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We consider the problem of entanglement-
assisted one-shot classical communication. In
the zero-error regime, entanglement can in-
crease the one-shot zero-error capacity of a
family of classical channels following the strat-
egy of Cubitt et al., Phys. Rev. Lett. 104,
230503 (2010). This strategy uses the Kochen-
Specker theorem which is applicable only to
projective measurements. As such, in the
regime of noisy states and/or measurements,
this strategy cannot increase the capacity. To
accommodate generically noisy situations, we
examine the one-shot success probability of
sending a fixed number of classical messages.
We show that preparation contextuality pow-
ers the quantum advantage in this task, in-
creasing the one-shot success probability be-
yond its classical maximum. Our treatment
extends beyond Cubitt et al. and includes,
for example, the experimentally implemented
protocol of Prevedel et al., Phys. Rev. Lett.
106, 110505 (2011). We then show a map-
ping between this communication task and a
corresponding nonlocal game. This mapping
generalizes the connection with pseudotelepa-
thy games previously noted in the zero-error
case. Finally, after motivating a constraint we
term context-independent guessing, we show
that contextuality witnessed by noise-robust
noncontextuality inequalities obtained in R.
Kunjwal, Quantum 4, 219 (2020), is sufficient
for enhancing the one-shot success probability.
This provides an operational meaning to these
inequalities and the associated hypergraph in-
variant, the weighted max-predictability, in-
troduced in R. Kunjwal, Quantum 3, 184
(2019). Our results show that the task of
entanglement-assisted one-shot classical com-
munication provides a fertile playground to
study the interplay of the Kochen-Specker the-
orem, Spekkens contextuality, and Bell nonlo-
cality.
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1 Introduction
The problem of identifying the resources responsible
for a quantum advantage over classical strategies in
quantum information and computation is key to un-
locking the potential of quantum technologies. Often,
such resources are taken to be theory-dependent fea-
tures like entanglement, coherence, incompatibility,
or perhaps the exponential scaling of Hilbert space
dimension with the number of quantum systems at
hand. The nonclassicality witnessed by Bell viola-
tions [1, 2] makes it possible to identify a source of
quantum advantage that can be assessed in a theory-
independent fashion, relying only on empirical data

rather than internal features of the theory that gener-
ated the data. In contrast to the case of Bell nonlocal-
ity, Kochen-Specker (KS) contextuality [3], a notion
of nonclassicality mathematically similar to Bell non-
locality, hasn’t been as widely adopted as a theory-
independent witness of quantum advantage. This is
despite the existence of theoretical results on its rele-
vance for quantum information and computation [4–
7]. One reason for this is that it isn’t robust to noise,
unlike Bell nonlocality, making its experimental testa-
bility a matter of controversy [8, 9]

Recently, much work has been devoted to mak-
ing contextuality a notion of nonclassicality that re-
lies on empirical data without making assumptions
about the representation of measurements (concern-
ing, in particular, their sharpness [10–12]) in the the-
ory generating the data [13, 14].1 This noise-robust
notion of contextuality due to Spekkens [13] has been
shown to underlie several quantum information tasks
such as parity-oblivious multiplexing, quantum ran-
dom access codes, state discrimination, communica-
tion complexity, anomalous weak values, and state-
dependent cloning [19–25]. These applications of
Spekkens contextuality, though, have no counterpart
in terms of KS-contextuality, leaving a gap in our un-
derstanding of how advantages from KS-contextuality
can be turned into noise-robust advantages premised
on Spekkens contextuality. This is in line with the
spirit of Ref. [17], where the first noise-robust noncon-
textuality inequality, inspired by the Kochen-Specker
theorem, was derived. Since the approach to noise-
robust noncontextuality inequalities generalizes the
KS paradigm by removing restrictions like projective
measurements [17], it behooves us to ask if, and in
what precise form, the advantages that derive from
KS-contextuality persist when one considers noise-
robust contextuality à la Spekkens [13, 26]. In this pa-
per, we take the first steps in this research program us-
ing tools from previously proposed hypergraph frame-
works [10, 27].

We consider the problem of one-shot classical com-

1Experimental testability of generalized contextuality – in
particular, the need for tomographic completeness in order to
verify operational equivalences – has been addressed in several
recent papers [14–16] and we refer the interested reader to these
for a discussion of such issues and how they are handled in the
framework. Note, however, that if one assumes a quantum de-
scription of any experiment (as opposed to a general probabilis-
tic theory – GPT – description), then verification of operational
equivalences via tomography is straightforward as there is no
ambiguity about the dimension of a well-characterized system’s
Hilbert space, hence about the minimum number of tomograph-
ically complete preparations/measurements needed to establish
operational equivalences. This move – assuming a quantum de-
scription – is the natural one when considering applications of
contextuality in quantum information as opposed to its foun-
dational implications for quantum theory (which necessitates a
broader framework like GPTs). On the other hand, even if one
does assume a quantum description, Kochen-Specker contextu-
ality cannot do justice to the case where this description in-
volves non-projective measurements for reasons that have been
extensively discussed elsewhere [10, 13, 17, 18].
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munication where it has been shown that, assisted by
entanglement, KS-contextuality provides an increase
in the one-shot zero-error capacity of classical chan-
nels based on the KS theorem [3, 6]. We study a relax-
ation of this problem to one of enhancing the one-shot
success probability of sending a fixed number of classi-
cal messages assisted by entanglement. Previous work
[28, 29] has studied the one-shot success probability
in the case of classical channels (unrelated to the KS
theorem [3]) which do not admit an enhancement of
zero-error channel capacity à la Cubitt et al. [6]. In
contrast, we here study the one-shot success proba-
bility for the general case that includes, in particular,
channels which do admit an enhancement of the one-
shot zero-error channel capacity. A schematic of the
task of entanglement-assisted one-shot classical com-
munication is outlined in Fig. 1.

Our results can be summarized as follows:

• We show that preparation noncontextuality [13]
relative to Bob’s share of the system character-
izes the classical upper bound on the task of en-
hancing the one-shot success probability of a clas-
sical channel assisted by entanglement.2 Hence,
preparation contextuality drives the quantum ad-
vantage in the general task.

• We then show a mapping between the one-shot
communication task and a corresponding non-
local game: preparation contextuality powers
an advantage in the first task if and only if
Bell nonlocality powers an advantage in the sec-
ond.3 This generalizes the connection between
entanglement-assisted one-shot zero-error capac-
ity and nonlocal (pseudotelepathy) games noted
in Ref. [6].

• We motivate a constraint on the communication
task that we term context-independent guessing
in a situation where the receiver (Bob) has no
knowledge of (or doesn’t trust) the exact chan-
nel probabilities but knows only (or trusts only)
the channel hypergraph. We then prove that,
for some classical channels (including the one
studied in Ref. [6]), the contextuality witnessed
by a hypergraph invariant – the weighted max-
predictability – implies an enhancement of the

2This does not require that the channel be based on the KS
theorem in the sense of Cubitt et al. [6].

3Note that while the first task, by definition, requires com-
munication via a classical channel—hence timelike separation,
where the channel output (to the receiver) is within the fu-
ture lightcone of the channel input (from the sender)—the sec-
ond task, by definition, forbids all communication by requiring
spacelike separation, where the sender and receiver are causally
disconnected during each run of the nonlocal game. However, in
both situations—timelike or spacelike separation—the shared
common-cause resource doesn’t result in signalling, i.e., we as-
sume that this resource is described by a non-signalling theory
(e.g., shared entanglement in quantum theory) [30].

Figure 1: A schematic of the general protocol described in
detail further on in Section 3.1. Alice and Bob are connected
via a classical channel N and they share an entangled state
ρAB . Once Alice decides to send a message m in Step 1,
she encodes this message in her measurement choice in Step
2 and obtains outcome x. In Step 3, this outcome serves
as the channel input and Bob obtains channel output y with
probability N (y|x). Based on y, in Step 4, Bob measures his
quantum system and, after some classical post-processing,
obtains his guess m′ for Alice’s message m. They succeed if
m′ = m (Step 5).

one-shot success probability in the communica-
tion task. This makes direct connection with
the formalism of Ref. [27], where weighted max-
predictability provides an upper bound on the
strength of source-measurement correlations un-
der the assumption of noncontextuality. We thus
provide an operational meaning to the violation
of noise-robust noncontextuality inequalities in
Ref. [27]: namely, such violations power the en-
hancement of one-shot success probability of clas-
sical communication assisted by entanglement.

The structure of the paper is as follows: In Sec-
tion 2, we define some preliminary notions from the
theory of one-shot classical communication as well as
contextuality. In Section 3, we describe the general
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protocol for entanglement-assisted one-shot classical
communication that provides a unified description of
protocols such as those of Refs. [6] and [28]. In Sec-
tion 4, we discuss the resources that play a role in
the quantum advantage in the communication task,
including preparation contextuality and Bell nonlo-
cality. In Section 5, we dive deep into the connection
between the role of preparation contextuality in our
communication task and the role of Bell nonlocality in
a corresponding nonlocal game, proving some general
relationships between them. In Section 6, we look at
the problem of one-shot communication of a single bit
through classical channels with complete confusability
graphs, in particular the classical channel of Ref. [28].
In Section 7, we study the case of classical channels
based on the KS theorem à la Ref. [6]. We conclude
with a discussion in Section 8, mentioning some open
problems and opportunities for future work.

2 Preliminaries

2.1 Classical Channels

Consider a discrete and memoryless classical channel
N (e.g., Fig. 2). Let X denote the set of input sym-
bols of N and Y denote the set of output symbols
so that {N (y|x)}x∈X,y∈Y denotes the channel proba-
bilities satisfying: N (y|x) ≥ 0 for all x ∈ X, y ∈ Y
and

∑
y∈Y N (y|x) = 1 for all x ∈ X. Further, we

denote by Yx ⊆ Y the set of output symbols that
have a non-zero probability of occurrence when the
input symbol is x ∈ X, i.e., the support of x, given
by Yx ≡ {y ∈ Y |N (y|x) > 0} for x ∈ X. Simi-
larly, Xy ⊆ X denotes the set of input symbols that
yield a non-zero probability of occurrence for the out-
put symbol y ∈ Y , i.e., the support of y, given by
Xy ≡ {x ∈ X|N (y|x) > 0} for all y ∈ Y .

To the classical channel N , we associate the chan-
nel hypergraph H(N ): vertices of H(N ) denote the
input symbols x ∈ X and hyperedges denote the out-
put symbols y ∈ Y , such that each hyperedge rep-
resenting y ∈ Y contains the input symbols in Xy.
Any two input symbols x, x′ ∈ X are said to be con-
fusable when they share a hyperedge in H(N ), i.e.,
Yx ∩ Yx′ 6= ∅. The confusability graph G(N ) of the
channel is given by the orthogonality graph of H(N ),
i.e., its vertices are given by X and any two vertices
in X are connected by an edge if and only if they are
confusable.

Given the classical channel N , Alice and Bob
choose an encoding of the messages (say, [q] ≡
{m}qm=1) that Alice (the sender) wants to send to
Bob (the receiver) through the channel. An encoding
is a collection of mutually disjoint subsets of X.

More concretely, {X(m)}qm=1 (where X(m) ⊆ X for
all m ∈ [q]) is an encoding of the set of q messages
in [q] if and only if X(m) ∩X(m′) = ∅ for all distinct

m,m′ ∈ [q].4

A zero-error code is a set of input symbols X0 ⊆ X
that are mutually non-confusable, i.e., no two sym-
bols in this set can map to the same output symbol
when fed into the channel N . Hence, an encoding
{X(m)}qm=1 of the messages in [q] is said to admit a
zero-error code if and only if there exists a non-empty
set

X0 ⊆ {x|x ∈ X(m),m ∈ [q]}

such that ∀x, x′ ∈ X0, Yx ∩ Yx′ = ∅. The one-shot
zero-error capacity of a classical channel is the number
of messages that can be sent without error with one
use of the channel, i.e., the cardinality of the largest
zero-error code it admits. This is given by the in-
dependence number α(G(N )) of G(N ), namely, the
cardinality of the largest set of vertices that share
no edge in G(N ). Note that N does not admit a
nontrivial zero-error code (i.e., with q ≥ 2) if and
only if G(N ) is a complete graph, i.e., α(G(N )) = 1.
Further, for any encoding {X(m)}qm=1 that does ad-
mit a zero-error code using N , we necessarily have
q ≤ α(G(N )). We illustrate the above notions in
Fig. 2 with a simple example of a classical channel
that was studied in Ref. [28].

In this paper we will consider the one-shot success
probability for sending messages in a given encoding
{X(m)}qm=1 of q messages, where q > α(G(N )). Such
an encoding does not admit a zero-error code, al-
though the classical channel N may admit (smaller)
encodings with zero-error codes, i.e., it may be that
α(G(N )) > 1. Of particular interest in this paper is
a family of classical channels that we term Kochen-
Specker (KS) channels. A KS channel is defined as
any classical channel whose channel hypergraph sat-
isfies the property of KS-uncolourability [27][31], i.e.,
it is impossible to assign a {0, 1}-valuation to the ver-
tices such that the assignments in each hyperedge add
up to 1.6 A KS-uncolourable hypergraph is said to ad-
mit a KS set if it is possible to associate its vertices
to projectors on a Hilbert space and hyperedges to
projector-valued measures (PVMs), i.e., the projec-
tors in any hyperedge are mutually orthogonal and
sum up to the identity. Any set of such projectors for
a KS-uncolourable hypergraph is called a KS set. We
will consider two paradigmatic examples of KS chan-
nels, drawing upon Refs. [6, 28], only one of which [6]
admits a KS set.

4Hence, given any input symbol x(m) ∈ X(m), the message
m can be uniquely inferred from x(m) since X(m) ∩X(m′) = ∅
for all m′ 6= m. In the interest of efficiency of encoding, we
shall only consider encodings where each X(m) (m ∈ [q]) is a
clique in G(N ).5

6What this means in terms of channel confusability is that
it is impossible to pick a set of vertices with one vertex from
each hyperedge such that all the vertices in the set are mutually
non-confusable.
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Figure 2: The channel hypergraph of the classical chan-
nel studied in Ref. [28] with the encoding indicated
by dashed edges. Here X = {00, 01, 10, 11} and
Y = {(1, 0), (1, 1), (2, 0), (2, 1), (P, 0), (P, 1)}. The sup-
port of input 01, for example, is given by Y01 =
{(1, 0), (2, 1), (P, 1)} ⊆ Y and the support of output (P, 0),
for example, is given by X(P,0) = {00, 11} ⊆ X. The chan-
nel probabilities are given by N (y|x) = 1/3 for all y ∈ Yx

and 0 otherwise for all x ∈ X. The one-bit encoding of
m ∈ Msg = {0, 1} is given by X(0) = {00, 01} ⊆ X and
X(1) = {10, 11} ⊆ X. This encoding {X(0), X(1)} does not
admit a zero-error code. In fact, a zero-error code doesn’t
exist for this channel hypergraph since it does not admit even
a pair of inputs that are mutually non-confusable, i.e., do not
share an edge.

2.2 Contextuality

We will be interested in the twin notions of prepa-
ration and measurement noncontextuality following
Spekkens [13]. In a general operational theory, a
preparation procedure consists of a source setting, S,
that prepares an ensemble of possible preparations in-
dexed by source outcome s ∈ VS, each with probabil-
ity p(s|S). We denote the ensemble for source setting
S by {(p(s|S), [s|S])}s∈VS . Formally, we refer to the
(abstract) device implementing this preparation pro-
cedure as a multisource. A measurement procedure
consists of a measurement setting M that yields one of
possible outcomes indexed by m ∈ VM with probabil-
ity p(m|M,S, s) when a system prepared according to
[s|S] is input to the measurement device. Formally, we
refer to the (abstract) device implementing this mea-
surement procedures as a multimeter. Together, the
combination of source setting S and a measurement
setting M yields conditional joint probability distribu-
tion given by p(m, s|M,S) = p(m|M,S, s)p(s|S). (See
Fig. 3.)

Two source settings S and S′ are said to be opera-

Multimeter

Multisource

S

s

M

m

System

Figure 3: A generic prepare-and-measure setup. Classical in-
puts and outputs are indicated by single lines and the quan-
tum/postquantum system passing from the multisource to
the multimeter is indicated by double lines.

tionally equivalent if

∀[m|M] :∑
s

p(m, s|M,S) =
∑

s′

p(m, s′|M,S′). (1)

We will denote this operational equivalence by S ' S′.
Two measurement events [m|M] and [m′|M′] are said to
be operationally equivalent if

∀[s|S] : p(m, s|M,S) = p(m′, s|M′,S), (2)

and we denote this by [m|M] ' [m′|M′].
In keeping with the original definition of gen-

eralized noncontextuality [13], and its further de-
velopment in subsequent work [10], the notion of
operational equivalence—for preparations and for
measurements—is evaluated relative to all possible
measurement and preparation events (respectively) in
the operational theory governing the experiment of
Fig. 3.

An ontological model of the operational theory con-
sists of ontic states λ ∈ Λ that are sampled by a
preparation [s|S] according to some probability dis-
tribution µ(λ|S, s), so that µ(λ, s|S) = µ(λ|S, s)p(s|S).
Any measurement device responds to the input of an
ontic state λ according to some probability, ξ(m|M, λ),
called a response function. The ontological model re-
produces the operational statistics as follows:

p(m, s|M,S) =
∑
λ

ξ(m|M, λ)µ(λ, s|S). (3)

The assumption of preparation noncontextuality
entails the following implication:

S ' S′ ⇒
∑

s

µ(λ, s|S) =
∑

s′

µ(λ, s′|S′),∀λ ∈ Λ,

i.e., µ(λ|S) = µ(λ|S′),∀λ ∈ Λ. (4)
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The assumption of measurement noncontextuality
entails the following implication:

[m|M] ' [m′|M′]⇒ ξ(m|M, λ) = ξ(m′|M′, λ),∀λ ∈ Λ.
(5)

A failure of the joint assumption of preparation and
measurement noncontextuality is then said to be a
demonstration of contextuality.7

3 General protocol for one-shot clas-
sical communication assisted by a
common-cause resource
3.1 One-shot success probability
We want to consider the situation where Alice and
Bob have access to a shared common-cause resource
such as quantum entanglement (but possibly also
more general nonclassical common-cause resources
[30, 33]) which they can use to enhance the one-
shot success probability of sending messages through
N . This situation of entanglement-assisted one-shot
classical communication has been studied previously
[6, 28, 29]. We will below take the nonclassical
common-cause resource to be quantum entanglement
for ease of presentation but the ideas extend to post-
quantum theories – corresponding, in general, to some
convex subset of the set of no-signalling correlations
– in a straightforward way.

The task at hand is the following: Alice and Bob
share a classical channel N together with some bi-
partite quantum system in an entangled state ρAB.
Alice wants to send messages from the set Msg ac-
cording to a probability distribution {p(m)}m∈Msg.
To do this for some encoding {X(m)}m∈Msg defined

on N , Alice implements a POVM M(A)
m ≡ {E(m)

x }x∈X
on her part, ρA, of the shared state ρAB given by
ρA = TrBρAB . She obtains outcome x ∈ X with

probability p(x|m) = Tr(E(m)
x ρA). She inputs x into

the classical channel which yields output y ∈ Y with
probability N (y|x). Using the output y and his part
of ρAB, Bob needs to figure out a strategy that will
let him infer Alice’s choice of measurement (hence the
message m) with the maximum success probability,
i.e., for every set of {m,x, y} we want to maximize
the probability p(m′ = m|y,m, x) that Bob’s guess
for the message, denoted m′, agrees with the message
Alice sent.

On receiving the channel output y, Bob implements

some measurements, say {Mv ≡ {E(v)
z }z∈O}v∈V , on

his part of the shared quantum system according to

7The assumption of noncontextuality is an instance of the
Leibnizian idea of the ontological identity of operational in-
discernibles [32]: operationally equivalent experimental proce-
dures admit ontologically equivalent representations under this
assumption.

some probability distribution, say {p(v|y)}v∈V , that
depends on y. The measurement outcome z ∈ O

occurs with probability p(z|v,m, x) = Tr(E(v)
z ρ

(m)
x )

for the choice of POVM Mv. Here ρ
(m)
x is the state

on Bob’s side that Alice “steers” to when she ob-
tains outcome x for measurement m with probability
p(x|m). Overall, Bob implements the effective POVM
M′y ≡

∑
v p(v|y)Mv given by the set of POVM ele-

ments {
∑
v p(v|y)E(v)

z }z∈O, where outcome z occurs
with probability p(z|y,m, x) ≡

∑
v p(v|y)p(z|v,m, x).

Bob’s guess for the message, m′, will then be a func-
tion of z, y, i.e., m′ = g(z, y), where g is a func-
tion from O × Y to Msg. We have a successful
decoding when m′ = m. This effectively defines

the overall measurement M(B)
y with outcomes m′ ∈

Msg, obtained by classical post-processing of the out-
comes z ∈ O of M′y, according to p(m′|y,m, x) ≡∑
z δm′,g(z,y)p(z|y,m, x). The probability of a cor-

rect guess, m′ = m, is then p(m′ = m|y,m, x) =∑
z δm,g(z,y)p(z|y,m, x).
The overall success probability is thus given by

S =
∑
m

p(m)
∑
x

p(x|m)
∑
y

N (y|x)

∑
m′

p(m′|y,m, x)δm,m′ . (6)

In situations where Bob can do this perfectly (the
zero-error regime), i.e., S = 1, we obtain an exact
simulation of a noiseless classical channel Id with the
same input and output alphabet Msg with channel
probabilities Id(m′|m) = δm,m′ by using the noisy
classical channel N and (potentially) some shared
common-cause resource. A schematic of the protocol
is provided in Fig. 1.

3.2 KS channels that admit KS sets: Cubitt et
al. strategy
For some KS channels admitting KS sets (e.g., Fig. 4),
the Cubitt et al. strategy [6] corresponds to choos-
ing Msg ≡ {m}qm=1, V ≡ Y , p(v|y) ≡ δv,y,
O ≡ X for all v ∈ V , (hence) z ≡ x′ ∈ X, and
g(z, y) = g(x′) = m′, where m′ is the unique mes-
sage such that x′ ∈ X(m′). Thus, p(m′|y,m, x) =∑
x′ δm′,g(x′)p(x′|y,m, x). With these choices, we

have

S =
∑
m

p(m)
∑
x

p(x|m)
∑
y

N (y|x)

∑
m′

p(m′|y,m, x)δm,m′

=
∑
m

p(m)
∑
x

p(x|m)
∑
y

N (y|x)

∑
x′∈X(m)

p(x′|y,m, x). (7)
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As shown in Ref. [6], such channels admit an en-
hancement of their one-shot zero-error classical ca-
pacity in the presence of shared entanglement, i.e.,
their one-shot success probability S = 1 for some
q > α(G(N )). We will discuss these channels in more
detail in Section 7.

3.3 KS channels that do not admit KS sets
In general, a KS channel may not admit any KS set
and in that case the strategy of Cubitt et al. [6] does
not apply. An example of a KS channel that does not
admit a KS set was studied for its one-shot success
probability by Prevedel et al. [28]. This example fits
within the general protocol described in Section 3.1
and will be discussed in Section 6.

4 Quantum advantage in one-shot
classical communication
4.1 Classical one-shot success probability
Classically, the only information that Bob has about
Alice’s measurement and its outcome, i.e., m and x, is
mediated by the output of the channel, y. We there-
fore have p(m′|y,m, x) = p(m′|y), i.e., m′ is condi-
tionally independent of m and x, given y. Shared
randomness does not help because it only amounts to
a convex mixture of deterministic classical strategies
(indexed by, say, c ∈ C) according to some proba-
bility distribution {p(c)}c∈C and no such convex mix-
ture can do better than the best deterministic classical
strategy. The classical one-shot success probability is
therefore given by

SCl

=
∑
c∈C

p(c)
(∑

m

p(m)
∑
x

p(x|m, c)
∑
y

N (y|x)

∑
m′

p(m′|y, c)δm,m′

)
, (8)

with the tight upper bound

Smax
Cl ≡ max

c∈C

(∑
m

p(m)
∑
x

p(x|m, c)
∑
y

N (y|x)

∑
m′

p(m′|y, c)δm,m′

)
, (9)

so that
SCl ≤ Smax

Cl . (10)

4.2 Preparation contextuality drives the quan-
tum advantage
In the protocol we have described, the following

operational equivalences hold:
∑
x p(x|m1)ρ(m1)

x =

∑
x p(x|m2)ρ(m2)

x ≡ ρB for all pairs of distinct mes-
sages m1,m2 ∈ Msg.8 This follows from the
fact that the common-cause correlations shared be-
tween Alice and Bob must be nonsignalling: Alice’s
choice of POVM Mm encoding the message m (m ∈
Msg) steers Bob’s system to the ensemble of states

{(p(x|m), ρ(m)
x )}x∈X(m) ; however, on coarse-graining,

the reduced state on Bob’s side, ρB = TrAρAB, is the
same for all choices of m, and thus the common-cause
correlations cannot be used by Bob to infer m.

Preparation noncontextuality then entails that∑
s

p(x|m1)p(λ|m1, x) =
∑
x

p(x|m2)p(λ|m2, x)

∑
x

p(x|m1)p(λ|m1, x) =
∑
x

p(x|m2)p(λ|m2, x)

for all λ ∈ Λ, for all m1,m2 ∈ Msg. That is,
p(λ|m1) = p(λ|m2) ≡ p(λ) for all λ ∈ Λ, where Λ
is the ontic state space of Bob’s system.

Given the prior distribution {p(m)}m∈Msg and the
channel probabilities {N (y|x)}y,x, we obtain, under
the assumption of preparation noncontextuality for
Bob’s system, the following expression for the one-
shot success probability and the preparation noncon-
textual upper bound on it:

SPNC

=
∑
λ

p(λ)
(∑

m

p(m)
∑
x

p(x|m,λ)
∑
y

N (y|x)

∑
m′

p(m′|y, λ)δm,m′

)

≤max
λ

(∑
m

p(m)
∑
x

p(x|m,λ)
∑
y

N (y|x)

∑
m′

p(m′|y, λ)δm,m′

)
≡ Smax

PNC. (11)

8Although we are using quantum notation here, oper-
ationally, this prepare-and-measure setup on Bob’s system
(see Fig. 3) can be viewed as a multisource with set-
tings S = m ∈ Msg and outcomes s = x ∈ X
that occur with probability p(s|S) = p(x|m). The op-
erational equivalences can then be expressed as in Eq. 1,
i.e., ∀[m|M],

∑
s1
p(m, s1|M,S1) =

∑
s2
p(m, s2|M,S2), once

we compute the probability p(m|M,S, s) = Tr(ρ(S)
s E

(M)
m )

for all effects E
(M)
m representing measurement events [m|M].

That is,
∑

x
p(x|m1)ρ(m1)

x =
∑

x
p(x|m2)ρ(m2)

x translates to∑
x
p(x|m1)Tr(ρ(m1)

x E
(M)
m ) =

∑
x
p(x|m2)Tr(ρ(m2)

x E
(M)
m ) for

all [m|M]. The multimeter has settings M and outcomes m that
range over the set of all measurement events in the operational
theory. Note, however, that as long as we assume the shared
common-cause resource is non-signalling (as is the case with
entangled states in quantum theory), we do not need to ex-
plicitly verify these operational equivalences by varying over
all measurement events: these equivalences are implied by the
non-signalling nature of the shared common-cause resource.
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To see how this comes about, note that the one-shot
success probability,

S =
∑
m

p(m)
∑
x

p(x|m)
∑
y

N (y|x)

∑
m′

p(m′|y,m, x)δm,m′ ,

when expressed in terms of an ontologi-
cal model for Bob’s system, requires that
p(m′|y,m, x) =

∑
λ p(m′|y, λ)p(λ|m,x). We

can then write a joint probability distribution
p(x, λ|m) = p(λ|m,x)p(x|m), which can be rewritten
as p(x, λ|m) = p(x|m,λ)p(λ|m). Recalling that
preparation noncontextuality requires p(λ|m) = p(λ)
for all m, we obtain the expression for SPNC. Hence,
we have: Smax

PNC = Smax
Cl .

We now argue that the upper bound Smax
PNC can be

saturated by a preparation noncontextual ontological
model. Such a model (achieving SPNC = Smax

PNC) must
necessarily have p(λ|m) = p(λ) = δλ,λmax for all m ∈
Msg, where λmax is the9 ontic state of Bob’s system
(λmax ∈ Λ) that satisfies

Smax
PNC =

∑
m

p(m)
(∑

x

p(x|m,λmax)
∑
y

N (y|x)

∑
m′

p(m′|y, λmax)δm,m′

)
(12)

Thus, p(λ|m) =
∑
x p(x|m)p(λ|m,x) = δλ,λmax im-

plies that p(λ|m,x) = δλ,λmax for all m,x. We must
then have p(m′|y,m, x) =

∑
λ p(m′|y, λ)p(λ|m,x) =∑

λ p(m′|y, λ)δλ,λmax = p(m′|y, λmax), i.e., the statis-
tics of y does not change in response to variations in
m and x but is directly determined by the ontic state
that is deterministically sampled by every prepara-
tion procedure. In fact, the response functions can-
not even deviate from the best deterministic classical
strategy. This preparation noncontextual ontological
model, therefore, trivially reproduces the operational
equivalence required on Bob’s system, i.e., the oper-
ational equivalence between all the coarse-grainings
of preparation ensembles induced by Alice’s measure-
ments. It also achieves S = Smax

PNC by fixing the re-
sponse functions on Bob’s side to mimic the best de-
terministic classical strategy.10

9For our purposes, we can take λmax to be unique without
any loss of generality.

10Hence, the ontological model can only simulate an opera-
tional theory that has just one equivalence class of preparations
and, furthermore, associates outcomes to its measurements de-
terministically. As such, in the presence of other empirical
facts that an operational theory might present (such as the
simple fact that Bob’s system can be prepared in operationally
inequivalent ways), this preparation noncontextual model will
fail to reproduce predictions of the theory that go beyond the
required operational equivalence between preparation proce-
dures. Generically, therefore, any non-trivial (at least in the

Hence, we have that S ≤ Smax
Cl is a preparation

noncontextuality inequality and any quantum advan-
tage in this communication task witnesses preparation
contextuality.

4.3 The shared state must violate a Bell in-
equality under the local measurements used in
the communication protocol

In a quantum implementation of the communication
protocol, shared entanglement between Alice and Bob
is crucial for there to be an advantage over the clas-
sical one-shot success probability. However, entangle-
ment alone is not enough: the entanglement must be
such that it enables a Bell inequality violation rela-
tive to the local measurements that Alice and Bob
implement. To see this, consider a nonlocal game
that uses the same resources—shared entanglement
and local measurements—as the communication pro-
tocol but under spacelike separation (hence no clas-
sical channel): Alice and Bob implement their local
measurements labelled by m and y, respectively, and
obtain their respective outcomes x and m′ with a joint
probability p(x,m′|m, y) and the joint statistics thus
collected admits a locally causal model, i.e.,

p(x,m′|m, y) =
∑
ω∈Ω

p(x|m,ω)p(m′|y, ω)p(ω), (13)

where ω denotes the shared ontic state sampled from
the ontic state space Ω of the bipartite system Alice
and Bob share. (Note that this is, in general, different
from the ontic state space Λ for Bob’s system alone.)
In such a case, it is straightforward to see that the
achievable success probability is no better than the
best deterministic classical strategy. Firstly,

S =
∑
m

p(m)
∑
x

p(x|m)
∑
y

N (y|x)

∑
m′

p(m′|y,m, x)δm,m′

=
∑
m

p(m)
∑
x

∑
y

N (y|x)

∑
m′

p(x|m)p(m′|y,m, x)δm,m′

=
∑
m

p(m)
∑
x

∑
y

N (y|x)
∑
m′

p(x,m′|m, y)δm,m′ ,

(14)

sense of admitting operationally inequivalent preparation pro-
cedures) preparation noncontextual ontological model will only
achieve S < Smax

PNC.
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which can be now be expressed as

S =
∑
m

p(m)
∑
x

∑
y

N (y|x)
∑
m′

(∑
ω∈Ω

p(x|m,ω)

p(m′|y, ω)p(ω)
)
δm,m′

=
∑
ω∈Ω

p(ω)
(∑

m

p(m)
∑
x

p(x|m,ω)
∑
y

N (y|x)

∑
m′

p(m′|y, ω)δm,m′

)
≤SCl

max. (15)

Hence, Bell nonlocality of the shared entangled state
relative to the measurements carried out by Alice and
Bob is a necessary condition for a quantum advantage
in this communication task.11

5 Preparation contextuality vis-à-vis
Bell nonlocality: the connection with
nonlocal games
It is known that any bipartite proof of Bell nonlocality
can be turned into a proof of preparation contextu-
ality on each wing of the Bell experiment, i.e., Bell
nonlocality implies preparation contextuality on both
wings of the Bell experiment. It is easiest to see this in
the contrapositive: that is, the existence of a prepara-
tion noncontextual ontological model on any wing of
the Bell experiment implies the existence of a locally
causal model for the Bell experiment. We provide an
explicit argument in Appendix A.12

For the task of enhancing the one-shot success prob-
ability of a classical channel, preparation contextual-
ity and Bell nonlocality are even more intimately re-
lated than the general situation above. As we just
showed in Section 4.3, S > Smax

Cl implies Bell non-
locality of the joint statistics {p(x,m′|m, y)}x,m′,m,y.
This allows us to state the following proposition:

11Note, however, that – contrary to the counterfactual Bell
scenario we just considered – the measurement choice y in the
communication protocol of interest is not free and is determined
probabilistically by Alice’s measurement outcome x. That is,
the protocol requires a wiring of Alice’s system with Bob’s using
the classical channel, something distinct from a Bell scenario.

12On the other hand, in the simplest possible scenario capable
of exhibiting preparation contextuality (with two tomographi-
cally complete binary measurements and four preparations), it
has been shown that the existence of a preparation noncontex-
tual ontological model is equivalent to the existence of a locally
causal model in any bipartite extension of the one-party sce-
nario to a CHSH scenario [34]. Ref. [34] also noted that Barrett
was the first to show the implication from preparation noncon-
textuality to local causality in any bipartite extension of a given
one-party scenario. This has also been observed in Ref. [35]

Proposition 1. For every classical channel N that
admits an enhancement of the one-shot success prob-
ability driven by preparation contextuality, i.e., S >
Smax

Cl , there exists a nonlocal game which can be won
with a better-than-classical success probability by the
same entangled state and local measurements which
enable an advantage in the communication task. By
construction, we also have the converse: an advan-
tage in this nonlocal game would imply an advantage
in the communication task.

Indeed, if this were not the case (i.e., no such non-
local game existed) then the enhancement of the one-
shot success probability couldn’t have been exhibited
because the shared correlations between Alice and
Bob would then be Bell-local. Hence, the problem
of one-shot classical communication assisted by non-
signalling correlations characterizes a family of Bell
scenarios where a proof of preparation contextuality
on one wing implies a proof of Bell nonlocality be-
tween the two wings. This provides further insight
into the conditions under which preparation contex-
tuality for a single system can be said to imply Bell
nonlocality for its appropriate bipartite extensions, in
line with previous work where a certain type of prepa-
ration contextuality was shown to imply Bell nonlo-
cality relative to a bipartite extension [36]. 13

The explicit construction of a nonlocal game in-
stantiating Proposition 1, however, would depend on
the properties of the channel N . We know that at
least in the case of the Cubitt et al. protocol under
ideal conditions, these nonlocal games correspond to
pseudo-telepathy (PT) games inspired by the KS the-
orem [5, 6, 39]. In the case of the Prevedel et al. ex-
ample [28], the associated nonlocal game is essentially
the well-known CHSH game [2, 40]. It is an open
question whether there exists a generic construction
of a nonlocal game, instantiating Proposition 1, that
always works starting from any channel N .

We can, however, provide a fairly general construc-
tion of nonlocal games starting from a family of clas-
sical channels, thus instantiating Proposition 1. This
general construction, in particular, reproduces as spe-
cial cases the examples studied in Refs. [6, 28]. It is in-
spired by the pseudotelepathy (PT) game discussed in
Ref. [6], allowing, however, the case where the quan-
tum strategy is imperfect and where neither Alice nor
Bob might have access to a KS set. We define this
mapping from the communication task to a nonlocal
game below.

13In the case of bipartite pure entangled states of Schmidt
rank greater than two (such as the two-ququart maximally en-
tangled state used in Ref. [6]), it has been shown that prepa-
ration contextuality of the reduced state on Bob’s system, in
conjunction with Alice’s ability to remotely steer Bob’s system
to arbitrary preparation ensembles using entanglement [37], im-
plies that the entangled state can exhibit Bell nonlocality [38].
So, at least in the case of such pure entangled states, the impli-
cation from preparation contextuality to Bell nonlocality that
we consider in this paper also follows from Ref. [38].

Accepted in Quantum 2022-10-06, click title to verify. Published under CC-BY 4.0. 9



The family of classical channels for which our con-
struction works satisfies two properties for any chan-
nel N in the family: first, its channel hypergraph
H(N ) is k-regular (i.e., every vertex appears in k hy-
peredges) for some positive integer k, and second, the
channel probabilities are entirely fixed by the com-
binatorial structure of the channel, i.e., N (y|x) =

1
|Yx|δ(y ∈ Yx), where δ(a ∈ A) defines an indicator

function for membership in set A, taking value 1 if
a ∈ A and 0 otherwise. Channels satisfying the first
property will be called k-regular channels and those
satisfying the second property will be called output-
uniform channels. Hence, the classical channels we
consider below will be k-regular and output-uniform
classical channels. Further, we will assume that Al-
ice’s choice of the message to send in a particular
run is uniformly random, i.e., p(m) = 1

|Msg| for all

m ∈Msg. All this amounts to the following expres-
sion for the one-shot success probability:

S = 1
|Msg|

1
k

∑
m,m′,x,y∈Yx

δm,m′p(x,m′|m, y). (16)

The corresponding nonlocal game is specified by
the following: Alice receives questions m ∈Msg and
replies with answers x ∈ X; Bob receives questions
y ∈ Y and replies with answers m′ ∈Msg; the condi-
tional joint probability distributions of interest, there-
fore, are given by {p(x,m′|m, y)}x,m′,m,y; the Referee
sends them questions m, y according to the probabil-
ity distribution p(m, y) = p(m)p(y) = 1

|Msg|
1
|Y | ; in

order to win the game, Alice and Bob must produce
outputs x,m′ (respectively) such that the condition
V (x,m′,m, y) = 1 is satisfied, where

V (x,m′,m, y) ≡
{

1, if y /∈ Yx (i.e., N (y|x) = 0),
δm,m′ , if y ∈ Yx (i.e., N (y|x) > 0).

(17)

The probability of winning the game is then given by

SBell ≡
1

|Msg|
1
|Y |

∑
m,m′,x,y

p(x,m′|m, y)V (x,m′,m, y)

(18)

= 1
|Msg|

1
|Y |

∑
m,m′,x,y∈Yx

δm,m′p(x,m′|m, y)

+ 1
|Msg|

1
|Y |

∑
m,m′,x,y/∈Yx

p(x,m′|m, y). (19)

Note that this mapping relies only on combinato-
rial properties of N , namely, its channel hypergraph
H(N ), and is a straightforward generalization of the
connection between the one-shot classical communi-
cation protocol and pseudo-telepathy games note in
Proposition 3 of Ref. [6]. The connection of the pro-
tocol of Ref. [28] with the CHSH game, for example,
falls under this generalization.

We are now ready to prove the following theorem:

Theorem 1. Consider a k-regular output-uniform
classical channel N , i.e., N (y|x) = 1

k δ(y ∈ Yx).
Then, for any bipartite entangled state ρAB shared
between Alice and Bob, Alice’s local measurements
{M(A)

m ≡ {E(m)
x }x∈X(m)}m∈Msg, and Bob’s local mea-

surements {M(B)
y ≡ {E(y)

m′ }m′∈Msg}y∈Y — all denoted
by the triplet (ρAB, {M(A)

m }m∈Msg, {M(B)
y }y∈Y ) — the

following are equivalent:

1. The triplet (ρAB, {M(A)
m }m∈Msg, {M(B)

y }y∈Y ) pro-
vides a quantum advantage in the task of one-shot
classical communication over N , i.e., S > Smax

Cl ,

2. The triplet (ρAB, {M(A)
m }m∈Msg, {M(B)

y }y∈Y ) pro-
vides a quantum advantage in the corresponding
nonlocal game (cf. Eq. (17)), i.e., SBell > Smax

local,
where Smax

local is the Bell-local bound given by

Smax
local ≡ max

p(x,m′|m,y)∈L
SBell, (20)

L being the set of Bell-local probability distri-
butions. We use “p(x,m′|m, y) ∈ L” as short-
hand for membership of the full probability vec-
tor (p(x,m′|m, y))x,m′,m,y in the set of Bell-local
probability vectors [40].

Further, we have that S = 1⇔ SBell = 1.14

Proof. See Appendix B.

Theorem 1 provides us a way to characterize a fam-
ily of classical channels N for which the one-shot suc-
cess probability can be enhanced by nonsignalling cor-
relations: namely, all k-regular and output-uniform
classical channels for which there is a gap between
the classical and the nonsignalling value of the non-
local game defined by them following the recipe we
have just outlined, cf. Eq. (17).

It is worth emphasizing here the physical distinc-
tion between the two tasks – the one-shot communi-
cation task and the corresponding nonlocal game – we
have considered in this section. In the communication
task, Alice and Bob must necessarily be timelike sep-
arated, but in the nonlocal game, they must necessar-
ily be spacelike separated. In the absence of spacelike
separation in the communication task, it is inaccu-
rate to state that Bell nonlocality drives the quantum
advantage in the task: to be sure, the states and mea-
surements that drive the quantum advantage in the
communication task can also drive the quantum ad-
vantage in the nonlocal game, but the two tasks corre-
spond to fundamentally different physical situations.
Contextuality, for this reason, is the more natural no-
tion of nonclassicality to appeal to as the driver of
quantum advantage in the communication task.

14Note that this recovers the special case of pseudotelepathy
games considered in Proposition 3 of Ref. [6].
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6 One-shot success probability of com-
municating a single bit

The problem of communicating a single bit through
a noisy classical channel has been previously stud-
ied in Refs. [28, 29]. Note that the classical value
of the one-shot success probability of communicat-
ing a single bit (i.e., one out of two messages) in
this problem is strictly less than 1 if and only if the
confusability graph of the channel N is a complete
graph, i.e., α(G(N )) = 1. Hence, it is only for such
channels that the possibility of enhancing their one-
shot success probability of sending a single bit us-
ing shared entanglement exists: for all other channels
(with α(G(N )) ≥ 2), a single bit can always be sent
with zero error classically. In the rest of this sec-
tion, therefore, we will only consider output-uniform
channels with a confusability graph that is complete.
These channels are a special case of Kochen-Specker
(KS) channels, namely, those where it is impossible to
pick even a pair of non-confusable vertices from dis-
tinct hyperedges.15 Such KS channels obviously do
not admit any KS sets since any set of projectors as-
sociated with their vertices will necessarily have to be
pairwise commuting, i.e., there would be no incom-
patibility between the projectors. Our general proto-
col applies to such channels and here we will consider
one particular example, the one studied in Ref. [28],
as a paradigmatic case and show how it fits within
our framework.

The Prevedel et al. protocol

The classical channel considered by Prevedel et al. [28]
is specified as follows: the input alphabet is the
set of two-bit strings, X = {00, 01, 10, 11}, and the
output alphabet is a set of trit-bit strings Y =
{(1, 0), (2, 0), (P, 0), (1, 1), (2, 1), (P, 1)}; the channel
hypergraph therefore consists of 4 vertices (labelled
by x = b1b2 ∈ X) with all possible two-vertex hyper-
edges, i.e., 6 hyperedges labelled by y = (t, b) ∈ Y ;
each hyperedge y = (t, b) uniquely identifies a pair of
inputs x ∈ Xy sharing one of three properties: the
value of the first bit (i.e., y = (1, b1)), the value of
the second bit (i.e., y = (2, b2)), or the parity of
the two bits (i.e., y = (P, b1 ⊕ b2)); so, for exam-
ple, the output y = (1, 0) identifies the pair of inputs
Xy = {00, 01} in its support; the channel is, therefore,
3-regular and output-uniform with channel probabil-
ities N (y|x) = 1

3δ(y ∈ Yx). The channel hypergraph
is illustrated in Fig. 2.

The general protocol of Section 3 takes the following

15Recall that a KS channel is defined by a channel hyper-
graph where it is impossible to pick a set of vertices, one vertex
from each hyperedge, such that all the vertices in this set are
mutually non-confusable.

form:

Msg = {m}1m=0, with the encoding {X(m)}m given by
Xm=0 ≡ {00, 01} and Xm=1 ≡ {10, 11}. (21)

Alice carries out one of two possible measurements
labelled by m ∈ {0, 1}, their outcomes labelled by
b2 ∈ {0, 1}. On obtaining outcome b2 for measure-
ment m, Alice inputs the two-bit string x = mb2 to
the channel. Bob possesses one of two possible binary
measurements labelled by v ∈ {0, 1} (their outcomes
labelled by z ∈ {0, 1}) and must use the output y
from the classical channel (which gives him some in-
formation about the possible inputs Xy) to decide his
measurement strategy in order to infer the message
Alice’s message m. The full strategy is detailed be-
low:

v ∈ {0, 1},

p(v|y) =


δv,1, for y = (2, b2),
δv,0, for y = (P, b1 ⊕ b2),
arbitrary for y = (1, b1).

z ∈ {0, 1}

g(z, y) =
{
b, for y = (t, b) = (1, b1),
b⊕ z, for y = (t, b) ∈ {(2, b2), (P, b1 ⊕ b2)}

(22)
p(m′ = m|z, y) = δg(z,y),m. (23)

Assuming p(m) = 1
2 , the expression for the success

probability is given by

S = 1
3 + 1

6
∑

b2,z,m,v

p(b2, z|m, v)δb2⊕z,mv. (24)

We refer to Appendix C for a complete derivation
of the above expression. Now, the joint statistics
p(b2, z|m, v) can be interpreted as arising from a Bell-
CHSH scenario [2], i.e., a Bell scenario where each
party has two possible binary-outcome measurements
(m and v in this case), noting that the statistics is
non-signalling. We can then define the success prob-
ability in such a CHSH game [40] as

SCHSH ≡
1
4
∑

b2,z,m,v

p(b2, z|m, v)δb2⊕z,mv, (25)

so that

S = 1
3 + 2

3SCHSH. (26)

We have

1. Classically:∑
b2,z,m,v

p(b2, z|m, v)δb2⊕z,mv ≤ 3, (27)

so that S = SCl ≤ 5
6 ≈ 0.833, and
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2. Quantumly:∑
b2,z,m,v

p(b2, z|m, v)δb2⊕z,mv ≤ 2 +
√

2, (28)

so that S = SQ ≤ 1
3 + 2+

√
2

6 ≈ 0.902.

And, of course, on allowing arbitrary nonsignalling
correlations, a PR-box [40, 41] can achieve S = SPR =
1.

How is the CHSH game related to the nonlocal
game corresponding to the Prevedel et al. protocol
that one would obtain following Theorem 1? In Ap-
pendix D, we show that, in fact, this nonlocal game
is essentially the CHSH game rewritten in such a way
that Alice has two inputs while Bob has six.

7 One-shot success probability of
classical communication via general
Kochen-Specker (KS) channels
7.1 Channel hypergraph, encoding, and
context-independent guessing (CIG): the Cubitt
et al. strategy
In this section we will go beyond channels with com-
plete confusability graphs (for which one-shot zero-
error communication is impossible) and consider gen-
eral Kochen-Specker (KS) channels. Of particular in-
terest will be KS channels that admit KS sets: for
some of these channels it is possible to achieve an en-
hancement of the one-shot zero-error capacity using
entanglement, e.g., in Ref. [6], Cubitt et al. showed
that one can use a classical channel based on Peres’s
24-ray two-qubit KS set [42] which also underlies the
Peres-Mermin proof of KS-contextuality [43, 44].

We will focus on the one-shot success probability
that can be achieved using the Cubitt et al. [6] strat-
egy when Bob only assumes the structure of the chan-
nel hypergraph, H(N ), and his knowledge of the en-
coding Alice uses but makes no assumptions about the
exact channel probabilities {N (y|x)}x∈X,y∈Y . This
could, for example, happen when Alice and Bob trust
the channel hypergraph but they do not trust the
channel probabilities of the classical channel given by
some provider.

Recall that the one-shot success probability follow-
ing the Cubitt et al. strategy is given by

S =
∑
m

p(m)
∑
x

p(x|m)
∑
y

N (y|x)

∑
m′

p(m′|y,m, x)δm,m′

=
∑
m

p(m)
∑
x

p(x|m)
∑
y

N (y|x)

∑
x′∈X(m)

p(x′|y,m, x). (29)

Bob uses his knowledge of the channel hypergraph,
H(N ), and the output received from the channel,
y, along with any nonsignalling correlations shared
with Alice, to make a guess x′ ∈ Xy for Alice’s
input x. Our assumption that Bob is oblivious of
the channel probabilities means that the probabil-
ity with which Bob makes his guess, p(x′|y,m, x),
should be independent of the particular y ∈ Yx′ (“con-
text” of the guess x′) that Bob receives. It can de-
pend only on the support of x′ via an indicator func-
tion, i.e., p(x′|y,m, x) = p(x′|m,x)δ(y ∈ Yx′), where
δ(y ∈ Yx′) = 1 if y ∈ Yx′ and 0 otherwise. Overall, we
have

for any x′ ∈ X :
p(x′|y1,m, x) = p(x′|y2,m, x) ≡ p(x′|m,x),
∀y1, y2 ∈ Yx′ ,∀x ∈ X(m),∀m ∈Msg. (30)

We term this condition context-independent guessing
(CIG). We will see that the quantum strategy of the
Cubitt et al. protocol [6] satisfies this constraint and
this fact allows us to invoke the assumption of mea-
surement noncontextuality in addition to preparation
noncontextuality in placing a noncontextual upper
bound on the one-shot success probability. This will
in turn allow us to analyze the Cubitt et al. construc-
tion and the critical role of the KS theorem in it in
the light of generalized noncontextuality à la Spekkens
[13]. More concretely, we will see that a non-trivial
upper bound on the classical one-shot success proba-
bility in this protocol can be characterized by a hy-
pergraph invariant – the weighted max-predictability
[18] – following the approach of Ref. [27].

On the other hand, note that classically we have
p(x′|y, x,m) = p(x′|y) for all x ∈ X(m),m ∈Msg and
the CIG constraint of Eq. (30) (in a classical strategy)
then requires that p(x′|y) = p(x′)δ(y ∈ Yx′). That is,

for any x′ ∈ X : p(x′|y1, x,m) = p(x′|y2, x,m) ≡ p(x′),
∀y1, y2 ∈ Yx′ ,∀x ∈ X(m),∀m ∈Msg.

(31)

Indeed, in a classical strategy for this communication
task, any assignment p : X → [0, 1] respecting the
context-independence property defines what is usu-
ally called a (general) probabilistic model when the
channel hypergraph is viewed as a contextuality sce-
nario [27, 31].

7.2 One-shot success probability of a KS chan-
nel under the CIG constraint: contextuality and
quantum advantage
As our working example, we will consider the same
classical channel considered by Cubitt et al., cf. Fig. 4.
This channel admits a KS set, i.e., a set of projec-
tors on a 4-dimensional quantum system, each pro-
jector associated with a vertex in the channel hyper-
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Figure 4: (a) The channel hypergraph considered in Ref. [6], and (b) the encoding used, highlighed with dotted hyperedges.
Each message, corresponding to a dotted loop, contains four mutually confusable input symbols.

graph such that each hyperedge constitutes a projec-
tive measurement.

7.2.1 The one-shot success probability with context-
independent guessing

The one-shot success probability is given by

S =
∑
m

p(m)
∑
x

p(x|m)∑
y

N (y|x)
∑

x′∈X(m)

p(x′|y,m, x)

=
∑
m

p(m)
∑
x

p(x|m)

∑
y

(
N (y|x)

∑
x′∈X(m)

p(x′|m,x)δ(y ∈ Yx′)
)

(using the CIG constraint)

=
∑
m

p(m)
∑
x

p(x|m)

∑
x′∈X(m)

(∑
y

N (y|x)δ(y ∈ Yx′)p(x′|m,x)
)
.

(32)

For any two symbols x, x′ ∈ X, we quantify the con-
fusability of x with respect to x′ via the function

η(x, x′) ≡
∑
y

N (y|x)δ(y ∈ Yx′). (33)

This is the probability that, for input x, the channel
N yields an output that could also arise from the
input x′. Obviously, η(x, x) = 1 for all x ∈ X.

Noting that p(x|m)p(x′|m,x) = p(x, x′|m), we have

S =
∑
m

p(m)
∑

x,x′∈X(m)

p(x, x′|m)η(x, x′) (34)

=
∑
m

p(m)
∑

x,x′∈X(m)

δx,x′p(x, x′|m)

+
∑
m

p(m)
∑

x,x′∈X(m)

(1− δx,x′)p(x, x′|m)η(x, x′),

(35)

where we used the fact that η(x, x) = 1. Defining

Sperf ≡
∑
m

p(m)
∑

x,x′∈X(m)

δx,x′p(x, x′|m), (36)

Simperf ≡
∑
m

p(m)
∑

x,x′∈X(m)

(1− δx,x′)p(x, x′|m)η(x, x′),

(37)

we have that S = Sperf + Simperf . Here Sperf de-
notes the contribution to the success probability from
the situation where Bob guesses Alice’s input x to
the channel exactly (i.e., x′ = x, and therefore also
infers m correctly) and Simperf denotes the remain-
ing contribution to the success probability from the
situation where Bob doesn’t guess x correctly (i.e.,
x′ 6= x) but nevertheless infers m correctly from x′

(i.e., x′ ∈ X(m)).
Recalling the source-measurement correlation func-

tion Corr studied in Ref. [27], we have

Corr = Sperf ≡
∑
m

p(m)
∑

x,x′∈X(m)

δx,x′p(x, x′|m).

(38)
In the context of Ref. [27], this correlation function
captures how predictable the measurements corre-
sponding to the hyperedges m can be made when
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one varies over corresponding preparation ensembles
(also labelled by m) that average to the same mixed
state. In the ideal case of projective measurements
from Peres’ 24-vector KS set, this quantity is 1, since
every measurement is perfectly predictable when the
input state is picked from its orthonormal basis and
the uniform mixture over input states from any such
basis is the maximally mixed state. However, in a
noncontextual ontological model, this quantity is a
upper bounded by a hypergraph invariant [27] that
will turn out to be relevant for the one-shot success
probability in the following subsections.

We then have the following bounds on S:

Corr + ηmin(1− Corr)
≤ S = Corr

+
∑
m

p(m)
∑

x,x′∈X(m)

(1− δx,x′)p(x, x′|m)η(x, x′)

≤ Corr + ηmax(1− Corr), (39)

where

ηmin ≡ min
m

min
x 6=x′∈X(m)

η(x, x′), (40)

ηmax ≡ max
m

max
x 6=x′∈X(m)

η(x, x′). (41)

Here ηmin is the minimum confusability between any
two symbols in any message in the encoding. Simi-
larly, ηmax is the maximum confusability between any
two symbols in any message in the encoding. We have
0 < ηmin ≤ ηmax < 1.

7.2.2 The assumption of measurement noncontextual-
ity and how any noncontextual strategy satisfies context-
independent guessing

In the Cubitt et al. strategy, it is assumed that both
Alice and Bob have access to specific sets of mea-
surements carved out of a KS set for the channel of
Fig. 4. Alice’s six measurements {M(A)

m }6m=1 corre-
spond to the six dotted hyperedges in Fig. 4, while

Bob’s measurements {M(B)
y }18

y=1 correspond to parti-
tioning the 24 projectors into 18 hyperedges, denoted
by solid hyperedges in Fig. 4.

In our treatment of the problem, since we want to
allow more general choices of measurements, we make
two relaxations:

1. Firstly, we do not restrict ourselves to projective
measurements on Bob’s side, i.e., we allow any set
of positive operators (each operator associated to
a vertex in the channel hypergraph) that satisfy
the requirement that the (solid and dotted) hy-
peredges in Fig. 4 form complete measurements,
and

2. Secondly, although in the Cubitt et al. proto-
col, Alice’s measurements are carved out of the

same set of positive operators that Bob can im-
plement, and this is clearly the optimal choice of
measurements for Alice (yielding S = 1 for send-
ing six messages, quantumly), we allow that, in
general, Alice could associate some other mea-
surements with the messages she wants to send
even if the outcomes of such measurements do
not satisfy the operational equivalences implicit
in the channel hypergraph of Fig. 4. That is, the
encoding strategy of Alice could use a set of pos-

itive operators for her measurements {M(A)
m }6m=1

that is completely different from the set of posi-
tive operators used by Bob for his measurements

{M(B)
y }18

y=1 in the decoding strategy.

We mention this to emphasize that our generaliza-
tion of the Cubitt et al. strategy does not rely on iden-
tifying the measurement outcomes of Alice and Bob
in the way they are identified in the optimal strat-
egy and our use of the assumption of measurement
noncontextuality is restricted to Bob’s system, i.e.,
response functions of Bob’s measurements. In par-
ticular, the positive operators that constitute Bob’s
measurements can, in principle, be reconfigured to de-

fine the six measurements {M(B)
m }6m=1 that it would be

optimal for Alice to choose for her encoding measure-

ments {M(A)
m }6m=1.

In a noncontextual ontological model of Bob’s sys-
tem, the response functions associated with the ver-
tices (labelled by x ∈ X) respect measurement non-
contextuality, i.e., for all x, y1, y2 such that x ∈
Xy1 ∩Xy2 6= ∅,

ξ(x|y1, λ) = ξ(x|y2, λ) ≡ ξ(x|λ),∀λ ∈ Λ. (42)

Now, even though Bob may not implement or have

access to the six measurements {M(B)
m }6m=1 that would

be optimal for Alice in the protocol, the operational
equivalences implicit in the hypergraph of Fig. 4 in-

dicate that the response functions for M(B)
m on Bob’s

system must, under the assumption of measurement
noncontextuality, also satisfy

ξ(x|m,λ) = ξ(x|λ),∀λ ∈ Λ, (43)

for all x ∈ X and all m ∈Msg.
Recalling that

p(x′|y,m, x) =
∑
λ

ξ(x′|y, λ)µ(λ|m,x), (44)

we have that p(x′|y1,m, x) = p(x′|y2,m, x) for all
x′, y1, y2,m, x such that x′ ∈ Xy1 ∩Xy2 (equivalently,
y1, y2 ∈ Yx′), so that the CIG constraint is satisfied by
any noncontextual strategy and the one-shot success
probability takes the form of Eq. (34).

7.2.3 Upper bound on the one-shot success probability
from preparation and measurement noncontextuality

We now proceed to upper bound the success proba-
bility under the assumption of noncontextuality, i.e.,
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preparation and measurement noncontextuality, and
obtain

S ≤max
λ

∑
m

p(m)
∑

x,x′∈X(m)

ξ(x′|m,λ)µ(x|m,λ)η(x, x′)

≡Smax
NC . (45)

To see how this comes about starting from the expres-
sion for the one-shot success probability in Eq. (34),
i.e.,

S =
∑
m

p(m)
∑

x,x′∈X(m)

p(x, x′|m)η(x, x′),

first note that p(x, x′|m) =
∑
λ ξ(x′|m,λ)µ(λ, x|m),

where µ(λ, x|m) = µ(λ|m,x)p(x|m) =
µ(x|m,λ)µ(λ|m). As in the general case of one-shot
classical communication assisted by entanglement,
given the operational equivalence of ensembles pre-

pared on Bob’s side by Alice’s measurements M(A)
m

and the assumption of preparation noncontextuality,
we have that µ(λ|m) = ν(λ) for all m. We then have

S =
∑
m

p(m)∑
x,x′∈X(m)

∑
λ

ξ(x′|m,λ)µ(x|m,λ)ν(λ)η(x, x′)

=
∑
λ

ν(λ)
∑
m

p(m)∑
x,x′∈X(m)

ξ(x′|m,λ)µ(x|m,λ)η(x, x′)

≤Smax
NC . (46)

7.2.4 Contextuality drives the quantum advantage

We show that the one-shot success probability achiev-
able via any noncontextual strategy is no better
than best classical strategy with context-independent
guessing. For any extremal classical strategy i ∈ I (I
being the set of extremal classical strategies satisfying
CIG), the success probability is given by

SCl(i)

=
∑
m

p(m)
∑
x

pA(x|m, i)
∑
y

N (y|x)
∑

x′∈X(m)

pB(x′|y, i)

=
∑
m

p(m)
∑
x

pA(x|m, i)
∑
y

N (y|x)

∑
x′∈X(m)

pB(x′|i)δ(x′ ∈ Xy), (47)

where pB(x′|y,m, x, i) = pB(x′|y, i) = pB(x′|i)δ(x′ ∈
Xy), since Bob has no access to any information from
Alice besides the shared variable i (denoting the strat-
egy both of them agree to implement) and the chan-
nel output y, the latter specifying a confusable set Xy

containing Alice’s input x (and Bob’s guess x′). An
arbitrary classical strategy can then be represented

by a convex mixture of extremal classical strategies
according to some probability distribution {p(i)}i∈I
and the classical success probability is then given by

SCl(CIG) =
∑
i

p(i)SCl(CIG)(i) ≤ max
i
SCl(CIG)(i)

= max
i

∑
m

p(m)
∑
x

pA(x|m, i)
∑
y

N (y|x)

∑
x′∈X(m)

pB(x′|y, i)

≡Smax
Cl(CIG). (48)

Using the CIG constraint, we have pB(x′|y, i) =
pB(x′|i)δ(y ∈ Yx′), where any extremal classical strat-
egy i specifies a particular extremal probabilistic
model on the channel hypergraph (viewed as a con-
textuality scenario [31]) in Fig. 4(a). This allows us
to express the maximal classical success probability
satisfying CIG as

Smax
Cl(CIG)

= max
i

∑
m

p(m)
∑
x

pA(x|m, i)
∑

x′∈X(m)

(
pB(x′|i)

∑
y

N (y|x)δ(y ∈ Yx′)
)

= max
i

∑
m

p(m)
∑

x,x′∈X(m)

pA(x|m, i)pB(x′|i)η(x, x′)

(49)

We therefore have

Smax
NC = Smax

Cl(CIG). (50)

Since any classical strategy is a convex mixture of ex-
tremal classical strategies, the upper bound Smax

Cl(CIG)
can always be achieved by a classical strategy, i.e.,
there exists an extremal classical strategy i∗ ∈ I
such that SCl(CIG)(i∗) = Smax

Cl(CIG). Similarly, the up-
per bound Smax

NC can be saturated by a noncontextual
strategy, albeit a very trivial one, following a similar
reasoning as at the end of Section 4.2 (except that the
extremal response functions here are indeterministic
on account of KS-uncolourability). Thus, we have
that contextuality also drives the quantum advantage
in one-shot classical communication when Alice and
Bob trust the channel hypergraph but make no as-
sumptions about the channel probabilities.16

16Note that, under the CIG constraint, we no longer have
the exact correspondence with nonlocal games exemplified by
Theorem 1. This is because the connection between prepare-
and-measure scenarios on Bob’s system alone and Bell scenarios
where Bob is one of the parties in a two-party Bell experiment
breaks down when one imposes, besides preparation noncon-
textuality, the assumption of measurement noncontextuality
on Bob’s system (based on the operational equivalences be-
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7.2.5 Contextuality witnessed by a hypergraph-
invariant – the weighted max-predictability – is sufficient
for a quantum advantage

In this section we point out an explicit connection
between contextuality that can be witnessed via the
noise-robust noncontextuality inequalities of Ref. [27]
and the quantum advantage in the one-shot clas-
sical communication task with context-independent
guessing. The full technical argument supporting the
claims in this section is presented in Appendix E.

In Appendix E, we first show that

S ≤ Smax
NC ≤ ηmax + (1− ηmax)β(Γ, {p(m)}m), (51)

where

β(Γ, {p(m)}m) ≡ max
λ

∑
m

p(m) max
x∈X(m)

ξ(x|m,λ)

(52)

is the weighted max-predictability, a hypergraph in-
variant that was defined in Ref. [10] and studied ex-
tensively in Ref. [27], appearing in the upper bounds
of noise-robust noncontextuality inequalities proposed
in the frameworks of Refs. [10, 27]. Here, Γ is the hy-
pergraph defined by the contextuality scenario from
which the measurements of Alice and Bob are drawn
in the ideal Cubitt et al. strategy [6], i.e., Fig. 4(b)
including all the hyperedges (solid and dotted).

We then consider the special case ηmax = ηmin = η
and show that firstly, from Eq. (39), we have

S = Corr + η(1− Corr) = η + Corr(1− η). (53)

We then have that

Corr > β(Γ, {p(m)}m)
⇔ S > η + (1− η)β(Γ, {p(m)}m)

≥ Smax
NC = Smax

Cl(CIG)

⇒ S > Smax
NC . (54)

Now,

Corr ≤ β(Γ, {p(m)}m) (55)

is an instance of a noise-robust noncontextuality in-
equality following the approach of Ref. [27], inspired
by logical proofs of KS-contextuality [3, 17]. Hence,
the contextuality witnessed by Corr > β(Γ, {p(m)}m)
is sufficient for a quantum advantage in this task
when ηmax = ηmin.17 Output-uniform channels with

tween his local measurement events). This restricts the scope
of response functions for Bob’s measurements beyond anything
required by local causality (under which no restriction on lo-
cal response functions is imposed). The interested reader may
look at a discussion of this point at the end of Section 2.7 in
Ref. [10].

17Note that when ηmin = ηmax ≡ η, all pairs of dis-
tinct input symbols are equally confusable, i.e., η(x, x′) =∑

y
N (y|x)δ(y ∈ Yx′ ) is constant across all x, x′ ∈ X.

k-regular hypergraphs have η(x, x′) = 1
k

∑
y δ(y ∈

Yx ∩ Yx′) and this quantity is independent of x, x′

(x 6= x′) if and only if |Yx ∩ Yx′ | is constant for all
x 6= x′, i.e., the number of hyperedges shared by any
two confusable vertices of the channel hypergraph is
constant across all pairs of confusable vertices. In
the channel hypergraph of Fig. 4, for example, we
have |Yx ∩ Yx′ | = 1 for all confusable pairs of vertices
x, x′, so the classical channel studied in Ref. [6] (where
k = 3 and N (y|x) = 1

3 for all y ∈ Yx, x ∈ X) satisfies
the condition required for Corr > β(Γ, {p(m)}m) to
imply a quantum advantage. The case Corr = 1 cor-
responds to the situation studied in Ref. [6]. We have
shown that this quantum advantage can persist even
when Corr < 1, i.e., in the regime of noisy measure-
ments.

Another special case concerns the situation where
Simperf = 0. In this situation too, the violation of
Corr ≤ β(Γ, {p(m)}m) implies a quantum advantage
(cf. Appendix E). Using the set-up in Ref. [6], one can
achieve Corr = 1, i.e., zero-error communication.

We have thus provided an instance of an
information-theoretic task where the noise-robust sig-
natures of contextuality à la Refs. [17, 27] witness
a quantum advantage in the task. This provides an
operational meaning to noise-robust noncontextuality
inequalities of the type in Eq. (55) that were proposed
in Ref. [27].

7.3 KS basis sets and the ideal Cubitt et
al. strategy
Can one use the strategy of Ref. [6] starting from any
KS set of vectors?18 The strategy requires not merely
a KS set – namely, a set of vectors with orthogonal-
ity relations represented by a KS-uncolourable hyper-
graph – but, in fact, a KS basis set, i.e., a set of dis-
joint complete orthogonal bases Z ≡ {Bm}qm=1 such
that it is impossible to pick a vector from each ba-
sis ensuring that no two are orthogonal. Clearly, the
vectors in a KS basis set constitute a KS set. De-
noting the vectors in basis Bm as {ψmj}dj=1, where d
is the dimension of the Hilbert space spanned by the
basis, we construct a classical channel N with inputs
labelled by {(m, j)|m ∈ [q], j ∈ [d]} ([N ] denoting
{1, 2, . . . , N} for any positive integer N). The confus-
ability graph, G(N ), of the channel is such that two
inputs are confusable if and only if the corresponding
vectors are orthogonal. The definition of a KS basis
set then implies that α(G(N )) < q for any channel
thus constructed from it.

As we have noted, the set of vectors appearing in
any KS basis set form a KS set. However, it is not
a priori obvious that, given a KS set, it is always
possible to carve it up into a KS basis set {Bm}qm=1

18Recall that the general protocol of Section 3.1 does not rely
on the existence of KS sets. It’s only the particular strategy of
Ref. [6] that makes use of them.
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such that q > α(G(N )) for any channel constructed
from it following the prescription of Cubitt et al. [6]
mentioned above.19 Hence, to answer whether the
entanglement-assisted enhancement of the one-shot
zero-error capacity achieved by the strategy of Ref. [6]
carries through for any KS set, we need to settle the
following question:

Does every KS set admit a KS basis set of size
q > α(O(Γ))? Here Γ is the contextuality scenario
corresponding to the KS set and O(Γ) is the orthogo-
nality graph of Γ.[10, 27]

If the answer is in the affirmative, then the Cu-
bitt et al. strategy can be used starting from arbitary
KS sets. If not, then there must exist a counter-
example. Indeed, we can find such a counter-example
and, therefore, the Cubitt et al. strategy is not ap-
plicable to arbitrary KS sets: it only works for KS
sets that admit (disjoint) KS basis sets. Our counter-
example comes from the Conway-Kochen 31-vector
KS set, the smallest known KS set in dimension d = 3
[45]. We refer to Appendix F for details.

This raises the following important open problem:
Given an arbitrary KS set, what are the necessary and
sufficient criteria for it to admit a KS basis set?

8 Discussion and outlook
We have generalized and unified the protocols of
Refs. [6, 28] in a broad framework for entanglement-
assisted one-shot classical communication that should
prove useful for future investigations. Our results
bear witness to the role that noise-robust contextu-
ality à la Spekkens [13] plays in this task. Indeed, the
problem of entanglement-assisted one-shot classical
communication provides a fertile ground to study the
rich interplay between the Kochen-Specker theorem
[3], Spekkens contextuality [13] and its hypergraph-
theoretic formulations [10, 27], and nonlocal games.
Several open questions and opportunities for future
work arise:

1. Does there exist a generic construction of a non-
local game, instantiating Proposition 1, for any
channel N that admits an enhancement of its
one-shot success probability? Even extending the
family of channels for which such a construction
exists beyond the case we have shown, i.e., the

19In Ref. [6], there is a claim that the existence of KS basis
sets is “a corollary of the KS theorem”. This is true if a KS
basis set is allowed, in general, to contain bases that share
vectors. However, for the Cubitt et al. construction to work,
the bases in a KS basis set must be disjoint, i.e., no vectors are
shared between bases: this is what allows Alice to encode her
messages unambiguously in the outcomes of these measurement
bases. Further, for an advantage, the number of these disjoint
bases in a KS basis set must exceed the independence number
of the confusability graph of the channel constructed from the
KS basis set. Hence, in our definition of a KS basis set, we
explicitly include the disjointness of bases, something Ref. [6]
implicitly assumed.

family of output-uniform k-regular channels of
Theorem 1, would constitute progress in this di-
rection. Furthermore, even within this family of
channels, an important question is to character-
ize those for which the corresponding nonlocal
game admits a gap between classical and quan-
tum/nonsignalling correlations. These channels
would, in turn, admit an advantage in a corre-
sponding one-shot communication task because
of Theorem 1.

2. While the channels considered in Refs. [6, 28]
are KS channels, it remains an open question
whether more general channels (in particular,
with KS-colourable channel hypergraphs) exhibit
non-trivial advantages in enhancing the one-shot
success probability using entanglement. Our gen-
eral protocol in Section 3 does not specifically
rely on the channel being KS-uncolourable. For
example, a simple channel corresponding to a sta-
tistical proof of KS-contextuality is the one based
on the KCBS construction on a qutrit [46]. It
consists of 10 vertices, denoted {vi, wi}5i=1, and
5 hyperedges, denoted {vi, wi, vi+1}5i=1 (addition
modulo 5, so that i + 1 = 1 for i = 5), with
α(G(N )) = 3 (equal to its one-shot zero-error
capacity); a natural question then arises: can
entanglement be used to enhance the one-shot
sucess probability of sending two bits using this
channel? What would be the role of noise-robust
contextuality à la Refs. [10, 18] in enabling such
an enhancement? If not, can any channel with
a KS-colourable hypergraph admit enhancement
of its one-shot success probability?

3. The Cubitt et al. protocol [6] requires the exis-
tence of (disjoint) KS basis sets. Is it possible to
modify this protocol to use KS sets which do not
admit (disjoint) KS basis sets, e.g., the Conway-
Kochen 31-vector KS set? Would such a modi-
fication still allow for the possibility of enhanc-
ing the one-shot zero-error capacity of a classi-
cal channel? Or would it, maybe, only allow for
an enhancement of the one-shot success proba-
bility following the general protocol we discussed
in Section 3? The existence of pseudotelepa-
thy games based on KS sets [5] suggests that a
quantum advantage in some corresponding one-
shot communication task (following Theorem 1)
should be possible. A related question is: what
is the simplest scenario that admits enhancement
of the one-shot zero-error capacity of a classical
channel? Is the example studied in Ref. [6] the
simplest one, or is it possible to further reduce,
say, the size of the input alphabet or the dimen-
sion of the quantum system for which the en-
hancement is achieved? Of course, insofar as one
uses KS sets to achieve this enhancement, this is
also related to the smallest possible KS sets: in
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dimension 3, it’s been shown that the smallest
KS set can have no fewer than 22 vectors [47, 48]
(the 31-vector Conway-Kochen construction still
being the smallest one known in 3 dimensions).
Is there a smaller KS set (fewer than 24 vectors)
than Peres’s 24-vector set that also admits a KS
basis set?

4. The enhancement of the one-shot success proba-
bility using the Cubitt et al. strategy relies on
the orthogonality (compatibility) relations be-
tween projectors (projective measurements). Are
there nontrivial examples of enhancement of the
one-shot success probability that are only achiev-
able with nonprojective measurements, perhaps
inspired by joint measurability structures that lie
outside the purview of projective measurements
[49, 50]? We know that there exist such joint
measurability structures, e.g., Specker’s scenario,
admitting proofs of contextuality [51, 52].

5. The connection of the one-shot communication
task with preparation contextuality could also
be leveraged to obtain bounds on inaccessible in-
formation in preparation contextual ontological
models of quantum theory, following the ideas
recently proposed in Ref. [53].

More generally, the problem of entanglement-
assisted one-shot zero-error communication can be
viewed as a channel simulation problem, i.e., using
a noisy channel to simulate a noiseless channel in a
one-shot setting using nonsignalling correlations [54].
The relaxation of it to the case of enhancing the
one-shot success probability (which we have studied)
can be viewed as using a noisy channel to simulate
a less noisy channel using nonsignalling correlations,
i.e., noise-attenuation of a classical channel using a
nonclassical common-cause resource [33]. We have
focussed in this paper on the interplay of this lat-
ter channel simulation problem with the contextu-
ality of the system that the receiver (Bob) holds in
the communication task. A worthwhile project here
is a rigorous resource-theoretic account of this prob-
lem to better understand how various resources af-
fect the simulation preorder over classical channels in
this noisy setting [55]: whether perhaps the resource
of LOSR-entanglement [56] is more appropriate than
LOCC-entanglement when viewing the resource as-
pects of entanglement (and how this affects, for exam-
ple, the usefulness of Tsirelson boxes vs. Hardy boxes
[33, 56, 57] in this task), how the resource of noise-
robust contextuality on one wing of a Bell experiment
plays with bipartite nonlocality, and, more abstractly,
the usefulness of a common-cause resource in simulat-
ing a direct-cause resource (e.g., the fact that entan-
glement can increase the one-shot zero-error capacity
of a classical channel [6]). It would also be interest-
ing to see if the contextuality witnesses we have con-
sidered in this paper turn out to be related to some

monotones for channel (non-)conversions in a resource
theory of channel simulation.
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A Preparation noncontextuality on
one wing of a bipartite Bell experiment
implies local causality
We will use quantum notation below for ease of un-
derstanding, but the argument applies to all non-
signalling general probabilistic theories (GPTs).

Consider a general bipartite Bell scenario where Al-
ice’s measurement settings are labelled by s, Bob’s
settings are labelled by t, and their respective out-
comes are labelled by a and b. Their joint statistics

is, therefore, given by p(a, b|s, t) = Tr(E(s)
a ⊗E(t)

b ρAB),
where {E(s)

a }a denotes the POVM associated with

s, {E(t)
b }b denotes the POVM associated with t,

and ρAB is the entangled state shared between Al-
ice and Bob. We now consider the prepare-and-
measure experiment on Bob’s side20 that this Bell
scenario induces: Bob’s preparations are steered by
Alice’s measurements, i.e., every measurement out-

come E
(s)
a on Alice’s side steers Bob’s system to (an

unnormalized state) σa|s = TrA(E(s)
a ⊗ IρAB). How-

ever, no-signalling requires that Bob should not be
able to infer Alice’s measurement setting s by local
interventions on his system alone, so that we have∑
a σa|s = ρB for all measurement settings s that Al-

ice can choose. Each s therefore labels a prepara-
tion ensemble {p(a|s), ρa|s}a on Bob’s side such that∑
a p(a|s)ρa|s = ρB for all s, where p(a|s) = TrBσa|s

20The same argument goes through with the roles of Alice
and Bob interchanged.
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and ρa|s = σa|s

p(a|s) . Given this operational equivalence

between the preparation ensembles on Bob’s side, the
assumption of preparation noncontextuality entails
that any ontological model of Bob’s system must sat-
isfy

∑
a p(a|s)p(λ|s, a) = p(λ) for all s. This can be

rewritten as
∑
a p(a|s, λ)p(λ|s) = p(λ) for all s, i.e.,

p(λ|s) = p(λ) for all s. We then have, given Bob’s

measurement outcomes E
(t)
b , that

p(b|t, s, a) = TrB(E(t)
b ρa|s) =

∑
λ

p(b|t, λ)p(λ|s, a),

(56)

and

p(a, b|s, t)
=p(a|s)p(b|t, s, a)

=
∑
λ

p(b|t, λ)p(a|s)p(λ|s, a)

=
∑
λ

p(b|t, λ)p(a|s, λ)p(λ|s)

=
∑
λ

p(b|t, λ)p(a|s, λ)p(λ), (57)

where the last equality follows from the assumption
of preparation noncontextuality. Thus, the existence
of a preparation noncontextual ontological model for
Bob’s system (or for Alice’s system, by symmetry) im-
plies the existence of locally causal ontological model
for the bipartite Bell experiment. Note that

p(a, b|s, t)

=Tr(E(s)
a ⊗ E

(t)
b ρAB)

=Tr(E(s)
a ⊗ IρAB)TrB(E(t)

b ρa|s), (58)

where p(a|s) = Tr(E(s)
a ⊗ IρAB) and p(b|t, s, a) =

TrB(E(t)
b ρa|s).

B Proof of Theorem 1
We begin by noting that, following Eq. (15), we have

Smax
Cl

= max
p(x,m′|m,y)∈L

S

= 1
|Msg|

1
k

max
p(x,m′|m,y)∈L

∑
m,m′,x,y∈Yx

δm,m′p(x,m′|m, y).

(59)

The Bell expression of Eq. (19) can be rewritten by
making the substitution (recalling that p(y) = 1

|Y | )∑
y/∈Yx

p(y) = 1−
∑
y∈Yx

p(y) = 1− k

|Y |
, (60)

and using the no-signalling condition∑
m′

p(x,m′|m, y) = p(x|m), for all y ∈ Y, (61)

to express the second term of Eq. (19) as follows:

1
|Msg|

∑
m,m′,x,y/∈Yx

1
|Y |

p(x,m′|m, y)

= 1
|Msg|

∑
m,x,y/∈Yx

1
|Y |

p(x|m)

= 1
|Msg| |Msg|

(
1− k

|Y |

)
=1− k

|Y |
. (62)

The Bell expression then becomes

SBell

=1− k

|Y |
+ 1
|Msg|

1
|Y |

∑
m,m′,x,y∈Yx

δm,m′p(x,m′|m, y)

=1− k

|Y |
+ k

|Y |
S, (63)

using Eq. (16). This means that the following holds:

S = 1⇔ SBell = 1, (64)

i.e., the one-shot zero-error communication occurs if
and only if the corresponding nonlocal game is won
with certainty. On the other hand, this also means
that

Smax
local = max

p(x,m′|m,y)∈L
SBell

=1− k

|Y |
+ k

|Y |
max

p(x,m′|m,y)∈L
S

=1− k

|Y |
+ k

|Y |
Smax

Cl , (65)

so that we finally have

S > Smax
Cl ⇔ SBell > Smax

local. (66)

C The one-shot success probability in
the Prevedel et al. protocol
The expression for the one-shot success probability in
Eq. (24) can be obtained as follows: starting from the
general expression for S, we have

S =
∑
m

p(m)
∑
x

p(x|m)
∑
y

N (y|x)
∑
v

p(v|y)

∑
z

p(z|v,m, x)p(m′ = m|z, y) (67)

=
∑
m

p(m)
∑
x

p(x|m)
∑
y

N (y|x)
∑
v

p(v|y)

∑
z

p(z|v,m, x)δg(z,y),m. (68)
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This then becomes

S =
∑
m

p(m)
∑
x

p(x|m)N (y = (1, b1)|x = (b1, b2))∑
v

p(v|y)
∑
z

p(z|v,m, x)δb1,m

+
∑
m

p(m)
∑
x

p(x|m)N (y = (2, b2)|x = (b1, b2))∑
v

δv,1
∑
z

p(z|v,m, x)δb2⊕z,m

+
∑
m

p(m)
∑
x

p(x|m)N (y = (P, b1 ⊕ b2)|x = (b1, b2))∑
v

δv,0
∑
z

p(z|v,m, x)δb1⊕b2⊕z,m

=
∑
m

p(m)
∑
b2

p(x = (m, b2)|m)

N (y = (1,m)|x = (m, b2))

+
∑
m

p(m)
∑
x

p(x|m)N (y = (2, b2)|x)∑
z

p(z|v = 1,m, x)δb2⊕z,m

+
∑
m

p(m)
∑
x

p(x|m)N (y = (P, b1 ⊕ b2)|x)∑
z

p(z|v = 0,m, x)δb1⊕b2⊕z,m. (69)

Finally, for p(m) = 1
2 , we have

S =
∑
m

1
2
∑
b2

p(x = (m, b2)|m)1
3

+
∑
m

1
2
∑
x

p(x|m)1
3
∑
z

p(z|v = 1,m, x)δb2⊕z,m

+
∑
m

1
2
∑
x

p(x|m)1
3
∑
z

p(z|v = 0,m, x)δm⊕b2⊕z,m

=1
3 + 1

6
∑
m

∑
x

p(x|m)
∑
z

p(z|v = 1,m, x)δb2⊕z,m

+1
6
∑
m

∑
x

p(x|m)
∑
z

p(z|v = 0,m, x)δb2⊕z,0

=1
3 + 1

6
∑
m

∑
x

∑
z

p(x, z|m, v = 1)δb2⊕z,m

+1
6
∑
m

∑
x

∑
z

p(x, z|m, v = 0)δb2⊕z,0

=1
3 + 1

6
∑
m

∑
b2

∑
z

p(b2, z|m, v = 1)δb2⊕z,m

+1
6
∑
m

∑
b2

∑
z

p(b2, z|m, v = 0)δb2⊕z,0

=1
3 + 1

6
∑

b2,z,m,v

p(b2, z|m, v)δb2⊕z,mv. (70)

D The nonlocal game for the Prevedel
et al. protocol following Theorem 1
The Prevedel et al. protocol [28] is evidently built
around the CHSH game. How does this square with
the general construction of a nonlocal game that we
referred to in Theorem 1? We do a consistency check
here. Following the recipe for constructing a nonlo-
cal game starting from a classical channel N , outlined
in Section 5, we have the following expression for the
probability of success in the nonlocal game:

SBell

= 1
12

∑
m,m′,x,y/∈Yx

p(x,m′|m, y)

+ 1
12

∑
m,m′,x,y∈Yx

p(x,m′|m, y)δm,m′ , (71)

where we used p(m, y) = p(m)p(y) = 1
2

1
6 = 1

12 .
The expression for the one-shot success probabil-

ity, S, is, of course, given by (using p(m) = 1
2 and

N (y|x) = 1
3δ(y ∈ Yx))

S = 1
6

∑
m,m′,x,y∈Yx

p(x,m′|m, y)δm,m′ . (72)

Hence, using the fact that k = 3 and |Y | = 6 in this
example, and following Eq. (63), we have

SBell = 1
2 + 1

2S. (73)

Recalling Eq. (26),

S = 1
3 + 2

3SCHSH, (74)

and we therefore have

SBell = 2
3 + 1

3SCHSH (75)

for the nonlocal game defined according to Section
5 and used in Theorem 1. Hence, we have that the
nonlocal game constructed from our general recipe is
essentially the CHSH game, except that the two in-
puts on Bob’s side are disguised as six inputs labelled
by y ∈ Y that are classically post-processed to ob-
tain v ∈ {0, 1} and the output for each y is given
by m′ ∈ {0, 1} obtained by classically post-processing
z, y (Fig. 1).

E Contextuality witnessed by the
weighted max-predictability is sufficient
for a quantum advantage
Recall the expression for S given in Eq. (39), i.e.,

S = Corr+
∑
m

p(m)
∑

x,x′∈X(m)

(1−δx,x′)p(x, x′|m)η(x, x′),

(76)
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where, from Eq. (38), we have

Corr =
∑
m

p(m)
∑

x,x′∈X(m)

δx,x′p(x, x′|m). (77)

From Eq. (46), we have, under the assumption of non-
contextuality, that

S =
∑
λ

ν(λ)
∑
m

p(m)∑
x,x′∈X(m)

ξ(x′|m,λ)µ(x|m,λ)η(x, x′), (78)

so that

Corr(λ) ≡
∑
m

p(m)
∑

x,x′∈X(m)

δx,x′ξ(x′|m,λ)µ(x|m,λ),

(79)

and
Corr =

∑
λ

Corr(λ)ν(λ) (80)

We now proceed to upper bound Smax
NC in terms of

a hypergraph invariant:

Smax
NC

= max
λ

(
Corr(λ) +

∑
m

p(m)∑
x,x′∈X(m)

(
(1− δx,x′)ξ(x′|M(A)

m , λ)

µ(x|Sm, λ)η(x, x′)
))

≤max
λ

(Corr(λ) + ηmax(1− Corr(λ))

= max
λ

(ηmax + Corr(λ)(1− ηmax))

=ηmax + (1− ηmax) max
λ

Corr(λ)

≤ηmax + (1− ηmax)β(Γ, {p(m)}m), (81)

where

β(Γ, {p(m)}m) ≡ max
λ

∑
m

p(m) max
x∈X(m)

ξ(x|m,λ)

(82)

is the weighted max-predictability [10, 27]. Hence, we
have

S ≤ Smax
NC ≤ ηmax + (1− ηmax)β(Γ, {p(m)}m). (83)

A special case: We now consider the special case
when ηmax = ηmin = η. Following Eq. (39), the lower
and upper bounds on S coincide and we have

S = Corr + η(1− Corr) (84)
= η + Corr(1− η). (85)

The upper bound from noncontextuality becomes
(cf. Eq. (81))

Smax
NC = η + max

λ
Corr(λ)(1− η). (86)

We then have, from noncontextuality, that

S ≤ Smax
NC

≤ η + (1− η)β(Γ, {p(m)}m). (87)

Together with Eq. (85), this gives us the following:

Corr > β(Γ, {p(m)}m)
⇔ S > η + (1− η)β(Γ, {p(m)}m)

≥ Smax
NC = Smax

Cl(CIG). (88)

Recalling that

Corr ≤ β(Γ, {p(m)}m) (89)

is a noise-robust noncontextuality inequality [27], we
have that the contextuality witnessed by Corr >
β(Γ, {p(m)}m) is sufficient for a quantum advantage
when ηmax = ηmin.

Another special case: The sufficiency of Corr >
β(Γ, {p(m)}m) for a quantum advantage also arises
when Simperf = 0. Then we have that S = Sperf =
Corr and Smax

NC ≤ β(Γ, {p(m)}m), so that the viola-
tion of Corr ≤ β(Γ, {p(m)}m) implies the violation of
S ≤ Smax

NC . Indeed, in the ideal quantum case consid-
ered by Cubitt et al.[6], we see that Corr = 1, max-
imally violating the noncontextuality inequality and
achieving a success probability of 1.

F Not every KS set admits a KS basis
set: the Conway-Kochen 31-vector KS
set
Consider the simplest known KS set in d = 3 dimen-
sions, namely, the Conway-Kochen 31-vector KS set
[45]. The 31 vectors are carved up into 17 complete
orthogonal bases (with 3 vectors each) and 20 incom-
plete orthogonal bases (with 2 vectors each). The
orthogonality graph has an independence number of
11 and the only disjoint basis sets of size greater than
11 are those of size 12 and 13. None of these disjoint
basis sets forms a KS basis set, hence no quantum ad-
vantage over the unassisted one-shot zero-error capac-
ity of 11 can be obtained via the methods of Ref. [6]
for this construction. A remaining possibility is that,
on adding the missing vectors in the 20 incomplete
orthogonal bases to the KS set, the orthogonality re-
lations between the resulting set of 51 vectors will per-
haps allow for an advantage. We rule out this possibil-
ity as well: after including 20 additional vectors that
render all the bases that appear in this KS set com-
plete, we have a contextuality scenario represented by
a hypergraph containing 51 vertices carved up into 37
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(three-vertex) hyperedges. We check for any addi-
tional orthogonality relations arising from the newly
introduced 20 vectors and find 4 additional incom-
plete orthogonal bases. On further completing these
4 bases by adding 4 more vectors, we find that there
are, overall, 55 vertices (vectors) carved up into 41 hy-
peredges (complete orthogonal bases) and there are no
additional orthogonality relations. The orthogonality
graph associated with this extended contextuality sce-
nario has an independence number of 25. Hence, for
an advantage based on the strategy of Ref. [6], there
must exist a KS basis set of size q > 25. However,
the largest disjoint basis set is still of size 13 and it
does not form a KS basis set. Hence, the strategy of
Ref. [6] does not provide an advantage even (and espe-
cially) when extending Conway-Kochen 31-vector KS
set to complete all incomplete orthogonal bases and
include any additional orthogonality relations (leav-
ing no incomplete orthogonal bases). This provides
a counter-example to the question we posed, show-
ing that the Cubitt et al. strategy doesn’t work for
arbitrary KS sets.

One might wonder why we bother “completing” the
original 31-vector KS set to 55-vector KS set with no
incomplete bases. We do this to rule out the possi-
bility that something akin to the 18-vector KS set in
4 dimensions [58] is happening here: for that KS set,
it’s not possible to implement the Cubitt et al. pro-
tocol, but supplementing it with the remaining set of
6 vectors (out of Peres’s 24-vector KS set [42] from
which the 18-vector set is drawn) and taking into ac-
count the resulting additional orthogonality relations
yields Peres’s 24-vector KS set for which the Cubitt et
al. protocol works. From our investigation, it is clear
that for the 31-vector KS set, such a situation doesn’t
arise even after “completing” it.

We provide below a list of all the vectors and bases
in the orginal as well as the “completed” KS set for
the Conway-Kochen argument, so that the interested
reader may verify our claims concerning this KS set.

F.1 Conway-Kochen 31-vector KS set
The 31 vectors (labelled from 1 to 31) are:

1 : (−1, 2, 1), 2 : (−1, 2, 0), 3 : (0, 2, 1), 4 : (−1, 2,−1),
5 : (0, 2, 0), 6 : (1, 2, 1), 7 : (0, 2,−1), 8 : (1, 2, 0),
9 : (1, 2,−1), 10 : (0, 2,−2), 11 : (2, 2, 0), 12 : (2, 2,−2),
13 : (−1, 1,−2), 14 : (0, 1,−2), 15 : (−1, 0,−2),
16 : (0, 0,−2), 17 : (−1,−1,−2), 18 : (0,−1,−2),
19 : (0,−2,−2), 20 : (2, 1,−1), 21 : (2, 1, 0),
22 : (2, 0,−1), 23 : (2, 0, 0), 24 : (2,−1,−1),
25 : (2,−1, 0), 26 : (2,−2, 0), 27 : (2, 0,−2),
28 : (2,−2,−2), 29 : (2, 2, 2), 30 : (2, 0, 2),
31 : (2,−2, 2). (90)

The orthogonality relations of between these vec-

tors are the following (the first entry in each list is
the vector with respect to which the remaining vec-
tors in the list are orthogonal):

[1; 12, 14, 21, 30], [2; 16, 20, 21], [3; 13, 14, 23],
[4; 18, 21, 27, 29], [5; 15, 16, 22, 23, 27, 30],
[6; 14, 25, 27, 31], [7; 17, 18, 23], [8; 16, 24, 25],
[9; 18, 25, 28, 30], [10; 19, 23, 24, 28, 29],
[11; 13, 16, 26, 28, 31], [12; 1, 17, 19, 26, 30],
[13; 3, 11, 22, 28], [14; 1, 3, 6, 23], [15; 5, 20, 22, 24],
[16; 2, 5, 8, 11, 21, 23, 25, 26], [17; 7, 12, 22, 26],
[18; 4, 7, 9, 23], [19; 10, 12, 20, 23, 31], [20; 2, 15, 19, 31],
[21; 1, 2, 4, 16], [22; 5, 13, 15, 17],
[23; 3, 5, 7, 10, 14, 16, 18, 19], [24; 8, 10, 15, 29],
[25; 6, 8, 9, 16], [26; 11, 12, 16, 17, 29],
[27; 4, 5, 6, 29, 30, 31], [28; 9, 10, 11, 13, 30],
[29; 4, 10, 24, 26, 27], [30; 1, 5, 9, 12, 27, 28],
[31; 6, 11, 19, 20, 27]. (91)

The 17 complete orthogonal bases (vectors labelled
as above) are:

{1, 12, 30}, {2, 16, 21}, {3, 14, 23}, {4, 27, 29}, {5, 15, 22},
{5, 16, 23}, {5, 27, 30}, {6, 27, 31}, {7, 18, 23}, {8, 16, 25},
{9, 28, 30}, {10, 19, 23}, {10, 24, 29}, {11, 13, 28},
{11, 16, 26}, {12, 17, 26}, {19, 20, 31}. (92)

The 20 incomplete orthogonal bases are:

{1, 14}, {1, 21}, {2, 20}, {3, 13}, {4, 18},
{4, 21}, {6, 14}, {6, 25}, {7, 17}, {8, 24},
{9, 18}, {9, 25}, {10, 28}, {11, 31}, {12, 19},
{13, 22}, {15, 20}, {15, 24}, {17, 22}, {26, 29}. (93)

F.2 The “completed” 55-vector KS set
The 20 vectors that complete the incomplete bases
are:

32 : (4,−4,−8), 33 : (−5,−1, 2), 34 : (−4,−4, 8),
35 : (−1,−2,−5), 36 : (5, 2,−1), 37 : (−1,−5,−2),
38 : (1,−5, 2), 39 : (−1,−2, 5), 40 : (−8,−4,−4),
41 : (5,−1,−2), 42 : (−5, 2,−1), 43 : (2, 5,−1),
44 : (−2, 1,−5), 45 : (1,−2,−5), 46 : (−2,−1,−5),
47 : (−5,−2,−1), 48 : (−5, 2, 1), 49 : (8,−4, 4),
50 : (−1, 2,−5), 51 : (−2, 5, 1). (94)

The resulting set of 17 newly complete bases is then:

{1, 14, 47}, {1, 21, 50}, {2, 20, 46}, {3, 13, 33}, {4, 18, 36},
{4, 21, 45}, {6, 14, 48}, {6, 25, 39}, {7, 17, 41}, {8, 24, 44},
{9, 18, 42}, {9, 25, 35}, {10, 28, 40}, {11, 31, 32},
{12, 19, 49}, {13, 22, 37}, {15, 20, 51}, {15, 24, 43},
{17, 22, 38}, {26, 29, 34}. (95)
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Taking into account possible extra orthogonality re-
lations not captured by the set of 37 complete bases,
it turns out that there are 4 additional incomplete
bases in the set of 51 vectors above:

{2, 40}, {3, 34}, {7, 32}, {8, 49}. (96)

To complete these bases we add 4 more vectors to the
51-vector KS set:

52 : (20, 4, 8), 53 : (−20, 4,−8),
54 : (8, 4,−20), 55 : (8,−4,−20). (97)

The 4 additional newly complete bases are then

{2, 40, 54}, {3, 34, 53}, {7, 32, 52}, {8, 49, 55}. (98)

There are no new orthogonality relations in this com-
pleted set of 55 vectors carved up into 41 complete
orthogonal bases.
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