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Letter to the Editor 

Resolving the phylogenetic position of Hygrobiidae (Coleoptera: Adephaga) requires objective 
statistical tests and exhaustive phylogenetic methodology: a response to Cai et al. (2020) 

1. Introduction 

Cai et al. (2020) (hereafter CEA) investigated the phylogenetic po-
sition of the family Hygrobiidae by re-analyzing a phylogenomic data set 
that we had published (Vasilikopoulos et al., 2019). After trimming the 
original supermatrices to remove hypervariable sites and applying a site- 
heterogeneous model for phylogenetic reconstruction they suggested a 
sister group relationship between Dytiscidae and Hygrobiidae. They also 
concluded that the backbone phylogeny of Dytiscoidea is now more 
robustly resolved. Although a clade of Dytiscidae + Hygrobiidae was 
supported in some studies of morphological characters (e.g., Beutel 
et al., 2020), we disagree that the phylogenetic position of Hygrobiidae 
is robustly resolved. Here, we provide justification for our claims and 
point out some problems in the study of CEA. 

2. Resolution of difficult phylogenetic questions requires 
integrative phylogenomic approaches by comparing 
concatenation-based and multi-species coalescent phylogenetic 
analyses 

CEA reanalyzed the trimmed supermatrices by applying the site- 
heterogeneous mixture model CAT + GTR + Γ4 implemented in the 
software Phylobayes (Lartillot et al., 2013). They suggest that the signal 
in support of Dytiscidae + Hygrobiidae is low, most likely due to a rapid 
diversification in the common ancestral lineage leading to this clade (Cai 
et al., 2020). Despite this, they only provided concatenation-based an-
alyses and did not employ methods that account for gene-tree hetero-
geneity (Liu et al., 2015; Xu and Yang, 2016). Under conditions of rapid 
lineage diversification, a high level of incomplete lineage sorting might 
obscure reliable estimates of the topology in concatenation-based ana-
lyses (Kubatko and Degnan, 2007; Roch and Steel, 2015). Because 
evolutionary processes that generated the data under investigation are 
not known a priori, concatenation and multi-species coalescent ap-
proaches should be both applied for resolving highly controversial 
phylogenetic relationships when rapid diversification is suspected 
(Cloutier et al., 2019; Williams et al., 2020). Previous coalescent-based 
phylogenomic analyses of Adephaga have suggested Hygrobiidae either 
as sister to Amphizoidae + Aspidytidae or as sister to Dytiscidae +
(Amphizoidae + Aspidytidae) (Gustafson et al., 2020; Vasilikopoulos 
et al., 2019). Therefore a clade Dytiscidae + Hygrobiidae as suggested 
by CEA has not yet been corroborated by coalescent-based phyloge-
nomic analyses. 

3. Claims about fit of phylogenetic models to the data should be 
accompanied by proper statistical tests of model fit 

CEA reanalyzed our data both with maximum likelihood and 
Bayesian phylogenetic inference. For their maximum-likelihood phylo-
genetic analyses they used the LG4X mixture model (unpartitioned) (Le 
et al., 2012) without performing a proper statistical model-selection test 
before phylogenetic reconstructions (Posada and Buckley, 2004; Sulli-
van and Joyce, 2005). Selecting a less fitting model for phylogenetic 
reconstruction can affect both the inferred topology and branch lengths, 
but also the inferred branch support statistics (Buckley and Cunning-
ham, 2002; Hoang et al., 2018; Sullivan and Joyce, 2005). Therefore, it 
remains unclear to what extent branch support statistics in their 
maximum-likelihood analyses are due to model misspecification. 

CEA suggest that they applied “better-fitting” site-heterogeneous 
models in comparison to our previously applied “time-saving” site- 
homogeneous models. In our analyses we selected the best-fitting 
evolutionary models with the software ModelFinder and Partition-
Finder based on objective statistical criteria (Sullivan and Joyce, 2005). 
In contrast, CEA concluded that CAT + GTR + Γ4 is a better-fitting 
model than the LG4X model without performing a proper statistical 
test. Although we consider it very likely that the more complex CAT +
GTR + Γ4 fits the data better than LG4X, CEA did not provide statistical 
comparison between the LG4X and the CAT + GTR + Γ4 model. 

Our model selection procedure did not test for the relative fit of site- 
heterogeneous models. Despite this, we analyzed our data with 
maximum likelihood-based site-heterogeneous models (Wang et al., 
2017). Although these models are less complex than the model CAT +
GTR + Γ4, they have been shown to effectively ameliorate long-branch 
attraction artifacts due to amino-acid site-pattern heterogeneity (Wang 
et al., 2017, 2019). Analyses under these models failed to recover 
Dytiscidae + Hygrobiidae and the same applies for the analysis of the 
original supermatrix H under the site-heterogeneous CAT + GTR + Γ4 
(Cai et al., 2020). Therefore, we maintain that the models we have 
previously applied are appropriate for the analysis of our data. 

4. A priori selection of matrices for phylogenetic reconstruction 
should be based on objective statistical criteria 

The clade of Dytiscidae + Hygrobiidae is only recovered in analyses 
of the trimmed matrices and only under the site-heterogeneous model 
CAT + GTR + Γ4. However, CEA did not provide objective statistical 
criteria (e.g., calculation of information content, deviation from statio-
narity, reversibility and homogeneity, saturation plots, pairwise missing 
data) in order to justify their choice of these datasets for analyses. The 
proportion of missing data within each matrix that is provided by CEA is 
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not particularly informative, as it does not provide information on 
whether or not missing data are randomly distributed across taxa (Misof 
et al., 2014a). It is expected that the removal of hypervariable sites 
should alleviate some of the problems associated with fast evolving sites 
(Misof et al., 2001), but at the same time also removes phylogenetic 
information (Fan et al., 2020; Tan et al., 2015). Therefore a balance must 
be obtained between these two. The manual of the BMGE method sug-
gests that the default value of h = 0.5 (maximum entropy-like score per 
site) should be used for obtaining biologically realistic results when 
removing fast-evolving sites (Criscuolo and Gribaldo, 2010). Despite 
this, CEA used a very stringent trimming approach with h = 0.4 and even 
h = 0.3 and in most cases combined with the very conservative BLO-
SUM95 matrix that should typically be used for the analysis of closely 
related species. However, the families of Dytiscoidea have diverged from 
each other at least 150 million years ago (Hawlitschek et al., 2012). 
Taken together, we do not think with the methodological approach for 
removing hypervariable sites or for selecting data matrices is well- 
justified. 

5. Taxon-sampling is a potential source of phylogenetic error 

Taxon sampling has been well-documented to affect phylogenomic 
analysis (e.g., Prasanna et al. 2020; Philippe et al. 2011). In our phy-
logenomic analyses of Dytiscoidea we have discussed the possibility that 
the inferred position of Hygrobiidae may not be robustly resolved due to 
the low number of taxa in the analyzed datasets (Vasilikopoulos et al., 
2019). Additionally, Gustafson et al. (2020) reported that, in their study, 
the placement of Hygrobiidae changed primarily when taxon sampling 
was decreased. Despite this, CEA reanalyzed the same datasets of Vasi-
likopoulos et al. (2019), but did not recognize the potential negative 
effects of poor taxon sampling on their phylogenetic reconstructions 
suggesting a “well-resolved” phylogeny of Dytiscoidea (Cai et al., 2020). 

6. The importance of critically evaluating branch support and 
phylogenetic conflict in phylogenomic analyses 

An increasing number of studies have concluded that analysis of 
conflicting signals is critical to identify potentially inflated branch 
support or topological artefacts in concatenation-based analyses (Brown 
and Thomson, 2017; Johnson et al., 2018; Pease et al., 2018; Shen et al., 
2017; Vasilikopoulos et al., 2020; Walker et al., 2018). Specifically, 
some of these studies have shown that heterogeneous phylogenetic 
signal at a few sites or genes of a supermatrix can distort phylogenomic 
inference resulting in strongly supported but incorrect phylogenies 
(Brown and Thomson, 2017; Shen et al., 2017; Walker et al., 2018). 
Some authors have explored alternative phylogenetic signals across 
taxon subsets (i.e., quartets or bipartitions) as alternative measures of 
phylogenetic support and in order to identify the relative contribution of 
various confounding factors on the phylogenetic results (Johnson et al., 
2018; Kobert et al., 2016; Misof et al., 2014b; Pease et al., 2018). 
Concatenation-based analyses that do not examine the relative support 
for alternative hypotheses across alignment sites or across taxa in the 
data are potentially prone to erroneous inferences or inflated branch 
support (Johnson et al., 2018; Vasilikopoulos et al., 2020; Walker et al., 
2018). In our analyses, we evaluated support for alternative phyloge-
netic hypotheses with concatenation-based quartet measures (i.e., four- 
cluster likelihood mapping) (Strimmer and von Haeseler, 1997) and 
with gene-tree-based quartet scores in our coalescent-based analyses 
(Sayyari and Mirarab, 2016). Based on these analyses we found that the 
inferred position of Hygrobiidae is affected by conflicting signal, and we 
suggested that the position of the family requires further investigation. 
In contrast, CEA suggest that the phylogenetic position of Hygrobiidae is 
“well-resolved” by relying only on the Bayesian posterior probabilities 
under the CAT + GTR + Γ4 model. Despite this, they did not employ 
measures to investigate conflicting signals in the data. We acknowledge 
that existing measures of phylogenomic conflict or topology tests are 

model-dependent and more work is needed to develop appropriate tests 
based on site-heterogeneous models (Feuda et al., 2017). Nevertheless, 
posterior probabilities are not appropriate for evaluating conflicting 
phylogenetic signal and may suggest overconfident estimates (Kapli 
et al., 2020), especially when the datasets contain conflicting or low 
phylogenetic signal (Simmons and Norton, 2014; Suzuki et al., 2002), as 
is probably the case for datasets used to infer the phylogeny of Dytis-
coidea (Vasilikopoulos et al., 2019). For these reasons we deem the 
phylogenetic position of Hygrobiidae to be still not robustly resolved. 

7. The importance of properly documenting convergence 
statistics in Bayesian phylogenetics 

CEA used the software bpcomp to assess convergence of their runs 
based on the largest discrepancy observed across all bipartitions (max-
diff). This measure assesses convergence on the tree space but not for the 
summary variables of the model (e.g., total length of the tree, alpha 
parameter of the gamma distribution, number of occupied components 
of the mixture), that is typically assessed with the software tracecomp. It 
is therefore unclear if a sufficiently large number of independent sam-
ples for each of these variables (i.e., effective sample size) had been 
drawn from the posterior distribution during each Markov chain Monte 
Carlo (MCMC) run. The reliability of results from Bayesian phylogenetic 
analyses critically relies on the fact that the chains have reached sta-
tionarity and that a large number of independent samples is drawn from 
the posterior distribution (Nascimento et al., 2017; Ronquist et al., 2009; 
Williams et al., 2020). We therefore highlight the importance of prop-
erly documenting all convergence statistics in future Bayesian phylo-
genetic analyses of Dytiscoidea. 

8. The importance of cross-validating results between different 
types of molecular data 

CEA suggested that amino-acid sequences should be preferred over 
nucleotide sequences for analyses of ancient divergences. This argument 
relies on the assumption that amino-acid sequences can alleviate sub-
stitution saturation related to highly saturated third codon positions and 
codon usage bias (Breinholt and Kawahara, 2013; Rota-Stabelli et al., 
2013). Despite this, different codon positions show different degree of 
deviation from the model assumptions (Naser-Khdour et al., 2019), and 
in many cases phylogenomic analyses of nucleotide sequences, after 
removing highly saturated nucleotide sites, have produced very similar 
results to those obtained from analyzing amino acids (Breinholt and 
Kawahara, 2013; Misof et al., 2014b). In addition, substitution processes 
at the nucleotide sequence level may be under different evolutionary 
constraints than amino-acids and therefore analyses of nucleotide se-
quences constitute an additional basis for cross-validating the results of 
analyses of amino-acids. The CAT + GTR + Γ4 model was generated to 
account for site-specific amino-acid preferences (Lartillot and Philippe, 
2004) but it is unclear whether or not it can fully describe substitutions 
at the protein level which can be dependent on complex properties of 
protein sequences such as protein secondary structure or solvent 
accessibility (Le and Gascuel, 2010; Pandey and Braun, 2020). We 
therefore suggest that comparing phylogenetic results between different 
types of data is important for assessing the robustness of phylogenetic 
estimates. 

An example of different types of data for phylogenomic analysis are 
coding and non-coding regions of the genome. Many phylogenomic 
analyses are performed utilizing non-coding (or partially non-coding) 
nucleotide sequences such as ultraconserved elements (UCEs). UCEs 
have been successfully used to infer phylogenetic relationships both at 
shallow and deep timescales (Faircloth et al., 2012; Gustafson et al., 
2020) and are potentially subject to different substitution processes than 
protein-coding nucleotide sequences. Therefore, UCEs constitute an 
additional largely independent type of data for testing the validity of 
phylogenetic hypotheses (Reddy et al., 2017). Phylogenomic analyses of 
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UCEs that properly modeled among-site rate heterogeneity did not 
recover a clade of Dytiscidae + Hygrobiidae (Baca et al., 2017; Gus-
tafson et al., 2020). We conclude from these observations that a clade of 
Dytiscidae + Hygrobiidae as suggested by CEA requires confirmation. 
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