Trends and regional variations in prescriptions dispensed to stimulate uterine contractions at the end of pregnancy in Belgium: A community-based study from 2003 to 2018

Lionel Larcin¹ | Güngör Karakaya²,³ | Xavier Rygaert² | Philippe Van Wilder⁴ | Clotilde Lamy⁵ | Bart Demyttenaere²,⁶ | Christine Damase-Michel⁷ | Fati Kirakoya-Samadoulougou¹

¹Centre de Recherche Epidémiologie, Biostatistique et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, Bruxelles, Belgium
²Agence Intermutualiste (IMA), Bruxelles, Belgium
³Département Représentation et Études des Mutualités Libres, Bruxelles, Belgium
⁴Centre de Recherche en Économie de la Santé, Gestion des Institutions de Soins et Sciences Infirmières, Ecole de Santé Publique, Université Libre de Bruxelles, Bruxelles, Belgium
⁵Service de Gynécologie-Obstétrique, Hôpital Universitaire de Bruxelles, Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
⁶Service études des Mutualités Socialistes, Bruxelles, Belgium
⁷Pharmacologie Médicale, Faculté de Médecine, Université de Toulouse III, Inserm CERPOP, CHU, Toulouse, France

Correspondence
Lionel Larcin, Centre de recherche Epidémiologie, Biostatistique et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, Route de Lennik 808, CP 596, Bruxelles 1070, Belgium.
Email: lionel.larcin@ulb.be

Abstract

Purpose: To investigate trends and regional variations in uterotonics dispensed around birth between 2003 and 2018 in Belgium.

Methods: Data, including outpatient and inpatient prescriptions were extracted from a nationally representative prescription database. The prevalence of uterotonics dispensed during a period including the 7 days before birth, the delivery day and the 7 days after birth was computed over three 4-year-long study periods from 2003 to 2018. The trends between periods and associations between the use of at least one uterotonic and maternal age, region of residence, delivery type and social status were assessed using logistic regression.

Results: In total, 31,675 pregnancies were included in the study. The proportion of pregnancies exposed to at least one uterotonic decreased significantly from 92.9% (95%CI, 92.3–93.4) in 2003–2006 to 91.4% (95%CI, 90.7–92.0) in 2015–2018 for vaginal births and from 95.5% (95%CI, 94.5–96.4) to 93.7% (95%CI, 92.6–94.7) for caesarean sections. However, for vaginal births, the proportion of oxytocin increased from 84.5% (95%CI, 83.7–85.2) to 89% (95%CI 88.3–89.7). A significant association was found between uterotonic agent use and maternal age, region of residence, and delivery type. The dispensation of some uterotonics agents differed significantly between the regions.

Conclusions: The proportion of pregnancies exposed to at least one uterotonic around birth decreased slightly between 2003 and 2018. Important variations in uterotonic use between regions highlight the need for improved national guidance.

Keywords
administrative healthcare database, augmentation, induction, labour, post-partum haemorrhage, pregnancy, uterotonic

Key Points
• The proportion of pregnancies exposed to at least one uterotonic around birth decreased slightly between 2003 and 2018.
• The use of at least one uterotonic agent was associated with maternal age, region of residence, and delivery type.
1 | INTRODUCTION

In obstetrics, uterotonics are used in various situations, including abortion, labor induction, and the prevention and treatment of postpartum hemorrhage (PPH). Despite their benefits, uterotonics may also be associated with adverse events such as tachycardia, high blood pressure, vomiting, and possibly impact breastfeeding rates.

A study conducted in Sweden has observed that among 1267 pregnant women, the induction or augmentation of labor with oxytocin was used in 55% of pregnancies while the frequency of labor dystocia was 19.8%. Additionally, incorrect dosages of oxytocin were administered, with 7.3% of pregnant women receiving a higher dose and 42.6% a lower dose than the one recommended by guidance.

Therefore, monitoring their use is important and can play a role in correcting uterotic prescription habits in obstetrics.

The risk-benefit balance is different when uterotonic agents are used before delivery to induce or augment uterine contractions than when used after birth to prevent and treat PPH associated with uterine atony. Induction and augmentation of labor often involve the use of uterotonics. The World Health Organization (WHO) recommends the induction of labor for women who are known to have reached 41 weeks of gestation. Although uterotonics have long been known to effectively induce or augment labor, their safety still cannot be guaranteed. Some studies have reported an association between the use of uterotonics and a higher risk of PPH and an increased risk of stillbirth and neonatal asphyxia. They should only be used when continuing pregnancy involves more risks than uterotic use. Uterotonics are also used in the third stage of labor to prevent or treat PPH after vaginal birth (VB) or caesarean section (CS). PPH is an important cause of maternal death. Most guidelines promote the administration of uterotonics immediately after birth as part of “the active management” of the third stage of labor, including cord clamping and controlled cord traction to help deliver the placenta. Although active management reduces maternal blood loss at birth, it may also increase maternal diastolic blood pressure, postpartum vomiting, postpartum pain, and hospital readmission due to bleeding.

In other countries, studies using large databases or billing data to evaluate the use of uterotonics are scarce because such databases often do not capture medications used in hospitals. In Belgium, inpatient medications are recorded; therefore, Belgian data represent an opportunity to highlight practices in real-world contextual settings. The present study explored at national and regional level the trends and prescribing pattern of uterotonics dispensed around birth in Belgium. More specifically, we assessed the period of exposure in the 7 days preceding childbirth, the day of childbirth and 7 days after childbirth.

2 | METHODS

This was a retrospective drug utilization study. Data were extracted from the permanent sample (EPS). In Belgium, health insurance is mandatory, 98% of residents are captured. The EPS database is a 2.5% representative sample constituted by the Inter Mutualistic Agency with the information received by all insurance funds. The information is collected by patient and includes a pseudonymised unique patient identifier, demographic characteristics such as patient’s age and residence region. The social status can also be identified because patients with low-income benefit from a preferential reimbursement rate. Medications prescribed and dispensed from community and hospital pharmacies were captured. In community pharmacies, only reimbursed medications were registered. For hospital pharmacies, all medications including non-reimbursed medications prescribed and dispensed during hospitalization were captured even for a day-care stay at the hospital or in ambulatory care. Additionally, the medication received when the patient left the hospital was also recorded. Information collected on medication includes classification according to the Anatomical Therapeutic Chemical Classification Code (ATC), the exact date of dispensation, and the quantity dispensed. All information was completely anonymized and accessible for research purposes under strict conditions.
2.2 | Study periods

2.3 | Study population

This analysis only considered women who gave birth. Reimbursement delivery-only codes were used to select women from the EPS. The selection of codes only included deliveries that occurred after the 180th day of pregnancy. Mothers whose data were not available in the EPS for the entire pregnancy period and those whose residences were outside Belgium were excluded. Finally, we excluded self-employed mothers who did not benefit from the same reimbursement scheme for drugs during the first study period (2003–2006) for all three periods.

2.4 | Definition of exposure and measurement

We identified all ATC codes associated with a uterotonic used to induce labor or to prevent or treat PPH commercialized in Belgium during the study period: dinoprostone (ATC: G02AD02), carbo prost (ATC: G02AD04), methylergometrine (ATC: G02AB01), oxytocin (ATC: H01BB02), carbetocin (ATC: H01BB03), and misoprostol (ATC: A02BB01-G02AD06). The list is presented in Table S1. We did not include mifepristone (ATC: G03XB01) because this medication is mainly used to manage miscarriages and fetal death. We considered the period of exposure to 7 days preceding childbirth, the day of childbirth, and 7 days after childbirth, as uterotonics might be prescribed and dispensed before, during, and after delivery.

2.5 | Statistical methods

For the three study periods, the proportion and 95% confidence intervals of pregnancies exposed to at least one uterotonic from the pre-established list and for each individual uterotonic were computed. We also computed the proportion of pregnancies exposed to at least two and three distinct subgroups of uterotonics (different ATC codes at the 5th level). The results are presented separately for the VB and CS. Logistic regression analysis was used to assess the trends in the proportion of pregnancies exposed to uterotonics across the three study periods, adjusted for maternal age.

For the last study period, we computed the adjusted odds ratio using logistic regression to measure the strength of the association between the proportion of pregnancies exposed to at least one uterotonic agent and maternal age, region of residence, delivery type, and social status.

Additionally, to explore regional disparities in the proportion of pregnancies exposed to different uterotonics, we assessed the proportions by region and presented the results separately for VB and CS. We determined significant differences between regions after adjusting for maternal age using logistic regression analysis.

3 | RESULTS

This study included 31,675 pregnancies during the three study periods (Figure 1). Table 1 shows the proportion of maternal age, region of residence of the mother, and delivery type.

In the period 2003–2006, the majority of mothers were in the age group 25–29 years while in the period 2015–2018 the majority were in the age group 30–34 years.

In the last study period, 19.1% of pregnant women benefited from a preferential reimbursement rate.

The prevalence of pregnancies exposed to at least one, two, or three subgroups of uterotonics (different ATC codes at the 5th level) dispensed around birth is shown in Table 2. Between 2003 and 2018, decreases in the use of at least one and two or more different uterotonics (from 92.9% to 91.4% and from 45.3% to 25.7%) were observed for VB. Similar significant decreases were observed for CS (from 95.5% to 93.7% and 38.8% to 29.9%) as well. The factors associated with pregnancies with exposure to at least one uterotonic

FIGURE 1 Flowchart of the study
TABLE 1 Ages, regions of residence and type of delivery of pregnant mothers in Belgium in the three study periods between 2003 and 2018.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% (n)</td>
<td>% (n)</td>
<td>% (n)</td>
</tr>
<tr>
<td>Maternal age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><25 years</td>
<td>16 (1660)</td>
<td>14.9 (1636)</td>
<td>11.3 (1165)</td>
</tr>
<tr>
<td>25–29 years</td>
<td>35.5 (3678)</td>
<td>34.3 (3779)</td>
<td>32.8 (3381)</td>
</tr>
<tr>
<td>30–34 years</td>
<td>32.7 (3389)</td>
<td>33.2 (3660)</td>
<td>35.5 (3660)</td>
</tr>
<tr>
<td>35–39 years</td>
<td>13 (1343)</td>
<td>14.2 (1564)</td>
<td>16.2 (1670)</td>
</tr>
<tr>
<td>≥40 years</td>
<td>2.8 (287)</td>
<td>3.4 (380)</td>
<td>4.1 (423)</td>
</tr>
<tr>
<td>Region of residence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flanders</td>
<td>46.6 (4823)</td>
<td>47.9 (5277)</td>
<td>49 (5051)</td>
</tr>
<tr>
<td>Wallonia</td>
<td>40.8 (5225)</td>
<td>39.2 (4323)</td>
<td>37.8 (3898)</td>
</tr>
<tr>
<td>Brussels region</td>
<td>12.6 (1309)</td>
<td>12.9 (1416)</td>
<td>13.1 (1348)</td>
</tr>
<tr>
<td>Delivery type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any vaginal birth</td>
<td>81 (8394)</td>
<td>80.2 (8833)</td>
<td>78.8 (8117)</td>
</tr>
<tr>
<td>Cesarean section</td>
<td>19 (1963)</td>
<td>19.8 (2186)</td>
<td>21.2 (2182)</td>
</tr>
</tbody>
</table>

agent are listed in Table 3. Maternal age, region of residence, and delivery type were statistically associated after adjustment. No association was found between social status and the use of at least one uterotonic.

The proportion of pregnancies exposed to at least one prescription for each uterotonic is listed in Table 4. For VB, the proportion of pregnancies exposed to oxytocin was high and increased significantly across the three study periods. In contrast, oxytocin use for CS decreased during the three study periods.

The proportion of pregnancies exposed to at least one prescription of different uterotonics during the three distinct periods around birth is listed in Table 5. The exposure period was divided into three distinct periods: 7 days before delivery, the day of delivery, and 7 days after delivery. Most exposures occurred on the day of the delivery. Except for dinoprostone, pregnancies were exposed more frequently to each uterotonics 7 days after delivery than 7 days before delivery.

The geographical variations in uterotonics dispensed around delivery are listed in Table 6. For VB, the results reflected a higher prevalence of pregnancies exposed to oxytocin in Wallonia. The proportion of misoprostol use was slightly higher in Flanders than in Brussels but was much lower in Wallonia. For CS, carbetocin use was similar in Flanders and Wallonia but was significantly lower in the Brussels region.

4 | DISCUSSION

The proportion of pregnancies exposed to at least one uterotonic decreased slightly across the three study periods. For the proportion of pregnancies exposed to two, three, or more subgroups of uterotonics, the decrease was more significant, which might be explained by the increasing trend in the use of uterotonics that fit several indications, such as misoprostol and oxytocin. In addition, we hypothesized that an important part of the proportion of pregnancies with two or more different uterotonics would reflect induced deliveries. The decrease observed for this proportion might be related to the decrease in induced labor observed in Belgium from 32.1% in 2002 to 26.6% in 2015.26

4.1 | Widely prescribed oxytocin

In the last study period, 89% of VB were exposed to at least one prescription of oxytocin dispensed around birth. The widespread use of oxytocin for VB is based on WHO recommendations for PPH prevention. Although a very large consensus supports uterotonic use to prevent PPH,15,16,27 we observed 11% of VB not exposed to oxytocin and 8.6% of pregnancies not exposed to any uterotonics. Unexposed pregnancies may reflect, in part, the place of the “expectant management” in the third stage of labor in Belgium. Indeed, in addition to active management involving the systematic use of uterotonics, “expectant management” allows the placenta to be delivered spontaneously through maternal effort and gravity.28

The significant decrease observed in oxytocin use for CS was most likely related to the introduction of carbetocin (Palab®) in Belgium in 2008. Our results suggest that carbetocin could replace oxytocin to prevent PPH after CS. Similar results were observed in a study conducted in Canada.21

In the last study period, we examined prescriptions dispensed during three different exposure periods: (a) 7 days before delivery, (b) day of delivery, and (c) 7 days after delivery. This separation aimed to distinguish the uterotonics used to induce labor from those used to prevent or treat PPH. Oxytocin was the most represented uterotonic in the period before delivery and on the day of delivery, suggesting that it was the most commonly used uterotonic to induce or augment labor.
4.2 A drastic decrease in methylergometrine use

In Belgium, methylergometrine was commercialized only under the name Methergin®, and was largely used in the first study period (2003–2006). However, a drastic decrease was observed during the next two study periods. This is a consequence of several cases of accidental oral administration of Methergin® to the newborn because of confusion between the Methergin® dedicated to the mother and the...
Because of these incidents, drop preparations of Methergin® were withdrawn from the Belgian market in 2011.31 Only intramuscular administration of Methergin® remained available. Our study suggests that for PPH prevention in VB, Methergin® has been replaced by oxytocin. For CS, our data suggest replacement of Methergin® with carbetocin.

4.3 The off-label misoprostol use: an increasing trend

We observed an increasing trend in the misoprostol prescribed and dispensed around birth between 2003 and 2018. In Belgium, until 2016, misoprostol was only available under the Cytotec® formulation, which is not approved for use in obstetrics.32 The increasing trend of Cytotec® use observed in our study may be explained by several factors. Many studies over the past two decades have suggested that misoprostol effectively induces labor and treats PPH.8,33,34 Additionally, misoprostol is easy to store at room temperature, inexpensive, and has a short half-life.35 The off-label use of misoprostol is controversial. In 2005 and 2013, the French National Agency for Medicine issued warnings about the risks associated with Cytotec® use in obstetrics and gynaecology36 and the drug was withdrawn from the French market in 2018.37 More recently, in March 2020, the German Federal Institute for Drugs and Medical Devices was informed of new reports of severe side effects when using Cytotec® outside the approved indication.38

4.4 Geographical variation

Belgium is divided into three regions: Flanders, Wallonia, and Brussels. While the accessibility and reimbursement status of different

TABLE 4 Prevalence of uterotonics prescribed and dispensed around birth between 2003 and 2018.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>% (95%CI)</td>
<td>n</td>
<td>% (95%CI)</td>
</tr>
<tr>
<td>Oxytocin</td>
<td>7089</td>
<td>84.5 (83.7–85.2)</td>
<td>7837</td>
<td>88.7 (88–89.4)</td>
</tr>
<tr>
<td>Dinosprostone</td>
<td>1873</td>
<td>22.3 (21.4–23.2)</td>
<td>1739</td>
<td>19.7 (18.9–20.5)</td>
</tr>
<tr>
<td>Methylergometrine</td>
<td>3156</td>
<td>37.6 (36.6–38.6)</td>
<td>1382</td>
<td>15.6 (14.9–16.4)</td>
</tr>
<tr>
<td>Carbetocin</td>
<td>NA</td>
<td>NA</td>
<td>55</td>
<td>0.6 (0.5–0.8)</td>
</tr>
<tr>
<td>Misoprostol</td>
<td>95</td>
<td>1.1 (0.9–1.4)</td>
<td>359</td>
<td>4 (3.7–4.5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>% (95%CI)</td>
<td>n</td>
<td>% (95%CI)</td>
</tr>
<tr>
<td>Oxytocin</td>
<td>1824</td>
<td>92.9 (91.7–94)</td>
<td>1835</td>
<td>83.9 (82.3–85.5)</td>
</tr>
<tr>
<td>Dinosprostone</td>
<td>29</td>
<td>15.2 (13.7–16.9)</td>
<td>311</td>
<td>14.2 (12.8–15.8)</td>
</tr>
<tr>
<td>Methylergometrine</td>
<td>540</td>
<td>27.5 (25.5–29.5)</td>
<td>279</td>
<td>12.8 (11.4–14.2)</td>
</tr>
<tr>
<td>Carbetocin</td>
<td>NA</td>
<td>NA</td>
<td>339</td>
<td>15.5 (14–17.1)</td>
</tr>
<tr>
<td>Misoprostol</td>
<td>18</td>
<td>0.9 (0.5–1.4)</td>
<td>46</td>
<td>2.1 (1.5–2.8)</td>
</tr>
</tbody>
</table>

Note: Period of exposure considered: the 7 days preceding childbirth, the day of childbirth and the 7 days after childbirth all together. NA, not applicable: Carbetocin was not yet commercialized in Belgium in the period 2003–2006. *Trend test using logistic regression analyses adjusted on maternal age at birth.

TABLE 5 Prevalence of pregnancies exposed to at least one prescription of uterotonics dispensed during three different periods of exposure around birth in 2015-2018 (N = 10 299).

<table>
<thead>
<tr>
<th></th>
<th>7 days before DD</th>
<th>Day of delivery</th>
<th>7 days after DD</th>
<th>p-value for trends</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>% (95%CI)</td>
<td>n</td>
<td>% (95%CI)</td>
</tr>
<tr>
<td>Oxytocin</td>
<td>987</td>
<td>9.6 (9–10.2)</td>
<td>6472</td>
<td>62.8 (61.9–63.8)</td>
</tr>
<tr>
<td>Dinosprostone</td>
<td>585</td>
<td>5.7 (5.2–6.1)</td>
<td>1119</td>
<td>10.9 (10.3–11.5)</td>
</tr>
<tr>
<td>Methylergometrine</td>
<td>13</td>
<td>0.1 (0.1–0.2)</td>
<td>194</td>
<td>1.9 (1.6–2.2)</td>
</tr>
<tr>
<td>Carbetocin</td>
<td>16</td>
<td>0.2 (0.1–0.2)</td>
<td>87</td>
<td>0.8 (0.7–1)</td>
</tr>
<tr>
<td>Misoprostol</td>
<td>22</td>
<td>0.2 (0.1–0.3)</td>
<td>733</td>
<td>7.1 (6.6–7.6)</td>
</tr>
</tbody>
</table>

Abbreviation: DD, day of delivery.
Geographical variations in the proportion of pregnancies exposed to at least one uterotonic agent at the end of pregnancy in 2015–2018.

<table>
<thead>
<tr>
<th>Vaginal only</th>
<th>Flanders, N = 3987</th>
<th>Wallonia, N = 3066</th>
<th>Brussels region, N = 1063</th>
<th>p-valuea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>% (95%CI)</td>
<td>n</td>
<td>% (95%CI)</td>
</tr>
<tr>
<td>Oxytocin</td>
<td>3532</td>
<td>88.6 (87.6–89.5)</td>
<td>2827</td>
<td>92.2 (91.2–93.1)</td>
</tr>
<tr>
<td>Dinoprostone</td>
<td>871</td>
<td>21.8 (20.6–23.2)</td>
<td>650</td>
<td>21.2 (19.8–22.7)</td>
</tr>
<tr>
<td>Misoprostol</td>
<td>252</td>
<td>6.3 (5.6–7.1)</td>
<td>115</td>
<td>3.8 (3.1–4.5)</td>
</tr>
<tr>
<td>Methylergometrine</td>
<td>94</td>
<td>2.4 (1.9–2.9)</td>
<td>74</td>
<td>2.4 (1.9–3)</td>
</tr>
<tr>
<td>Carboprost</td>
<td>33</td>
<td>0.8 (0.6–1.2)</td>
<td>45</td>
<td>1.5 (1.1–1.9)</td>
</tr>
<tr>
<td>Carbetocin</td>
<td>51</td>
<td>1.3 (0.9–1.7)</td>
<td>30</td>
<td>1 (0.7–1.4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cesarean delivery only</th>
<th>Flanders, N = 1064</th>
<th>Wallonia, N = 832</th>
<th>Brussels region, N = 285</th>
<th>p-valuea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>% (95%CI)</td>
<td>n</td>
<td>% (95%CI)</td>
</tr>
<tr>
<td>Oxytocin</td>
<td>731</td>
<td>68.7 (65.8–71.5)</td>
<td>594</td>
<td>71.4 (68.2–74.4)</td>
</tr>
<tr>
<td>Dinoprostone</td>
<td>145</td>
<td>13.6 (11.6–15.8)</td>
<td>125</td>
<td>15 (12.7–17.6)</td>
</tr>
<tr>
<td>Misoprostol</td>
<td>31</td>
<td>2.9 (2.4–4.1)</td>
<td>17</td>
<td>2 (1.2–3.2)</td>
</tr>
<tr>
<td>Methylergometrine</td>
<td>47</td>
<td>4.4 (3.3–5.8)</td>
<td>12</td>
<td>1.4 (0.7–2.5)</td>
</tr>
<tr>
<td>Carboprost</td>
<td>9</td>
<td>0.8 (0.4–1.6)</td>
<td>20</td>
<td>2.4 (1.5–3.7)</td>
</tr>
<tr>
<td>Carbetocin</td>
<td>353</td>
<td>33.2 (30.3–36.1)</td>
<td>322</td>
<td>38.7 (35.4–42.1)</td>
</tr>
</tbody>
</table>

Note: Period of exposure considered: the 7 days preceding childbirth, the day of childbirth and the 7 days after childbirth all together.

aP-value from logistic regression adjusted on maternal age.

Uterotonic agents were the same across the country, we observed wide variations in their prescription patterns. Adjusted for maternal age, delivery type and social status our results found a statistically significant association between region of residence and higher odds of uter tonic dispensation. These variations may be explained by various factors.

First, important variations in obstetric practices between the regions of Belgium have influenced the use of uterotonics. For example, the proportion of induced deliveries varies significantly depending on region. In 2017, the proportion of induced deliveries was 31.6% in Wallonia, 24.6% in Flanders, and 28.6% in the Brussels region.

The reimbursement status may also influence the choice of uterotonics. For example, carbetocin (Pabal®) was used much less frequently in the Brussels region than in the other regions in our study. This drug is not reimbursed and is relatively expensive. Some hospitals might prefer to use oxytocin which is reimbursed for preventing uterine atony, instead of Pabal®. The cost may also have an important influence. We observed that the use of misoprostol (Cytotec®) was approximately twice as high in the Brussels region and Flanders compared to that in Wallonia, which might be explained by the low cost of misoprostol (Cytotec®).

A study conducted in Sweden reported significant differences in the rate of oxytocin use during labor in different hospitals. According to the authors, these variations might be due to differences in “delivery culture” between hospitals.

Changes in patient demand and expectations may explain some of these variations. We observed a significantly lower rate of oxytocin use in the Brussels region. One hypothesis to explain this result is lower adherence to the recommended routine uterotonics use to prevent PPH in the Brussels region than in Flanders and Wallonia. Several initiatives for low-risk births have recently been established to respond to this demand for less medicalized births in Brussels. For example, a new birth center has been established in a large hospital in Brussels to provide a package of care for uncomplicated pregnancies, where the minimisation of medical interventions is encouraged.

Differences in pharmaceutical marketing strategies between regions may explain the observed variations. For example, the increased use of carbetocin, a relatively new uterotonics agent in the Belgian market, might result from pharmaceutical marketing efforts in hospitals that are more sensitive to innovation.

Educational factors might also explain the variation; healthcare workers’ education is not equivalent between the different regions in Belgium. Different regional ministries of education and training are responsible for determining the policies of the education system.

Finally, the variations observed reflect the lack of clear national evidence-based guidelines for the use of uterotonics around birth in Belgium. Consequently, the French-speaking portion of Belgium might refer to guidance from France or Switzerland. In contrast, the Flemish-speaking portion might use guidelines from Anglo-Saxon countries or the Netherlands, impacting clinical practices.

4.5 | Strengths and limitations

For the first time, this study reports the patterns of uterotonics prescriptions in Belgium. Our sample was representative of the people enrolled in the health security system (98% of the population). We excluded self-employed pregnant women from all three periods because they did not benefit from the same reimbursement scheme throughout the study period. However, we compared the proportions with and without them in the last study period and obtained similar
results for uterotonics use. Therefore, we do not believe that it has affected the representativeness of our sample.

Multiparity might influence the use of uterotonics, but because the data were not available before 2003, we were not able to quantify multiparity completely. For the last study period (2015–2018), we checked the number and the proportion of pregnancies with at least one previous pregnancy from the same mother after the year 2003 considering the years between the study periods. We identified 5163 (50.1%) multiparous pregnancies in the period. We compared the exposure of at least one uterotic among multiparous pregnancies to the other pregnancies and we found a lower rate of uterotic use among multiparous pregnancies (90.6% vs. 93.1%). Therefore, multiparity may have slightly impacted our results, this factor should be explored in future studies.

The information regarding the exact indications for uterotics was missing. Our analyses assessed three periods of exposure to distinguish between uterotonics dispensed for labor induction and those dispensed to prevent PPH. However, in the proportion of pregnancies exposed on the day of delivery, we captured prescriptions of uterotics dispensed for all indications: induction of labor and prevention of PPH. Therefore, any interpretation of indications and conclusions regarding misuse and overuse should be considered with extreme caution.

Finally, there were no validation studies inherent to the measurement of uterotonics with Belgian claims data; however, other studies have shown that claims databases were highly accurate in tracking uterotonics coverage compared to the survey report. We have also presented our results to a team with expertise in gynecology to detect potential clinical contradictions of our results. Additionally, because our data were collected for the primary purpose of billing and reimbursement, controls were performed at different stages to detect inconsistencies in the data, which contributed to their quality.

4.6 | Conclusion

Most pregnancies in Belgium involve exposure to at least one uterotic around birth. Between 2003 and 2018, the proportion of pregnancies exposed to at least one uterotic decreased slightly, suggesting a trend for less medicalized birth experience in Belgium. However, the proportion of some uterotonics has increased, as with oxytocin and misoprostol in VB. We also observed significant differences in the proportion of pregnancies exposed to different uterotonics across the three regions of Belgium, emphasizing the need for uniform national guidelines.

AUTHOR CONTRIBUTIONS

Lionel Larcin analyzed the data and drafted the manuscript. Xavier Rygaert and Güngör Karakaya contributed to data acquisition and interpretation. Christine Danase-Michel, Philippe Van Wilder, Clotilde Lamy, and Bart Demyttenaere contributed to the interpretation of data and revisions of the manuscript. Fati Kirakoya-Samadoulou gou formulated the objectives and design of the study, supervised the statistical analysis, interpreted the results, and revised the manuscript. All authors were involved in revising the manuscript and approved the final version of the manuscript.

ACKNOWLEDGMENTS

We would like to thank the InterMutalist Agency (IMA) for supplying the data and helping us with data management. Additionally, we would like to thank Editage Editing Services and Marianne Cuellar for English language editing.

DATA AVAILABILITY STATEMENT

Data that support the findings of this study are available from the InterMutalist Agency (IMA). Restrictions apply to the availability of these data, which were used under license for this study. Data are available at https://metadata ima-aim.be/fr/app/bdds/Ps with permission from the InterMutalist Agency (IMA).

ETHICS STATEMENT

The authors state that no ethical approval was needed.

PATIENT CONSENT STATEMENT

Data were deidentified so individual informed consent was not needed.

ORCID

Lionel Larcin https://orcid.org/0000-0002-5662-6788

REFERENCES

34. Amini M, Reis M, Wide-Swensson D. A relative bioavailability study of two misoprostol formulations following a single Oral or sublingual administration. Front Pharmacol. 2020;11:50.

