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Abstract: Seasonality is an essential issue for service industries but lacks the attention 20 

of most transport scholars. To close this gap, this study explored the spatial 21 

heterogeneity and determinants of flight seasonality from a supply-side perspective, 22 

using the monthly flights of 222 airports in China during 2018 as a sample. The 23 

following conclusions were drawn. First, domestic flights in China face seasonality due 24 

to the country’s vast territory and diverse natural environment. Second, from an airport 25 

perspective, seasonality is high in small airports serving remote places and in cities that 26 

are tourism destinations. Third, from a route perspective, feeder routes in the air 27 

transport network of China face higher seasonality when compared to trunk routes. 28 

Finally, airport size and a mix of natural landscape factors shape domestic flight 29 

seasonality at the national level. At the local level, most factors (e.g., airport size and 30 

temperature) are more evident in the northwest region. 31 
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1 Introduction 35 

While the spatial patterns of air transport have widely been investigated, its 36 

temporal dimension has remained largely unexplored despite the key implications of 37 

seasonality in flows. Yet as flight schedules are commonly characterized by daily 38 

temporal imbalances (Barnhart et al., 2003), air services might change across months. 39 

There are several reasons for this. First, demand for medium- and long-distance travel 40 

varies throughout the year (Xu et al., 2017), resulting in seasonal demand for air travel. 41 

Second, the operating seasons of some airports are time inconstant. For example, 42 

Burqin Kanasi Airport (KJI) and Xinyuan Nalati Airport (NLT) in Xinjiang, China, 43 

close as tourists disappear in winter. Third, some countries use different flight schedules 44 

according to the season. For instance, China’s air passenger timetable (for regular 45 

flights) is divided into the summer and autumn timetable and the winter and spring 46 

timetable. However, most studies related to the (spatial) development of air transport 47 

are limited to using comprehensive data for one year (Guimera et al., 2005; Wang et al., 48 

2011; Wang et al., 2014), or data for a “typical” period, such as one day, week, or month 49 

(Huang & Wang, 2017), which might bias their estimates. Recognizing seasonality can 50 

help reduce such bias (e.g., using data from different seasons). Thus, it is essential to 51 

explore seasonality. 52 

Seasonality in the airline industry has long been reported by scholars from both 53 

air transport and tourism fields. However, most publications have focused on specific 54 

case studies, although Dobruszkes et al. (2022) recently proposed a global analysis of 55 

passenger air service seasonality at the airport level. Air transport seasonality focusing 56 

on the domestic market, route level, or local associating factors is still unknown. As a 57 

result, we still lack enough global knowledge about the geography and the determinants 58 

of this phenomenon. As a first step toward a more comprehensive understanding of 59 

seasonality in air traffic, this paper investigates the temporality of domestic air services 60 

in the whole of China. Indeed, China’s heterogeneous natural, economic, and 61 

institutional landscape provides an excellent case to discuss the spatial heterogeneity 62 

and determinants of flight seasonality. On the one hand, China has a vast territory and 63 

a complex and diverse natural environment. For example, China is 5,500 kilometers 64 

from north to south and 5,200 kilometers from east to west, with Mount Everest 8,849 65 

meters above sea level and Turpan Basin 155 meters below sea level. The same airport 66 

has various attractions (comparative advantage) for tourists in different periods (Suau-67 

Sanchez & Voltes-Dorta, 2019); Hainan, located in China’s tropical region, becomes 68 

the hottest destination for “refuge from the cold” in winter. On the other hand, enormous 69 

spatial variations in China’s economic and institutional landscape (Zhu et al., 2018) 70 

shape heterogeneous sensitivity to season. For instance, airports in tourist cities have 71 

significantly reduced flights during the off-season. 72 

Our approach is twofold. In the first step, we computed the well-known Gini index 73 

to measure and map flight seasonality from a supply-side perspective. Then we 74 

analyzed its determinants through geo-econometric models (i.e., multiscale 75 

geographically weighted regression, MGWR). By doing so, we hope to contribute to 76 

previous studies in the following aspects. First, considering most existing studies lack 77 



discussion on air transport changing across months, we systematically proposed and 78 

discussed the seasonality issue for the early time. Second, as stable seat capacity at the 79 

airport level might hide seasonality at the route level (Dobruszkes et al., 2022), we tried 80 

to map flight seasonality at the route level in this paper. Third, an in-depth 81 

understanding of flight seasonality’s geographical characteristics allows air transport 82 

policy-makers to schedule the air routes rationally from a national perspective. The 83 

remaining parts of this paper are as follows. Section 2 provides a brief literature review. 84 

Section 3 details data and methods. Section 4 shows the results and Section 5 concludes. 85 

 86 

2 Literature Review 87 

Instead of being time-homogeneous, passenger travel flows are often time 88 

imbalanced. As Han et al. (2020) reviewed, for an average annual leave of 11 days per 89 

year, Chinese people prefer to arrange their travel during seven statutory holidays, 90 

including New Year’s Day in January, Spring Festival in January or February, Tomb-91 

sweeping Day in April, Labor Day in May, Dragon Boat Festival in May or June, Mid-92 

Autumn Festival in September or October, and National Day in October. Spring Festival 93 

travel, known as “spring transport”, is a case unique to China when there is a large-94 

scale travel rush around the Spring Festival (Xu et al., 2017). Since the reform and 95 

opening, with the relaxation of restrictions on people’s movement, more and more 96 

people have left their hometowns to work and study. Many migrants return home during 97 

the Spring Festival. For tourism, seasonality is a critical topic in academic literature 98 

(Cannas, 2012). As Andriotis (2005) reviewed, the primary season for most tourist 99 

destinations is summer because of natural phenomena (e.g., climatic conditions 100 

determine sporting seasons) and human decision factors (e.g., long school holidays). In 101 

winter, ski resorts, typically located in remote mountain areas, become attractive to ski 102 

tourists (Suau-Sanchez & Voltes-Dorta, 2019). 103 

From a geographical perspective, research on air transport covers several fields, 104 

such as air transport networks, the geography of airports, and the 105 

evolution/development of air transport networks/airports (Wandelt & Sun, 2015; 106 

Wandelt et al., 2017). On the one hand, air transport has apparent spatial heterogeneity 107 

for geopolitical considerations and socioeconomic factors. For example, the worldwide 108 

air transportation network is a scale-free small-world network (Guimera et al., 2005), 109 

and so is China’s air transport network (Wang et al., 2011). From the perspective of 110 

airports, connectivity varies among airports: the best-connected airports are 111 

concentrated in the United States, Canada, and Germany; in other words, connectivity 112 

overall follows a power-law distribution (Arvis & Shepherd, 2016). As Huang & Wang 113 

(2017) reviewed, air deregulation and the spatial configuration of airline networks can 114 

affect the market share, robustness, and hierarchy of airports, and hub airports are scarce. 115 

On the other hand, air transport’s spatial patterns are not static. Still, they will evolve, 116 

as suggested by pieces of evidence from several countries or regions, such as Northwest 117 

Australia (Holsman & Crawford, 1975), Southeast Asia (O’Connor, 1995), the United 118 

States (Bonnefoy, 2008), and Central Europe (Kraft & Havlíková, 2016). In China, as 119 

the Civil Aviation Administration of China transformed from a regulator and operator 120 



to a lesser role of supervision, the evolution of the air transport network of China has 121 

followed six stages (Wang et al., 2014). For airports, their ranking fluctuates over time, 122 

and their spatial patterns (e.g., the spatial patterns of indirect connections) have 123 

heterogeneous evolution trends (Huang & Wang, 2017). Nevertheless, previous 124 

geographical research on air transport has not explored the geography of flight 125 

seasonality well. 126 

To some extent, studies have illustrated the possible existence of flight seasonality, 127 

its spatial heterogeneity, and its determinants. Focusing on seasonality in air transport, 128 

Garrigos-Simon et al. (2010) analyzed the seasonality and price behavior of airlines in 129 

the Alicante-London market, and showed the relative incidence of variables (e.g., 130 

seasonality, the types of firms involved, timetabling) and stressed the relevance of 131 

seasonality and competitiveness in the price strategies followed by the different types 132 

of companies. Halpern (2011) investigated the seasonal dynamics of passenger demand 133 

at airports in Spain using Gini indexes and found that seasonal dynamics are higher at 134 

airports that serve holiday areas, related not to airport size but to market (e.g., domestic, 135 

international, charter, and scheduled). Similarly, Kraft & Havlíková (2016) analyzed 136 

the seasonality of flight offers in ten airports in the Central European region and showed 137 

their different spatial and temporal organization. Merkert & Webber (2018) developed 138 

a theoretical model of price and seat factor management in airlines, while most cases 139 

were opposite to the rational model for more substantial seasonal variation in the 140 

average airfare than in the seat factor. Most recently, Dobruszkes et al. (2022) revealed 141 

the monthly rhythms of aviation at the airport level from a worldwide perspective, but 142 

few studies like this. 143 

Besides these studies, a few scholars have mentioned seasonality in a small part 144 

of their research. Chen et al. (2019) found that air traffic was relatively low in winter 145 

because the coefficients of seasonal variables were significantly positive, with winter 146 

as the reference level, when impacting passenger volume. Suau-Sanchez & Voltes-147 

Dorta (2019) noted the presence of summer seasonality in coastal areas and strong 148 

winter seasonality in European regions with a high density of ski resorts. Wu et al. 149 

(2020) mentioned that the low-cost carriers network extended to the south in winter and 150 

moved to the north in summer; tourism destinations (e.g., Haikou, Sanya and Xiamen) 151 

are greatly affected by seasonal variations, while hub cities receive less seasonal 152 

impacts. When discussing the relationship between control variables and flight delays, 153 

Chen and Lin (2021) found that weather conditions like typhoons could be a significant 154 

reason for differences across months. 155 

In conclusion, the above empirical studies have done well in describing seasonality 156 

but lack systematic analysis due to case limitations. In this context, this study focused 157 

on domestic air services in China, extending the air transportation research perspective 158 

to seasonality. While China counts only 222 airports served by domestic air services, 159 

this country has become the second-largest domestic air market by various metrics, after 160 

the US.1 161 

 162 

                             
163 1 Number of flights, of seats and of seat-kilometers (our own computation based on OAG Schedules 2018). 



3 Methods and Materials 164 

Our research methodology framework can be divided into three parts (“existence-165 

spatial patterns-determinants”) with the help of domestic monthly flight data in China. 166 

First, we provided a global temporal view of flights at the national scale, showing the 167 

existence of flight seasonality in China. Traditional statistical methods supported this 168 

part. Second, the geography of domestic air traffic seasonality was mapped at the level 169 

of both airports and airport-pairs (i.e., routes). Analysis starting from the airport level 170 

provides us with basic information about the geography of flight seasonality. Research 171 

disaggregating to the route level shows more detailed (or extra) findings. This part was 172 

supported by the well-known Gini index, as well as other traditional statistical methods. 173 

Third, after descriptive analyses, multiple regression models were set up to investigate 174 

the determinants of seasonality. Indeed, we combined the conventional regression 175 

method (i.e., OLS) with the geographical regression method (i.e., MGWR) to explore 176 

the global effects and the spatially varying effects (i.e., spatial heterogeneity) of 177 

variables. The details of the main methods (including the reasons for using them) are 178 

described below. 179 

 180 

3.1 Measures of flight seasonality 181 

We adopted the Gini index at the airport level to quantitatively measure temporal 182 

concentration as a primary index. As data at the airport level is aggregated from data at 183 

the route level, we further disaggregate the Gini index (from airport level to route level) 184 

to explore extra information. In addition to the Gini index, we combined original 185 

monthly data at both airport and route levels (e.g., comparing the peak and off-peak 186 

data) to provide a more qualitative discussion. 187 

The method of calculating the Gini index in this paper is shown as Eq. (2): 188 

𝐺𝑖𝑛𝑖 = |1 − ∑ (𝜎𝑋𝑖 − 𝜎𝑋𝑖−1)(𝜎𝑌𝑖 + 𝜎𝑌𝑖−1)𝑁
𝑖=1 |      (2) 189 

where σX is the cumulative share of months, σY is the cumulative share of the number 190 

of domestic flights, and N is the number of months. We used monthly data calculations 191 

following the time interval to measure the seasonality suggested by Halpern (2011). A 192 

coefficient of 0 represents the perfect equality between months, while a larger 193 

coefficient (i.e., tends to be 1) corresponds to more inequality between months. 194 

According to Suau-Sanchez & Burghouwt (2011), all concentration and dispersion 195 

measures are highly and significantly correlated to each other. Using the Gini index 196 

makes comparisons with previous (or future) publications possible, so we adopted the 197 

Gini index in our research. 198 

 199 

3.2 Global model and variable selection 200 

To explore the determinants of flight seasonality, we set the following model using 201 

222 airports as our observations: 202 

𝐺𝑖𝑛𝑖 = 𝛽0 + 𝛽1𝐴𝐼𝑅𝑃𝑂𝑅𝑇 𝑆𝐼𝑍𝐸 + 𝛽2𝑇𝑂𝑈𝑅𝐼𝑆𝑀 + 𝛽3𝐻𝑆𝑅 + 𝛽4𝑇𝐸𝑀𝑃𝐸𝑅𝐴𝑇𝑈𝑅𝐸 +203 

𝛽5𝑃𝑅𝐸𝐶𝐼𝑃𝐼𝑇𝐴𝑇𝐼𝑂𝑁 + 𝛽6𝑃𝐿𝐴𝑇𝐸𝐴𝑈 + 𝜀      (1) 204 

where Gini is the dependent variable—flight seasonality measured by the Gini index at 205 



each sample airport in China. We considered a set of independent variables to explore 206 

the determinants of flight seasonality. The airport size is expected to positively affect 207 

seasonality since “variations in demand between each month are likely to become less 208 

acute as traffic grows (De Neufville et al., 2013; Halpern, 2011)”, although Halpern 209 

(2011) found no significant relationship for Spanish airports. We used the volume of 210 

annual passenger movements for airports2 (AIRPORT SIZE) to measure airport size. 211 

As we mentioned in the literature review, the tourism industry faces seasonality 212 

(Andriotis, 2005). Compared to airports serving heterogeneous metropolitan areas, 213 

airports serving holiday areas naturally attract a high proportion of leisure travelers 214 

(Halpern, 2011; Wu et al., 2020). Thus, we applied the proportion of domestic tourism 215 

revenue and regional GDP (TOURISM) to represent the region’s dependence on the 216 

tourism industry. HSR development brought competition in spatial service hinterlands 217 

between HSR and air transport (Wang et al., 2015). Newly launched HSR stations or 218 

changed HSR links might induce flight seasonality. In other words, HSR will swing 219 

airlines between closing and (re-)opening routes. We used the number of cities linked 220 

through HSR networks (HSR) to indicate the impact of HSR. 221 

In addition to the economic and institutional landscape, the natural landscape 222 

might also result in seasonality. We applied the following three indicators, the absolute 223 

value of the difference between the annual average temperature and the so-called 224 

universal indoor comfort temperature of 22.5℃ (TEMPERATURE), annual average 225 

precipitation (PRECIPITATION), and high elevation airport (i.e., an airport whose 226 

elevation is greater than 5,000 feet) defined by the Flight Standard Division, Civil 227 

Aviation Administration of China (PLATEAU), to measure outdoor human comfortable 228 

climate (Stathopoulos et al., 2004). Seasonality can depend on the weather (Merkert & 229 

Webber, 2018) because extreme weather can hinder tourism demand and airport 230 

operations. For example, cities in Northern China can face severe cold weather in winter, 231 

while cities in Southern China can face extremely hot weather in summer. From the 232 

coast inland, as precipitation increases, eastern China can face super-rainy days more 233 

frequently than western China. The thin air, complicated weather, and complicated 234 

terrain of the plateau can challenge aircraft taking off and landing in winter, thus leading 235 

to the airport’s seasonality. Descriptive statistics are shown in Table 1, and the VIF 236 

values of all independent variables are low (namely, less than 1.89); thus, there is no 237 

apparent multicollinearity between the independent variables. 238 

  239 

                             
2 Due to data limitations, passengers in 2018 (international + domestic) rather than domestic passengers were used 

to measure airport size. Source: Airports Council International (ACI, https://aci.aero/). 



Table 1 Descriptive statistics 240 

Variable Unit Mean Standard deviation Min Max VIF 

Gini / 0.08 0.09 0.01 0.71 / 

AIRPORT SIZE Number 5,701,693 1.32×107 8,349 1.01×108 1.41 

TOURISM % 27.61 29.17 0.89 224.73 1.13 

HSR Number 17.88 28.78 0 145 1.55 

TEMPERATURE ℃ 11.46 6.38 0 27.1 2.89 

PRECIPITATION Millimeters 821.36 512.22 17.1 1951.2 2.72 

PLATEAU Dummy 0.16 0.37 0 1 1.18 

 241 

3.3 Multiscale geographically weighted regression (MGWR) 242 

Geographically weighted regression (GWR), proposed by Fotheringham et al. 243 

(1996), is a commonly used econometric local regression model to account for spatially 244 

varying relationships between dependent and independent variables. To deal with the 245 

issue of spatial non-stationarity, this paper used the newest version of GWR, the so-246 

called MGWR, to process our regression (Fotheringham et al., 1996; Yu et al., 2020). 247 

Considering multiple bandwidths simultaneously, the MGWR model typically has a 248 

better estimation effect than the traditional GWR model (e.g., Gu et al., 2022; Lao et 249 

al., 2021). The specification of MGWR is given as follows: 250 

𝑦𝑖 = ∑ 𝛽𝑏𝑤𝑗(𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑗
𝑘
𝑗=1 + 𝜀𝑖    (3) 251 

where observation unit 𝑖 ∈ {1 , 2 , . . . , 𝑛}; yi denotes the dependent variable; xij denotes 252 

the jth independent variable, 𝑗 ∈ {1 , 2 , . . . , 𝑘}; bwj represents the bandwidth used when 253 

estimating the jth parameter; βbwj represents the estimator of the jth parameter at 254 

position (ui, vi); εi represents the error term. Each estimated parameter βbwj in MGWR 255 

is obtained based on local regression, different from the requirement of all parameter 256 

bandwidths in the GWR model. MGWR can also be expressed in the form of the 257 

Generalized Additive Model (GAM): 258 

𝑦 = ∑ 𝑓𝑖
𝑘
𝑗=1 + 𝜀    (4) 259 

where fj represents the smooth function of the jth independent variable, and the 260 

bandwidth can vary with the jth independent variable. The inferential estimation 261 

process of MGWR has been proved by Fotheringham et al. (2017) and Yu et al. (2020). 262 

The bi-square kernel is employed to calculate the optimal bandwidth, using the 263 

GWR model as the initialization model. The convergence criterion for the MGWR 264 

back-fitting algorithm is the residual sum of squares (RSS): 265 

𝑆𝑂𝐶𝑅𝑆𝑆 = |
𝑅𝑆𝑆𝑛𝑒𝑤−𝑅𝑆𝑆𝑜𝑙𝑑

𝑅𝑅𝑆𝑛𝑒𝑤
|    (5) 266 

where RSSold represents the residual sum of squares of the previous step; RSSnew 267 

represents the residual sum of squares of this step. 268 

The MGWR bandwidth selection criterion is based on the modified Akaike 269 

Information Criterion (AICc). The bandwidth of the MGWR model is the number of 270 

sample points participating in the regression, and this value affects the regression 271 

coefficients. This study defines the bandwidth unit as the number of airports, indicating 272 



the extent of influence of specific variables. 273 

 274 

3.4 Data processing 275 

Chinese mainland’s domestic flight supply-side data from January 1, 2018, to 276 

December 31, 2018, was obtained from OAG (https://www.oag.com/), including 277 

84,738 records. We dropped the routes that were newly opened, suspended, or out of 278 

service in 2018, which might bias our estimation, according to China’s Statistical 279 

Bulletin on the Development of Civil Aviation Industry in 2018. We ended up with 222 280 

airport samples, covering 3,000 routes and 4,164,101 flights in China. Other data for 281 

our research came from the following sources. Tourism resource data was from the 282 

official website of the Ministry of Culture and Tourism of the People’s Republic of 283 

China (https://www.mct.gov.cn/), and tourism revenue data came from the national 284 

economic and social development statistical bulletin of each local government. High-285 

speed rail (HSR) data was obtained from the Ministry of Railways’ train ticket booking 286 

(https://www.12306.cn/index/). Climate data was from the Resource and Environment 287 

Science and Data Center (https://www.resdc.cn/Default.aspx). Location data (e.g., 288 

latitude, longitude, and elevation) was derived from Baidu Maps 289 

(https://map.baidu.com/). 290 

 291 
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4 Results 293 

4.1 Flight seasonality in China 294 

Fig. 1 shows the distribution of domestic flights by month in China between 295 

January 1, 2018, and December 31, 2018. The number of flights changed across months, 296 

with substantial temporal heterogeneity. Flights were at their lowest during the first half 297 

of 2018, as most long holidays (i.e., summer holiday and National Day Golden Week) 298 

in China are concentrated in the second half of the year. July and August were the peak 299 

months. Flights in the highest month of 2018, August, were 1.15 times (48,661 flights) 300 

higher than in the lowest month, February, because students’ summer vacation is usually 301 

in July and August. Several activities (e.g., parent-child travel, leaving school, returning 302 

to school) induced colossal travel demand during this period. Like the European cases, 303 

tourist destinations and travel agencies used last-minute holidays (e.g., August in China) 304 

to promote cheaper travel (Kraft & Havlíková, 2016). October was another small peak 305 

for National Day Golden Week (a 7-day holiday). However, due to the comparatively 306 

short holiday period, air travel demand was not as prominent as in July and August. 307 

As China has a vast territory and a complex and diverse natural environment, peak 308 

months for Chinese airports can be different (e.g., flights of airports located in the 309 

tropics are typically at their highest during the winter months). Due to the large flight 310 

base (Wandelt et al., 2019) and different peak months for Chinese airports, the 311 

aggregate growth rate (of flights/passenger movements) from the bottom to the peak is 312 

fairly low when compared with Spain (Halpern, 2011)3. However, flight seasonality in 313 

China might significantly vary by airport. 314 

 315 

 316 

Fig.1. Temporal distribution of domestic flights in China, 2018 317 

  318 

                             
3 Demand (for Spanish airports) in August was 1.8 times higher than in the low month of December in 2008. 
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4.2 Geography of domestic flight seasonality 319 

4.2.1 Airport perspective 320 

We used the Gini indexes to measure flight seasonality and further explored its 321 

spatial distribution. Fig. 2 shows the overall spatial distribution of domestic flight 322 

seasonality in China in 2018. Among 222 airports, the Gini index of 0.08 for flights in 323 

2018 is higher than a worldwide indicative minimal threshold for uneven temporal 324 

distributions of seats suggested by Dobruszkes et al. (2022) but as reasonably low as in 325 

Spain (Halpern, 2011)4. However, the Gini index varies by the airport (see Fig. 2). In 326 

the work of Dobruszkes et al. (2022), 0.078 is suggested as the threshold to classify no-327 

peak airports and peak airports. Following this threshold, 30.63% of airports in China 328 

(accounting for 3.12% of passengers) experience a significant degree of seasonality, 329 

similar to the global experience. However, as there is no recognized threshold for 330 

judging Gini values to the best of our knowledge, we further made a cross-section 331 

comparison of airports. The Gini index of 68 airports has an above-average Gini index. 332 

The top ten airports by Gini index (all greater than 0.2) are Burqin Kanasi Airport (KJI, 333 

Xinjiang), Kali Huangping Airport (KJH, Guizhou), Qionghai Boao Airport (BAR, 334 

Hainan), Ruad Zhongqi Airport (WZQ, Inner Mongolia), Zhangjiakou Ningyuan 335 

Airport (ZQZ, Hebei), Aba Hongyuan Airport (AHJ, Sichuan), Daocheng Yading 336 

Airport (DCY, Sichuan), Ganzi Kangding Airport (KGT, Sichuan), Manzhouli Xijiao 337 

International Airport (NZH, Inner Mongolia), and Hulunbuir Dongshan International 338 

Airport (HLD, Inner Mongolia). These airports are almost all small airports5, as shown 339 

in Fig. 2. In addition, there are some links between seasonality and the nature of the 340 

area served. Most of the airports facing seasonality are located in areas with extreme 341 

terrain (e.g., Junggar Basin, Yunnan-Guizhou Plateau, Qinghai-Tibet Plateau) or 342 

extreme climate and service tourist destinations. For example, Burqin, where KJI is, 343 

located on the northern edge of the Junggar Basin, has complex and diverse landforms 344 

and is hot and dry in summer and severely cold in winter. It was also an important 345 

destination listed in the top 100 counties and cities in China for summer leisure in 2020, 346 

known as a “fairy tale border town”. In short, seasonality is high in small airports 347 

serving remote places and in cities that are tourism destinations. 348 

 349 

                             
4 The Gini index of for Chinese airports using supply-side data in 2018 is 0.08, which is very close to the Gini 

index of 0.106 for Spanish airports using demand-side data in 2008. 
5 These airport codes are also shown in Fig. 2. 



 350 

Fig. 2. Spatial distribution of domestic flight seasonality at airports 351 

Note: Borders in the figure (the same hereinafter) refer to the Ministry of Natural Resources of the 352 

People’s Republic of China (http://www.gov.cn/guoqing/2005-09/13/content_5043917.htm). 353 

 354 

To explore the difference between airport flight volume in the lowest month 355 

(February) and the highest month (August), also namely absolute seasonality (see 356 

Walsh & Lawler, 1981), we calculated the top 10 airports in China based on flight 357 

changes (shown in Table 2). Absolute seasonality shows a different picture compared 358 

to relative seasonality. That is, airports with high flight change rankings demonstrate 359 

low Gini rankings (i.e., below 0.078). It might contribute to the mega airports still 360 

serving a high absolute number of leisure travellers, although the large airports handle 361 

many business trips (compared to themselves). In this case, we can further explore the 362 

spatial patterns (or other features) of domestic flight seasonality in China instead of 363 

focusing on airports with low passenger volumes. From a geographical perspective, the 364 

rankings (or flights) of airports in northern China rose, and airport rankings (or flights) 365 

in southern China declined from winter to summer. For instance, among the Top 10 366 

airports based on flight changes, only Shenzhen Bao’an International Airport (SZX) is 367 

in South China. A typical case is Haikou Meilan International Airport (HAK), whose 368 

flights dropped from 14,115 in February to 12,834 in August, in the context of 81.08% 369 

of airports increase in this period. Besides being a popular tourist destination in the 370 

summer, as mentioned above, Haikou has gradually become one of the most popular 371 

cities for the elderly to spend the winter. Some older adults even buy real estate in 372 

Haikou to live in winter and rent out or leave it vacant in other seasons. To some extent, 373 

experience in Haikou is consistent with seasonality in Florida real estate; that is, sales 374 

in existing homes tend to spike in warmer months and reach their nadir in colder months. 375 



In another typical case, flights at Urumchi Diwopu International Airport (URC) rose 376 

from 12,731 to 16,190, and the reasons might be as follows. First, URC is prone to 377 

exceptional winter weather, such as heavy fog and snow. As the visibility is lower than 378 

the take-off and landing standards, airport flight volume will be affected. Second, as a 379 

regional hub in Xinjiang, most flights to Xinjiang need to transfer from URC. Thus, its 380 

flights can be influenced by other seasonal airports in Xinjiang, such as KJI mentioned 381 

above. Similar to URC, Dalian Zhoushuizi International Airport (DLC) rose from 9,572 382 

to 11,631. Five important kinds of weather in winter, including solid northerly winds, 383 

various snowfalls, low visibility, low clouds, and rain, challenge the flights at DLC. 384 

Also, hot tourism in summer could affect flight volume at DLC. According to Dalian 385 

Statistical Yearbook 2019, the number of inbound overnight tourists in August is 23.78% 386 

more than in February, contributing to seasonal differences in domestic flights at DLC. 387 

Table 2 Top 10 airports based on flight changes (Aug vs Feb) 388 

Airport Code 
Flight 

changes 

Ranking of the 

flight changes 

Change 

ratio 

Gini index 

(2018) 

Ranking Gini 

(2018) 

Beijing Capital PEK +4,213 1 +11.92% 0.018 213 

Xi’an Xianyang XIY +4,164 2 +17.72% 0.024 198 

Shenzhen Bao’an SZX +3,950 3 +18.22% 0.020 210 

Xining Caojiapu XNN +3,635 4 +120.60% 0.150 23 

Shanghai Hongqiao SHA +3,555 5 +19.45% 0.022 203 

Hohhot Baita HET +3,467 6 +49.10% 0.074 77 

Urumqi Diwopu URC +3,459 7 +27.17% 0.043 152 

Dalian Zhoushuizi DLC +3,327 8 +34.76% 0.045 143 

Nanjing Lukou NKG +3,300 9 +23.55% 0.028 187 

Shanghai Pudong PVG +3,105 10 +15.92% 0.020 207 

Haikou Meilan HAK -1,281 29 -9.08% 0.044 144 

Note: The ranking is based on the number of domestic flights. 389 

 390 

4.2.2 Route perspective 391 

Fig. 3 shows the spatial distribution of routes of different Gini levels. Among 3,000 392 

routes, the Gini index for flights in 2018 is 0.26, higher than this indicator from an 393 

airport perspective (0.08). Thus, flight seasonality seems higher at the route level. To 394 

analyze spatial distributions of routes with different Gini levels, we classified 3000 395 

routes into five groups using the natural breaks method and Jenks’ optimization (Jenks, 396 

1967), according to the Gini indexes. “This method calculates the grouping of data 397 

values based on data distribution, seeking to reduce variance within groups and 398 

maximize variance between groups” (Suau-Sanchez & Burghouwt, 2011, p. 246). 399 

Based on the classification results and those at the airport level, we applied the same 400 

threshold value at both the airport level (Fig.2) and route level (Fig.3) to map 401 

seasonality. In Fig. 3, routes of different Gini levels have different spatial distributions. 402 

The spatial distribution of low seasonality routes with a low Gini level (0.01-0.05) 403 

forms a national scale “diamond structure” with the Yangtze River Delta, Pearl River 404 

Delta, Beijing-Tianjin-Hebei region, and Chengdu-Chongqing region at the core 405 

(Fig.3e). In other words, trunk lines in the air transport network of China (ATNC) face 406 



low seasonality. Routes become unstructured as their Gini levels increase. High(er) 407 

Gini-level routes have a comparative advantage in peripheral areas, and they are usually 408 

feeder routes (or lines) in the ATNC. This might be attributed to the fact that low Gini-409 

level routes tend to reflect work patterns (the large proportion of business travelers 410 

using the services), compared to high Gini-level routes that tend to service many leisure 411 

travelers. In general, seasonality in China is lower for larger airports (e.g., aviation hubs) 412 

or routes connected to larger airports (e.g., trunk lines)—the same as airport-level 413 

analysis. 414 

 415 

Fig. 3. Domestic routes at different levels of flight seasonality in China 416 

(Note: a. high Gini level: 0.51-1.00; b. high-medium Gini level: 0.21-0.50; c. medium Gini level: 0.11-417 

0.20; d. medium-low Gini level: 0.06-0.10; e. low Gini level: 0.01-0.05) 418 

To further explore some details about absolute seasonality at the route level, we 419 

consider seasonal changes in the accessibility of two typical airports with the most 420 

changes in ranking from February to August (Table 2), including Haikou Meilan (HAK) 421 

and Urumchi Diwopu (URC). The two airports peak at different times; HAK peaks in 422 



February and URC peaks in August. Fig. 4 shows the seasonal changes in accessible 423 

airports from typical airports. In general, Fig. 4 offers a stable network of accessible 424 

destinations in the major airports, such as Beijing Capital (PEK) and Zhengzhou 425 

Xinzheng (CGO), affected by the size and importance of airports and their target 426 

customers (Kraft & Havlíková, 2016). However, seasonal changes can be found in some 427 

routes. For HAK, its range is more extensive in February than in August, covering more 428 

remote airports. Several flights in HAK encountered seasonality, with many flights in 429 

February and no flights in August, such as flights to Shenyang Taoxian International 430 

Airport (SHE, 111 flights in February), Changchun Longjia International Airport 431 

(CGQ), and Yinchuan Hedong International Airport (INC). It seems that seasonality in 432 

HAK was affected by northern China, especially northeastern China. For URC, the 433 

number of flights to several airports (e.g., Burqin Kanasi Airport, KJI, 217 flights in 434 

August; Dunhuang Mogao International Airport, DNH; Yichang Sanxia Airport, YIH) 435 

encountered a considerable increase in August from no flights in February. There was 436 

a virtual regional hub-and-spoke network around Urumchi in China (Wang et al., 2014). 437 

Thus, as a secondary hub, seasonality in URC is also more affected by other seasonal 438 

airports nearby than HAK. 439 

 440 

 441 



 442 

Fig. 4. Seasonal changes in air routes from typical airports (a. Haikou Meilan; b. 443 

Urumchi Diwopu) 444 

 445 

4.3 Determinants of flight seasonality 446 

4.3.1 Model selection and global results 447 

We first applied the ordinary least squares (OLS) model to explore the 448 

determinants of domestic flight seasonality on a global scale. We applied variable 449 

standardization and robust standard error coefficient estimations for regression to avoid 450 

heteroscedasticity. Also, we constructed GWR and MGWR models to identify spatially 451 

varying determinants. Table 3 shows the results of OLS, GWR and MGWR models 452 

using 222 sample airports as our observations. From Table 3, we know that the MGWR 453 

model can be the most suitable since its indicators, such as R2, AICC and Log-likelihood 454 

value, have a better performance than OLS and GWR models. As a result, we select the 455 

MGWR model as our primary model. 456 

In general, airport attributes and the natural landscape mainly affected flight 457 

seasonality. The regression results indicate that the airport size is one of the strongest 458 

estimators of flight seasonality since the coefficients of AIRPORT SIZE are negative 459 

and significant at 95% confidence in both models (1), (2) and (3). Small airports are 460 

more heterogeneous than large airports, some of which orient the peak tourist season 461 

(Kraft & Havlíková, 2016). However, it is different from the empirical evidence for the 462 

34 airports in Spain, which had no relationship between seasonality and airport size 463 

with a correlation analysis (Halpern, 2011). However, the coefficients of TOURISM and 464 

HSR are insignificant in models (1), (2) and (3). 465 

  466 



Table 3 Estimation results of the OLS, GWR and MGWR models 467 

Gini Model (1): OLS Model (2): GWR Model (3): MGWR 

 Coef. |𝑡| Coef. |𝑡̅| Coef. |𝑡̅| 

AIRPORT SIZE -0.17*** 3.63 -0.002** 2.02 -0.15** 1.96 

TOURISM 0.09 1.17 -0.16 1.27 0.16 0.99 

HSR -0.05 0.84 0.09 0.32 -0.03 0.39 

TEMPERATURE 0.37*** 2.87 -0.02*** 3.54 0.59*** 2.85 

PRECIPITATION 0.19* 1.65 0.50** 2.33 0.33** 2.25 

PLATEAU -0.06 0.83 0.29 0.96 -0.13 1.52 

Constant 3.90×10-8 0.01 -0.06 1.19 -0.01 0.35 

Number of obs. 222  222  222  

R2 0.14  0.25  0.34  

AICc 614.34  593.41  586.19  

Log-likelihood -298.83  -283.83  -269.04  

Note: ***, **, and * denote significance levels of 1%, 5%, and 10%, respectively. 468 

 469 

For the natural landscape, the difference between the annual average temperature 470 

and the so-called universal indoor comfort temperature positively affects flight 471 

seasonality since the coefficients of TEMPERATURE are positive and significant at 99% 472 

confidence in both models (1) (2) and (3). Places with comfortable temperature mains 473 

facing less super-cold/super-hot days. On the one hand, local tourism resources can be 474 

attractive with less seasonality, attracting inflowing air passengers in all seasons. For 475 

instance, the average temperature of the Kanas Scenic Area in Xinjiang (Northwest 476 

China), where the airport faced the most severe seasonality in China (KJI, location 477 

refers to Fig. 2) served, is -0.2℃. The minimum temperature here is -37°C, and the 478 

average monthly temperature is below 0°C for six months of the year, with winter 479 

lasting seven months. On the other hand, people living in extreme weather can be more 480 

willing to spend their time in places with comfortable temperatures. Further, combined 481 

with the average temperature distribution in China, airports in the north and south of 482 

China faced more seasonality than the airports in the middle. China spans a wide range 483 

of latitudes (e.g., cold temperate, middle temperate, warm temperate, subtropical, and 484 

tropical temperature zones) from north to south. The amount of solar radiation heat 485 

received varies from zone to zone. Thus, airports of middle temperate, warm temperate, 486 

and subtropical zones might face less apparent seasonality because of the more 487 

temperate and less variable climate (Merkert & Webber, 2018). The coefficients of 488 

another indicator, PRECIPITATION, are positive and significant at 90% confidence in 489 

the model (1) and 95% confidence in models (2) and (3). It shows that precipitation 490 

distribution can also affect flight seasonality. For example, coastal areas can experience 491 

severe weather phenomena in a specific season, such as typhoons and floods in summer 492 

and autumn, and airports serving there are also facing seasonality. A county-level city, 493 

Qionghai in Hainan (South China), where another identified airport faced severe 494 

seasonality (BAR, location refers to Fig. 2) served, suffered 24 typhoons from 1949 to 495 

2021, accounting for 3.3% of the total in China. Indeed, 24 typhoons include one super 496 

typhoon (code “SuperTY” in China), while the Chinese mainland has only suffered five 497 



typhoons at the most substantial level (i.e., “SuperTY”). Fig. 5 shows the overview of 498 

climate elements in China. 499 

 500 

501 

 502 

Fig. 5. Spatial patterns of climate elements in China 503 

 504 

4.3.2 Spatially varying determinants 505 

We further mapped the MGWR estimation results to explore the spatially 506 

heterogeneous characteristics of determinants of flight seasonality. Three significant 507 

variables at 95% confidence are considered in the MGWR map, including AIRPORT 508 

SIZE, TEMPERATURE and PRECIPITATION. Fig. 6 reveals the spatially 509 

heterogeneous characteristics of factors affecting flight seasonality. 510 

In general, parts of the estimates present a spatial pattern of gradient differentiation 511 



in the MGWR maps. Compared to the central and western regions, factors (except 512 

PRECIPITATION) are less significant and more minor in the eastern region because of 513 

the pleasant natural, economic, and institutional landscape, which works against 514 

seasonality (the mean of Gini indexes in the eastern region is 0.06)6. Most of the factors 515 

(except PRECIPITATION) are most evident in Northwest China. From Fig. 6a, the 516 

adverse effects of airport size present a “west-east” pattern that affects the flight 517 

seasonality more significantly in the west than in the east. To some extent, small airports 518 

in the west are highly reliant on regional hubs. In contrast, small airports in the east can 519 

directly link with international hubs (e.g., Shanghai Hongqiao International Airport) 520 

and regional hubs, especially in the context of developing multiple-airport systems.  521 

For natural factors, the positive influence of the difference between annual average 522 

temperature and comfort temperature is more evident in Xinjiang province (Northwest 523 

China) and the Yangtze River Delta, with different mechanisms (Fig. 6b). The former 524 

is related to the supply side. It supplies rich seasonal tourism resources (e.g., highland 525 

tourism); these places will also encounter heavy snowstorms in winter. The latter might 526 

be related to the demand side. People living in the Yangtze River Delta, one of the most 527 

developed regions in China, feed their demand for travelling to places with comfortable 528 

climates in specific seasons. From Fig. 6c, the positive impact of precipitation exhibits 529 

a “south-north” gradient decreasing pattern, partly due to South China having more 530 

possibility to experience precipitation-oriented floods and typhoons than North China. 531 

Further, we provided some discussions about two variables (i.e., TOURISM and 532 

PLATEAU) that are significant only in some airports/samples. The positive influence of 533 

the tourism economy seems to cluster in Northwest China and Southwest China. 534 

Possible reasons are as follows. The spatial distribution of major tourism resources7 in 535 

China is dispersed (Fig. 7), providing opportunities for tourism in place. Compared to 536 

the western region with rich highland tourism resources8, tourism attractions (without 537 

highland) in other regions are less seasonal. In other words, those airports in other 538 

regions serve year-round holiday areas, which could have a dampening effect on 539 

seasonality (Halpern, 2011). The negative impact of the plateau airport is only 540 

significant in Western China, partly because of the geography of the plateau (Fig. 2) 541 

and the plateau airport is operating for more than economic purposes, such as political 542 

purposes. For example, the opening of Zhangye Ganzhou Airport (YZY), a military-543 

civilian plateau airport, has played a positive role in consolidating the national defense 544 

construction in Zhangye City. 545 

 546 

                             
6 The Chinese planning agencies initially proposed the three-region level classifications widely adopted for 

empirical research (Chen & Haynes, 2017). 
7 We applied the total number of 4A and 5A tourist attractions and World Heritage Sites, the highest-ranking 

attractions in China as specified by the Ministry of culture and tourism of the People’s Republic of China, to 

represent regional tourism resources (Bo & Ningqiao, 2017). 
8 Highland tourist attractions are normally closed in winter due to heavy snow. 



 547 

Fig. 6. Spatial differentiation patterns of factors affecting seasonality of flights in 548 

China 549 

(Note: Only samples whose P-value is less than 0.1 are included in the map.) 550 

 551 

 552 

Fig. 7. Spatial distribution of major tourism resources in China 553 

 554 

5 Conclusions and discussion 555 

This paper contributes further comprehensive knowledge to the existing literature 556 

in terms of transport seasonality. To fill the gap of lacking systematic analysis on flight 557 

seasonality, we aim to explore the spatial heterogeneity of flight seasonality and its 558 

determinants in China from a supply-side perspective. The empirical evidence shows 559 

the following. (1) Domestic flights in China face seasonality, at their lowest in February 560 

and peaking in August. (2) From an airport perspective, seasonality is high in small 561 

airports serving remote places and in cities that are tourism destinations. The rank of 562 

the top 10 airports by flights kept stable in different months in 2018, while those ranked 563 

10 to 20 changed significantly. (3) From a route perspective, trunk routes (or lines) in 564 

the air transport network of China face low(er) seasonality, while feeder routes (or lines) 565 



face high(er) seasonality. Heterogeneous attributes shape the seasonal accessibility of 566 

different airports. (4) At the national level, flight seasonality is shaped by airport size 567 

and a mix of natural landscape factors (e.g., average temperature and average rains). 568 

Seasonality significantly mattered for smaller airports located in regions facing extreme 569 

climates. At the local level, factors explored in this paper were more significant in the 570 

northwest area, especially airport size and temperature. 571 

The flight schedule follows IATA seasons, and most of the schedule is well 572 

determined before two quarters, but it is more based on a micro-scale temporal 573 

perspective and is more market-oriented. From a spatial perspective, our research can 574 

still contribute to future air transport research, aviation planning or management 575 

(especially in developing countries). In academic terms, scholars who process research 576 

on airports or air transport networks are suggested to use the data for a “typical” period 577 

(e.g., one day, week, or month) with care. In other words, data for a “typical” period are 578 

more suitable for airports or routes with less seasonality, and vice versa. Therefore, air 579 

transport researchers can balance the cost of data and its precision according to the 580 

monthly rhythms of aviation. 581 

In practical terms, seasonality can result in challenges for air transport 582 

management and regional development (Halpern, 2011; Merkert & Webber, 2018). At 583 

the national level, our findings provide some reference for aviation planning in 584 

developing countries with heterogeneous natural, economic, and institutional 585 

landscapes, such as China. Air transport planners are suggested to consider seasonality 586 

issues when planning for new airports or routes, which might shape dynamic national 587 

air transport systems. If possible, the central government can propose policies 588 

promoting collaboration between airports peak in different periods, reducing losses due 589 

to seasonality. At the local level, to manage seasonality, air transport managers should 590 

focus on airports located in areas with extreme terrain or extreme climate, those in 591 

tourist destinations, and those with long-distance routes serving peripheral regions, 592 

mainly for western China. Furthermore, the immobility of the natural landscape and 593 

regional tourism resources suggests focusing on the airport attributes. For instance, 594 

airports can be committed to attracting more heterogeneous passengers and upgrading 595 

to airline hubs, which encounter less seasonality (Wu et al., 2020). They can also 596 

establish long-term collaborations between air transport managers, local governments, 597 

and local industries to deal with flight seasonality (e.g., share the cost, mix with more 598 

business travel and attract more off-season leisure travel). For example, many ski 599 

resorts in Europe turn to hiking, trail running, and other adventure tourism types during 600 

off-peak periods in the summer (Suau-Sanchez & Voltes-Dorta, 2019). 601 

This paper also paves the way for other research, although subject to data 602 

availability. Covid-19 can be a crucial factor influencing air transportation and tourism 603 

in China, as air services are highly associated with the spread of COVID-19 (Zhang et 604 

al., 2020; Li et al., 2022). During the epidemic, the air transport industry worldwide is 605 

grappling with shortages of fuel, parts and labor, and China is in the middle of an 606 

economic slowdown. This combination of factors makes our findings (based on 2018 607 

data) not so applicable during the pandemic, but our results are still meaningful as the 608 

epidemic fades away. As for the dependent variable, it would make sense to consider 609 



the number of seats (instead of the number of flights) as well as average fares, which 610 

also face high seasonal variations and different situations (Merkert & Webber, 2018). 611 

Another issue to consider is charter flights in addition to regular flights. Although 612 

charter would likely increase the degree of seasonality, it is very difficult to capture this 613 

specific market through usual databases such as OAG Schedules. Consequently, follow‐614 

up research is suggested to use other databases covering actual flight data rather than 615 

planned flights from a demand perspective. Finally, in addition to domestic flights, 616 

seasonality in international services is a topic worth exploring, which can be typical 617 

for characteristics of international services (e.g., the international market is less 618 

regulated and more market-based). Thus, from the perspective of international routes, 619 

seasonality should be further explored. 620 

  621 
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