∗
DiscoTope2 0.27∗ 0.60 0.24∗
ElliPro 0.17 0.66∗ 0.35∗
EPSVR 0.22 0.75∗ 0.45∗
epitope3D -0.20 0.38 0.039

Per-antigen performance analysis
The fact that the overall SARS-CoV-2 results are better than those
on the large benchmark is interesting and prompted us to dig
further into our results. We analyzed the methods’ performances
on a per-antigen basis by plotting the distribution of MCC and
Spearman correlation coefficients of each method; they are
shown in Figures S4 and S5. Both figures show that all the
methods have very variable performances according to the
antigen, in other words, they have a high standard deviation.
Indeed, some entries are well predicted with high scores, while
others are completely wrongly predicted.

It could be interesting to further analyze such results to
understand whether the well predicted antigens are due to
randomness, to biases toward the method’s training dataset,
or to truly learned features that distinguish epitope and non-
epitope residues. Understanding this could boost the development

of improved predictors and help to better understand their
reliability.

Note that, despite the fact that predictions on the SARS-CoV-2
spike protein show better results on the average, B-cell epitope
predictors did not contribute much to antibody development
during the pandemic. Indeed, experimental characterization of
antibodies starting from plasma of infected COVID-19 patients
followed by 3D cryo-electron microscopy has been the method of
choice to design therapeutic monoclonal antibodies [61].

Conclusion
Many in silico tools to predict conformational B-cell epitopes using
sequence- and/or structure-derived features have been published
in the last 20 years. They have all compared themselves with
each other and almost systematically claim to outperform all the
other methods. However, no independent benchmarking has been
published in recent years [62]. In this paper, we have carefully
assessed nine of the most popular and recent prediction methods
available through a webserver, including eight generic predictors
and an antibody-specific predictor, on a large and well-curated set
of antigen-antibody structures.

Our benchmarking results show that the overall performance
of the methods is very poor, and that many of them do not perform
significantly better than randomly predicted patches of residues.
Indeed, only two out of the nine evaluated methods perform
significantly better than random both on the benchmark dataset
and on the subset of antigens for which we have the highest con-
fidence about epitope/non-epitope residue labels. Note that some
of the tested methods were trained over 10 years ago and their
performance might have been better if they had been retrained
on an up-to-date training dataset.
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In addition, we evaluated the performance of consensus strate-
gies that combine multiple predictors, which is a frequently used
approach in B-cell epitope prediction. Our results show that even
this strategy is not much better than random predictions.

Regarding the evaluation methodology used in this bench-
mark, we combined both threshold-dependent (BAC and MCC)
and threshold-independent (ROC-AUC and PR-AUC) metrics in
order to capture the overall performance of the methods. They
all point toward the same conclusion regarding the predictive
performance of the methods, which is much lower than what we
expected.

Our benchmarking also provides hints about open questions
and improvements that could be made to current prediction
methods. First of all, our analysis highlights the pervasive issue
of the incomplete knowledge of all the true epitopes of any given
protein, especially in lesser studied ones. This has a major impact
on evaluation procedures given there is always the uncertainty
that a non-epitope residue might be part of a yet unknown
epitope. For that reason, we performed our benchmark analysis
on both the full dataset of representative structures E rep

Ag and
on the subset of antigens with at least five mapped epitopes, in
order to assess if there is a difference in the methods’ perfor-
mance when evaluated on antigen structures for which we have
a higher confidence in the labels of their surface residues, but
our results showed no significant difference between these two
benchmarks.

Related to this, the question arises of whether an antibody can
be obtained against any surface region or if only certain parts
with favorable structural and physico-chemical features are valid
candidates. In the former case, the strong immunodominance
observed in nature could originate from biases specific to the
naive immune system of each species. Although our benchmark-
ing analysis cannot answer this question with certainty, the sys-
tematically low performance of all tested methods suggests that
it is indeed the case. However, some regions that are more easily
recognized by antibodies, known as immunodominant epitopes,
have been shown to elicit a stronger immune response [63] and it
should thus be possible to identify their characteristic features. A
subsidiary question is whether natural and engineered antibodies
are different in that respect.

Another interesting observation from our results is that each
method predicts some proteins quite well, with high prediction
scores, and others very poorly. The analysis of these outliers could
be helpful to understand the advantages and limitations of each
method and help design better performing methods. It must be
noted that the predictors do not agree in general: a protein that is
well predicted by one method is usually not well predicted by the
others.

Regarding the features used by the different methods, we found
that the large majority of predictors overlook some important
features whose consideration would certainly boost their perfor-
mances:

• Glycosylated antigen regions usually cannot be recognized
by antibodies due to their shielding effect [24–26]. The anno-
tation or prediction of glycosylated regions should thus be
included in the predictors to boost their performances.

• Antigens can undergo conformational changes where some
regions get masked and become unavailable for antibody
binding. The spike protein trimer of SARS-CoV-2 is an
example of this: it occurs in open and closed conformations
characterized by differences in solvent accessibility and
epitopes [57].

• Oligomerization properties of antigens are also important for
determining their immunogenicity. Indeed, oligomers hide
regions from the solvent which are then no longer accessi-
ble to antibodies and, at the same time, lead to inter-chain
surface regions that can be targeted by antibodies. Prediction
methods often do not take these properties into account.

• It would be beneficial for webservers to give users the ability
to provide additional information about the target protein,
such as residues that cannot be bound and should therefore
be ignored by the predictor.

• Another interesting improvement would be the possibility for
the user to provide antibody sequences for which he wishes
to identify potential epitopes, as this has been suggested to
improve prediction performances [17].

• Finally, the application of recent advances in Natural Lan-
guage Processing (NLP) could enable the development of
novel methods [64, 65] that help advance the field.

We hope this work will be of use for future research in B-
cell epitope prediction and help solve some of the critical issues.
It is important to set up additional independent benchmarks as
well as blind prediction experiments as they would contribute to
a better understanding of the biases and limitations of epitope
prediction methods and advance the field.
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