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Abstract

Resistance to targeted therapies is an important clinical problem in HER2-positive (HER2+) 

breast cancer. “Drug-tolerant persisters” (DTPs), a sub-population of cancer cells that survive 

via reversible, non-genetic mechanisms, are implicated in resistance to tyrosine kinase inhibitors 

(TKIs) in other malignancies, but DTPs following HER2 TKI exposure have not been well 

characterized. We found that HER2 TKIs evoke DTPs with a luminal-like or a mesenchymal-

like transcriptome. Lentiviral barcoding/single cell RNA-sequencing reveal that HER2+ breast 

cancer cells cycle stochastically through a “pre-DTP” state, characterized by a G0-like expression 

signature and enriched for diapause and/or senescence genes. Trajectory analysis/cell sorting 

show that pre-DTPs preferentially yield DTPs upon HER2 TKI exposure. Cells with similar 

transcriptomes are present in HER2+ breast tumors and are associated with poor TKI response. 

Finally, biochemical experiments indicate that luminal-like DTPs survive via estrogen receptor-

dependent induction of SGK3, leading to rewiring of the PI3K/AKT/mTORC1 pathway to enable 

AKT-independent mTORC1 activation.
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INTRODUCTION

HER2 (a.k.a. ERBB2) drives 15–20% of breast cancers, some of which co-express 

estrogen receptor (ER). Treatment of non-metastatic HER2+ breast cancer with surgery, 

chemotherapy, anti-HER2 monoclonal antibodies (trastuzumab + pertuzumab) and, for 

HER2+/ER+ tumors, anti-estrogens, is a major oncologic success story: 5-year disease-free 

survival approaches 100% for lymph node (LN)-negative disease and 80–90% (depending 

on ER status) for patients with local LN involvement (Data from Surveillance Research 

Program, National Cancer Institute. [Cited 2020 August 27].). By contrast, metastatic 

HER2+ breast cancer remains incurable (1,2). Lapatinib, the first clinically approved HER2-

directed TKI, inhibits HER2, including antibody-resistant variants, as well as EGFR (3,4). 

Combined with chemotherapy, lapatinib improves outcome in patients who progress on 

trastuzumab/chemotherapy (5). Also, unlike HER2-antibodies, which poorly cross the blood 

brain barrier (6), lapatinib (and other HER2 TKIs) can target brain metastases. Newer 

HER2-TKIs, such as neratinib and tucatinib, have more favorable pharmacologic properties 

and the latter, in particular, is likely to replace lapatinib in metastatic breast cancer regimens 

(1,7,8).

Multiple mechanisms for lapatinib resistance have been described, including HER3 up-

regulation, which increases signaling via HER2/HER3 heterodimers (9–11), activating 

PIK3CA or loss-of-function PTEN mutations (12), or increased upstream/parallel pro-

survival signaling mediated by FAK1, SRC, PRKACA, or mTORC1 (13–17). Epigenetic 

mechanisms for lapatinib resistance involving the mixed lineage leukemia (MLL) complex 

and bromodomain extra terminal domain (BET) family members also have been proposed 

(18,19). Although not established by direct experiments, these mechanisms will likely limit 

the efficacy of other HER2 TKIs as well.

The above events confer stable resistance to lapatinib, but whether resistant cells pre-exist 

in HER2+ tumors or emerge during therapy remains unclear. Sharma et al. described a 

non-genetic, drug-tolerant cell state in the EGFRmut non-small cell lung cancer (NSCLC) 

line PC9, which could be reversed upon drug withdrawal (20). Such cells, which they termed 

“drug-tolerant persisters” (DTPs), subsequently were observed in other experimental models 

of targeted therapy, including additional EGFR-mutant NSCLC lines (20), MET-amplified 

gastric cancer (21), BRAF-mutant melanoma (22–25), AR-driven prostate cancer (26,27), 

and most recently, after chemotherapy for multiple carcinomas (28,29) and acute myeloid 

leukemia (30). Upon continued exposure to EGFR inhibitor, Sharma et al. noted that PC9 

cells regained the ability to proliferate; they termed such proliferative cells “drug-tolerant 

expanding persisters” (DTEPs). DTEPs have also been observed in other cell systems 

(20,25,29–32), and are likely to emerge from the very recently identified “cycling persisters” 

that comprise a small fraction of the initial DTP population (31). DTPs (and DTEPs) do 
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not appear to be classical “cancer stem cells,” but whether all cancer cells are at any given 

time equally capable of becoming DTPs remains largely unknown. Also, although epigenetic 

modulators (e.g., HDAC or KDM5 inhibitors) that prevent development of DTPs in response 

to EGFR-TKIs have been identified (33), the signaling pathways that DTPs employ to 

survive TKI treatment are not well understood.

A few studies have identified DTPs in HER2+ breast cancer lines (20,31,34), but they have 

not been characterized extensively. Here, we provide insights into the ontogeny and potential 

therapeutic vulnerabilities of HER2 TKI-DTPs. As such cells might comprise a reservoir 

for the development of stable resistance to HER2-targeted TKIs, our results have potential 

therapeutic implications.

RESULTS

HER2 TKI induce DTPs in some, but not all, HER2-positive breast cancer cell lines

We first asked whether HER2+ breast cancer cells exhibited DTP-like behavior in response 

to HER2 TKIs. Ten HER2+ breast cancer lines were treated with 2.5 μM lapatinib, a 

concentration that corresponds to average peak plasma levels in patients (35). Three types 

of response were observed: (I) 3/10 lines were intrinsically resistant and proliferated 

in the presence of lapatinib; (II) 2/10 showed a cytostatic response; and (III) in 5/10 

lines, most cells died after exposure to lapatinib, but a subpopulation persisted, showing 

similar behavior to DTPs as defined initially by Sharma et al. (Fig. 1A). As noted above, 

activating PIK3CA mutations or PTEN deletion can confer lapatinib resistance (12,36). All 

Type I and Type II cell lines harbor common “hotspot” activating mutations in PIK3CA 
(H1047R, E545K) or deletion of PTEN. Although Type III lines have intact PTEN and 

normal PTEN expression, two feature rare PIK3CA variants, encoding K111N (BT474) and 

C420R (EFM192A) (37). The C420R mutant has increased kinase activity and transforming 

activity; the pathologic significance of the K111N allele is unclear (38,39). Apparently, 

PIK3CA mutations can contribute to stable lapatinib resistance, yet not all such mutations 

are sufficient to confer resistance.

Unlike the behavior of the lines tested by Sharma et al. (20), only EFM192A cells entered 

a DTEP-like state, which was evident after 30 days of continuous drug treatment. The 

other Type III lines (BT474, SKBR3, HCC1419, SUM225) remained quiescent for ~50 

days (Fig. 1A), a period during which Sharma et al. observed DTEPs emerging from 

EGFR inhibitor-treated PC9 cells. Type III lines also gave rise to DTPs in response to the 

next-generation HER2 TKI tucatinib at concentrations corresponding to steady state Cmax 

levels (1.2 μM) in patients (Fig. 1B). HER2 TKIs are rarely administered as single agents 

to HER2+ breast cancer patients, so we tested clinically relevant HER2 TKI combinations, 

including tucatinib, tucatinib + fluorouracil (5-FU), tucatinib + 5FU + trastuzumab. These 

combinations yielded similar number of residual cells, suggesting that HER2 TKI-DTPs are 

cross-resistant to conventional HER2 treatment regimens (Fig. 1C).

Upon drug withdrawal, DTPs yield progeny that regain drug sensitivity (20). As 

expected, “HER2 TKI-DTPs” resumed proliferation after lapatinib or tucatinib withdrawal, 

demonstrating that they were not permanently growth arrested. At various times after drug 
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withdrawal, we re-challenged these cells with lapatinib or tucatinib. Consistent with their 

classification as DTPs, all Type III cells that survived initial exposure to lapatinib or 

tucatinib yielded HER2 TKI-sensitive progeny upon drug withdrawal (Fig. 1D). Individual 

cell lines differed in the time required to regain drug-sensitivity, but this interval was highly 

reproducible across several experiments. Furthermore, BT474-derived lapatinib-DTPs were 

at least as tumorigenic (if not more so) as parental BT474 cells, as assessed by a limiting 

dilution assay in NOD.Cg-Prkdcscid Il2rγtm1Wjl/SzJ (NOD scid gamma, NSG) mice (Fig. 

1E). Hence, not only do these cells have the potential to restart proliferation following HER2 

TKI withdrawal, they also can seed new tumors.

HER2 TKI-DTPs display two distinct transcriptional profiles

We next compared the transcriptomes of HER2 TKI-DTPs and parental cells by bulk 

RNA sequencing (RNA-seq). Unsupervised hierarchical clustering of DTPs remaining 

after lapatinib treatment (lapatinib-DTPs) segregated the samples into two subgroups, 

each of which differentially expressed distinct sets of genes compared with their parental 

counterparts (Fig. 2A; Supplementary Tables 1-2). Gene Set Enrichment Analysis (GSEA) 

using a compendium of pathway gene sets compiled by the Bader laboratory (40) 

revealed that lapatinib-DTPs in one cluster differentially activated a gene set annotated 

as “Hallmark Epithelial Mesenchymal Transition”; we refer to these cells as “mesenchymal-

like” DTPs (Fig. 2B; Supplementary Fig. S1A). DTPs from the other cluster activated 

“Hallmark Estrogen Response Early” genes and hereafter are termed “luminal-like” (Fig. 

2B; Supplementary Fig. S1B). The differentially expressed genes (DEGs) in DTPs and 

parental cells from the two subgroups enriched for distinct sets of transcription factor 

binding sites by Chip Enrichment Analysis (ChEA): mesenchymal-like DTPs were enriched 

for SMAD4 and SOX2 sites, whereas DEGs in luminal-like DTPs showed enrichment for 

ER (ESR1) sites (Supplementary Figs. S1C-F). Tucatinib treatment also evoked DTPs with 

either luminal-like or mesenchymal-like transcriptomes (Fig. 2C, Supplementary Fig. S1G). 

Supervised analyses revealed markedly similar transcriptomic changes in DTPs induced by 

tucatinib or lapatinib, although the next generation TKI more strongly induced or repressed 

many individual DEGs (Fig. 2D).

While this manuscript was in revision, several studies reported that treatment of multiple 

types of carcinomas or acute myeloid leukemia with chemotherapy induce DTPs that 

down-regulate MYC target genes and induce embryonic diapause and/or senescence-like 

transcriptional programs (28–30). Only some of these gene sets are represented in the 

Bader collection (see above). Notably, supervised analysis revealed that expression of 

“Hallmark MYC Targets” and “Rehman Diapause Down” (28) genes decreased significantly 

in lapatinib- and tucatinib-evoked mesenchymal-like and luminal-like DTPs compared 

with their respective parental cells (Figs. 2E-H). Other signatures from these recent 

reports, including chemotherapy-induced stress genes (“Duy CISG”) (30) and senescence 

genes (“Fridman Senescence”), were enriched in mesenchymal-like (but not luminal-like) 

lapatinib- and tucatinib-DTPs (Supplementary Figs. S1H-K).
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Lapatinib-DTPs are organized stochastically

To clarify their ontogeny, we asked whether lapatinib-DTPs belong to a pre-existing cellular 

hierarchy (e.g., a “cancer stem cell” model) or arise stochastically. We transduced a lentiviral 

barcode library into BT474 cells at a low multiplicity of infection (MOI=0.1) to ensure that 

each cell received only one barcode; this approach enabled tracking of up to 100,000 unique 

clones (Supplementary Fig. S2A and Methods). Infected cells were permitted to expand for 

approximately six weeks, so that each barcode was represented abundantly in the overall 

cell population. Approximately 12% of BT474 cells survive 14 days of lapatinib treatment 

(Fig. 1A). If HER2+ breast cancer lines maintain a pre-existing, fixed hierarchy of DTPs 

and non-DTPs, a similar percentage of barcodes should be retrieved after 14-day lapatinib 

treatment, compared to the number of barcodes in the initial population (t=0). By contrast, 

if lapatinib-DTPs arise stochastically, substantially >12% of barcodes should be retrieved 

(Supplementary Fig. S2A).

In two independent experiments, we retrieved 62% and 60% of barcodes from transduced 

BT474 cells, respectively (Supplementary Fig. S2B, left two panels). We noted a consistent 

reduction (~25%) in barcode representation in untreated control (UT) cells cultured for 

14 days without lapatinib in both experiments. These “missing barcodes” were poorly 

represented at t=0, and presumably decreased to undetectable levels after 14 days in culture. 

Others have also reported stochastic loss of barcodes upon cell passaging (41). Nevertheless, 

the retention of most barcodes in the starting population after 14 days of lapatinib indicates 

that nearly all BT474 cells can give rise to lapatinib-DTPs. Similar results were obtained in 

analogous single experiments on HCC1419, SKBR3, and EFM192A cells (Supplementary 

Fig. S2B, right three panels). These data support a stochastic model of DTP ontogeny and 

suggest that over a 6-week period (or less), essentially every HER2+ cell or its progeny has 

the capacity to transit into the drug-tolerant state.

Parental BT474 cells occupy states with different predilections to become DTPs

Although the barcoding experiments established that all cells can (over a 6-week period) 

occupy a state that can become a DTP upon HER2 TKI exposure, fluctuation testing (42) 

indicated that at any given time, only some cells (“pre-DTPs”) are primed to become 

DTPs. Interestingly, this analysis also suggests that, depending on the specific cell line, the 

pre-DTP state is heritable for ~2–7 generations (Supplementary Fig. S2C).

To investigate further the dynamics of DTP generation, we performed single-cell RNA 

sequencing (scRNA-seq) on untreated (UT), 6-hour lapatinib-treated (6h), and 14-day 

lapatinib-treated BT474 cells (DTPs) and analyzed the data with iCellR (43). The 6-hour 

timepoint was chosen because lapatinib-treated BT474 cells began to die at this time. In 

supervised analyses using the DEGs in BT474-DTPs (versus parental cells) from bulk 

RNA-seq (“BT474-DTP DEG”; Supplementary Table 3), we observed that most DEGs 

that are increased in BT474 DTPs (BT474-DTP Up DEGs) were induced, while most 

DEGs that are decreased in BT474 DTPs (BT474-DTP-Down DEGs) were down-regulated 

progressively upon lapatinib treatment (Fig. 3A). However, closer examination revealed 

bi-modal expression of BT474-DTP Down DEGs in untreated BT474 cells (compare violin 

plots of UT cells using BT474-DTP Up and BT474-DTP Down DEGs, respectively). This 
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finding, along with the barcoding and fluctuation results described above, argues that only 

select cells exist in a state (“pre-DTPs”) conducive to DTP generation.

To explore this intriguing possibility, we performed additional analyses on untreated (UT) 

BT474 cells. Unsupervised clustering identified three major clusters (Fig. 3B), of which 

cluster B alone displayed significant enrichment for both up- and down-regulated BT474-

DTP DEGs compared with the other two (Fig. 3C). Gene ontology (GO) enrichment 

analysis (using Enrichr) showed that the unsupervised clusters were distinguished by genes 

associated with distinct cell cycle phases (Supplementary Fig S3A; Supplementary Tables 

4 and 5). Cluster A showed enrichment for genes involved in the G1/S transition, whereas 

cluster C was enriched for G2/M genes. Additional supervised analyses using signatures 

that can distinguish multiple stages of the cell cycle, including G0 (44), revealed strong 

overlap between cells in the putative “pre-DTP” cluster (cluster B) and G0 cells (Figs. 

3D-F). Moreover, most G0 cells and a few cells annotated as “G1S or MG1” differentially 

expressed BT474-DTP Up and Down DEGs as well as luminal-like DTP Up and Down 

DEGs (Fig. 3G; Supplementary Figs. S3B-E). The other luminal-like cell line, HCC1419, 

also contained a cluster with a G0 signature, increased expression of HCC1419-DTP Up and 

luminal-like Up DEGs and decreased expression of HCC1419-DTP Down and luminal-like 

Down DEGs (Figs. 3H and 3I; Supplementary Figs. S3F-K; Supplementary Table 6). To 

remove proliferation-related genes that might be differentially expressed in DTPs (which 

are non-proliferative), we removed overlapping DEGs in luminal-like and mesenchymal-

like DTPs (Supplementary Fig. S1C). The resultant “Mesenchymal DTP Unique DEGs” 

(Supplementary Table 7) and “Luminal DTP Unique DEGs” (Supplementary Table 8) also 

were enriched in a sub-population of G0-like cells from all untreated mesenchymal-like and 

luminal-like lines examined (Figs. 4A and 4B).

Collectively, these data show that randomly proliferating HER2+ breast cancer cell lines 

stochastically maintain a population of cells characterized by a G0-like signature and 

expression of a subset of genes differentially expressed in DTPs, even though these 

cells have never been exposed to HER2 TKIs. Intriguingly, compared with non-G0 cells, 

G0-like cells from multiple HER2+ breast cancer lines also were enriched for diapause, 

chemotherapy-induced stress genes (CISG) (30), and senescence gene sets (30,45) and were 

anti-correlated with “Hallmark MYC Targets” (28–30) (Figs. 4C-F). Furthermore, scRNA-

seq data from HER2+/ER- tumors from two treatment-naïve patients (Pt 238 and Pt 301) 

revealed the presence of G0-like cells that were enriched for Mesenchymal DTP Unique 

Up and depleted for Mesenchymal- DTP Unique Down DEGs compared with non-G0 cells 

(Fig. 4G). In general, compared with non-G0 cells, G0-like cells from these tumors also 

were enriched for diapause, CISG, and senescence genes and showed down-regulation of 

“Hallmark MYC Targets” genes (Supplementary Figs. S4A and S4B). Importantly, analysis 

of bulk RNA-seq data from HER2+ breast cancer patients in the NeoALTTO trial who did 

not attain pathological complete response (pCR) after neo-adjuvant lapatinib treatment had 

higher G0 signature scores compared with those achieving pCR (Fig. 4H). These results 

indicate that G0-like cells with some transcriptional features of DTPs pre-exist in tumors 

from untreated HER2+ breast cancer patients and are negatively associated with HER2 TKI 

response, comporting with the possibility that these cells become DTPs upon drug exposure. 

Remarkably, cells with similar transcriptional properties also were detectable in tumors from 
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untreated triple negative (TN) breast cancer patients, raising the possibility that a G0-like 

pre-DTP state might exist in other breast cancer subtypes (Supplementary Figs. S4C and 

S4D).

Seeking functional evidence for the proposed G0-like “pre-DTP” state, we searched for 

cell surface markers differentially expressed in cluster B (pre-DTPs) compared with the 

other two clusters. Twenty DEGs were up-regulated in cluster B and in BT474-DTPs, 

including several encoding surface proteins: NPY1R, MAN1A1, ABCC5, CLDN8, PSCA, 

and PIK3IP1 (Fig. 5A, Supplementary Figs. S5A and S5B). Using an anti-NPY1R antibody, 

we purified BT474 cells with low, medium, and high surface expression of NPY1R 

by fluorescence-activated cell sorting (FACS) (Supplementary Fig. S5C). Remarkably, 

untreated BT474 cells with successively higher NPY1R expression also showed successively 

increased resistance to lapatinib (Fig. 5B; Supplementary Fig. S5D). Consistent with the 

stochastic origin of lapatinib-DTPs revealed by the barcoding experiments, cells purified 

based on different levels of surface NPY1R recapitulated heterogeneous NPY1R expression 

after 14 days in culture (Supplementary Fig. S5E). These fractions also proliferated similarly 

post-sort (Supplementary Fig. S5F), ruling out the possibility that contaminating NPY1Rhi 

cells had overtaken the initially NPY1Rlo cell population or vice versa. We also tested 

another surface marker preferentially expressed in DTPs and putative pre-DTPs, ABCC5. 

ABCC5hi BT474 cells were substantially enriched for NPY1Rhi cells compared with the 

ABCC5lo fraction, indicating co-expression of both markers in a subset of BT474 cells 

(Supplementary Fig. S5G). Compared with the ABCC5lo fraction, ABCC5hi cells also 

had increased ability to generate DTPs in response to lapatinib or tucatinib treatment 

(Supplementary Figs. S5H-J). Bulk RNA-seq analysis revealed ~500 DEGs in FACS-

enriched NPY1Rhi versus NPY1Rlo cells (Supplementary Fig. S6A; Supplementary Table 

9), and NPY1Rhi DEGs were enriched significantly for BT474-DTP DEGs (Fig. 5C).

As noted above, lapatinib-DTPs from BT474 cells displayed enrichment for the estrogen 

receptor (ER)-driven transcriptome (Fig. 2B; Supplementary Fig. 1B). Notably, “Hallmark 

of Estrogen Response Early” genes were the most differentially enriched gene set in 

NPY1Rhi, compared with NPY1Rlo, cells (Fig. 5D; Supplementary Fig. S6B). Multiple ER 

target genes were expressed at higher levels in NPY1Rhi than in NPY1Rlo cells, suggesting 

that these cells have basally higher ER signaling activity prior to lapatinib treatment 

(Supplementary Fig. S6C). Moreover, TCGA data show that NPY1Rhi tumors express 

higher levels of ESR1 and ER targets (PGR, GREB1, STC2) than those with low NPY1R 
expression (Supplementary Fig. S6D). Lapatinib treatment induced NPY1R in NPY1Rhi 

cells to even higher levels than in NPY1Rmid and NPY1Rlo cells (Fig. 5E). NPY1Rhi 

cells also were depleted for genes involved in mitosis or G2/M checkpoint compared 

with NPY1Rlo cells (Supplementary Fig. S6B). Co-staining with NPY1R antibody and 

Hoechst33342 confirmed that NPY1Rhi cells were mainly in G0/G1 whereas NPY1Rlo cells 

distributed across all cell cycle phases (Figs. 5F and 5G). Taken together, these data indicate 

that NPY1R expression marks G0-like, pre-DTP cells that are primed to become DTPs upon 

HER2 TKI exposure.

Using scRNA-seq data from the UT, 6h, and DTP samples, we performed “pseudotime 

analysis” to infer the trajectory by which parental, or 6h-treated, BT474 cells become 

Chang et al. Page 8

Cancer Discov. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lapatinib-DTPs. We found that BT474-DTPs separated into two states: nearly all DTPs 

(>90%) were in “DTP state 1” (DTP1), while a much smaller number occupied “DTP state 

2” (DTP2) (Fig. 5H). Cells progressively up-regulated NPY1R as they progressed from 

UT to 6h-treated to DTP cells (Fig. 5I). NPY1Rhi cells mainly followed the DTP1 route, 

whereas cells with lower NPY1R levels favored the DTP2 route (Fig. 5J). Comporting 

with our finding of a G0-like pre-DTP state, BT474 and HCC1419 cells annotated as G0 

favor the main (DTP1) route in the pseudotime analysis (Fig. 5K; Supplementary Figs. S6E 

and S6F). Direct comparison of the levels of genes preferentially expressed in the pre-DTP/

G0-like cluster in UT BT474 cells after 6 hours of lapatinib treatment and in the DTP 

state, however, reveal different patterns of behavior. For example, expression of some cluster 

B/G0 genes decrease as cells transit to the DTP state, some change little if at all, whereas 

others are induced (Supplementary Tables 10 and 11). These findings suggest that some 

genes that appear to be “induced” by lapatinib treatment are actually “selected” by virtue of 

their pre-existing expression in G0-like pre-DTPs, whereas others are primed for induction 

upon HER2-TKI exposure. Taken together, our data establish cells transiting through G0 

(or conceivably just entering or leaving that state) can proceed preferentially to the DTP 

state upon TKI treatment and give rise to the vast majority (DTP1 in Fig. 5) of DTPs (see 

Discussion).

Lapatinib-DTPs activate mTORC1 via a PI3K-dependent, AKT-independent pathway

RNA-seq analysis suggested that when HER2 signaling is abrogated by TKI exposure, 

luminal-like DTPs survive via ESR1 (ERα)-driven signaling. Consistent with this 

hypothesis, BT474 and HCC1419 cells were killed more effectively by lapatinib plus 

fulvestrant (Lap + Ful, Figs. 6A and 6B). Almost all BT474 DTPs were eradicated 

upon combination treatment, as evident by the lack of cell re-growth in Lap + Ful 

combination compared with lapatinib alone (Fig. 6C). The response to Lap + Ful correlated 

with basal and induced ESR1 levels (Fig. 6D). Collectively, these data show that the 

distinct transcriptional programs evoked in luminal-like and mesenchymal-like DTPs confer 

different therapeutic vulnerabilities.

We next investigated the signaling pathways activated in lapatinib-DTPs that might enable 

their survival. Despite continuous, complete HER2 inhibition, the PI3K/AKT/mTORC1 and 

ERK/MAPK pathways were reactivated partially both in luminal-like and in mesenchymal-

like lapatinib-DTPs (Supplementary Fig. S7A). However, treatment with pathway-specific 

inhibitors showed that survival of lapatinib-DTPs required PI3K, but not MEK, activity 

(Supplementary Figs. S7B-E). Surprisingly, however, treatment with the pan-PI3K inhibitor 

BKM120 induced higher cytotoxicity than two AKT inhibitors with different inhibitory 

mechanisms (GSK690693 and MK-2206) tested over a large dose range (Figs. 6E and 6F, 

Supplementary Figs. S8A and S8B). Compared with BKM120 treatment, GSK690693 and 

MK-2206 also showed variable and lower, if any, inhibition of phosphorylation of AKT 

substrates, including PRAS40, TSC2, and GSK3β (Figs. 6G and 6H; Supplementary Figs. 

S8C and S8D). Furthermore, in all DTPs, mTORC1 activity, as inferred by S6K (T389) 

and S6 (S240/244) phosphorylation, was inhibited to a far greater extent by BKM120 

than by either AKT inhibitor. Moreover, phosphorylation of TSC2 on S939 was inhibited 

by BKM120, but not by GSK690693 or MK-2206 (Figs. 6G and 6H). These data show 
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that lapatinib-DTPs survive through a PI3K-dependent/AKT-independent mechanism, which 

nevertheless leads to TSC2 phosphorylation and mTORC1 activation.

SGK3 is transcriptionally up-regulated by estrogen receptor in luminal-like DTPs

To probe the mechanism of pathway re-wiring in lapatinib-DTPs, we first asked whether 

activation of this putative pathway depends on PDK1, which phosphorylates the activation 

loop of multiple AGC kinases (46). Inhibition of PDK1 by GSK2334470 induced 

cytotoxicity to a similar extent as BKM120 (Supplementary Figs. S8E and S8F), and the 

cytotoxicity of these inhibitors correlated with their ability to inhibit the phosphorylation 

of mTORC1 substrates (Supplementary Figs. S8G and S8H). We therefore hypothesized 

that a PDK1-dependent/AKT-independent kinase was responsible for mTORC1 activation 

in luminal-like DTPs. SGK3 is a known estrogen-induced gene in breast cancer, and SGK3 

is implicated in AKT-independent survival (47,48). SGK3 transcript and its product were 

up-regulated selectively in luminal-like DTPs (Figs. 6I and 6J), and lapatinib-induced SGK3 
expression in BT474 and HCC1419 cells was blocked by fulvestrant co-administration 

(Figs. 6K and 6L). Therefore, ER mediates transcriptional up-regulation of SGK3 in 

luminal-like DTPs, which in turn activates mTORC1 in a PI3K-dependent/AKT-independent 

manner.

SGK3 phosphorylates six sites on TSC2 to activate mTORC1 in an AKT-independent 
manner

AKT-catalyzed phosphorylation of TSC2 is critical for growth factor-stimulated mTORC1 

activation (49–51). Others have shown that SGK1 can phosphorylate TSC2 to activate 

mTORC1 (52), but whether SGK3 phosphorylates the same sites as AKT and/or which 

SGK3-evoked phosphorylation sites on TSC2 were responsible for mTORC1 activation was 

unknown. As expected, recombinant SGK3 phosphorylated TSC2 on AKT substrate motif 

sites in vitro (Fig. 7A). Seven sites on TSC2 (S939, S981, T993, S1130, S1132, T1462, and 

S1798) conform to the AKT substrate motif, RXRXXS/T. Mass spectrometric analysis of 

the in vitro kinase reaction showed that SGK3 catalyzed increased phosphorylation on six of 

these (S939, S981, S1130, S1132, T1462, and S1798) compared with the TSC2-only control 

(Fig. 7B).

Mutation of two conserved AKT phosphorylation sites on TSC2 (S939A and T1462A; 

SATA mutant) prevents most growth factor-stimulated mTORC1 activation (50), although 

mutation of additional sites (S981, S1130, 1132) is required to completely ablate mTORC1 

activity (49,51,53). To ask if these site(s) are required for SGK3-evoked mTORC1 

activation, we co-transfected 293T cells with expression constructs for GST-SGK3 alone 

or with wild type (WT) TSC2 or various phosphorylation site mutants (Fig. 7C). SGK3-

evoked mTORC1 activation was assessed in the presence of the AKT inhibitor MK-2206 

by immunoblotting with AKT substrate antibodies. The TSC2-SATA and TSC2–5A mutants 

showed decreased SGK3-evoked phosphorylation, but mutation of all sites phosphorylated 

by SGK3 in vitro was required to abolish SGK3-induced TSC2 phosphorylation in 293T 

cells (Fig. 7D). Only TSC2–6A completely inhibited SGK3-evoked mTORC1 activation.
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As SGK3 is transcriptionally up-regulated in BT474-DTP and HCC1419-DTP, we asked 

whether SGK3 mediates AKT-independent survival and mTORC1 activation in these cells. 

We assessed the effects of 14h, a small molecule inhibitor with in vitro IC50s of 10 nM and 

4 nM against SGK1 and SGK3, respectively (48,54). Importantly, 14h inhibits SGK1/3 more 

potently than AKT1 (48). As expected, AKT inhibitors showed partial cytotoxic effects on 

BT474-DTPs (Fig. 7E). Single agent 14h inhibited survival only slightly, but it showed 

additive killing when combined with either AKT inhibitor. Nevertheless, 14h/AKT inhibitor 

combinations still suppressed BT474-DTP survival to a lesser extent than BKM120. AKT or 

SGK3 inhibition alone only modestly inhibited HCC1419-DTP cell survival (Fig. 7F), but 

unlike in BT474 cells, combined 14h and AKT inhibitor treatment showed similar killing 

effects as 14h alone. Notably, SGK3 is up-regulated by 9-fold in HCC1419-DTPs, compared 

with the HCC1419 parental cells. Conceivably, HCC1419-DTPs are re-wired to become 

more dependent on SGK3 and thus less responsive to AKT inhibitors.

In parallel, we investigated the effects of 14h and/or AKT inhibitors on AKT substrates 

and mTORC1 activation. SGK3 inhibition was assessed by monitoring the phosphorylation 

of its substrate NDRG1 (T346) (55). GSK690693 or MK-2206 showed minimal inhibition, 

if any, of AKT substrate phosphorylation (Figs. 7G and 7H). Treatment with 14h alone 

inhibited phosphorylation of PRAS40 (T246), GSK3β (S9), and TSC2 (S939) as well 

as NDRG1 (T346). Inhibition was more pronounced in HCC1419-DTPs than in BT474-

DTPs, consistent with the greater effects of 14h on HCC1419-DTP viability (Figs. 

7E and F). In both cell lines, the combination of 14h and AKT inhibitors eliminated 

phosphorylation of AKT substrates and mTORC1 activation. Knockdown of SGK3 by 

siRNA also decreased the PI3K-dependent, AKT-independent phosphorylation of TSC2 

and the mTORC1 substrates S6K (T389) and S6 (T240/244), after lapatinib or tucatinib 

treatment (Supplementary Figs. S9A-S9D). SGK3 knockdown also reduced the survival of 

BT474 and HCC1419 cells in response to either TKI (Supplementary Figs. S9E-S9H). In 

concert, these data show that luminal-like DTPs survive HER2 TKI treatment primarily via 

ER-induced activation of SGK3, which mediates AKT-independent mTORC1 activation and 

cell survival.

DISCUSSION

Most cells in TKI-sensitive cancer cell lines die upon exposure to lethal concentrations 

of TKIs. By contrast, DTPs survive and can acquire new mutations that confer stable 

drug resistance and cause disease recurrence (56,57). Also, during drug holidays, DTPs 

can revive and acquire stable resistance mutations while proliferating (58). Consequently, 

understanding DTPs ontogeny could lead to strategies that prevent their emergence and 

improve disease outcome. We find that upon exposure to the HER2 TKIs lapatinib or 

tucatinib, HER2+ breast cancer lines give rise to either of two types of DTPs, which have 

different transcriptomes, survival signaling pathways, and drug vulnerabilities. Barcoding 

experiments show that HER2 TKI-DTPs emerge stochastically, but fluctuation analysis and 

scRNA-seq show that, at any given time, a fraction of untreated cells exist in a “pre-DTP” 

state, characterized by a G0-like signature and expression of a subset of DTP genes, and are 

primed to become DTPs (Fig. 7I). Pre-DTPs purified from bulk parental cells by FACS for 

NPY1R or ABCC5 surface expression exhibit enhanced ability to become DTPs upon HER2 
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TKI exposure, providing direct functional evidence for the pre-DTP state. Luminal-like 

DTPs activate a subset of ER target genes, but upon progression to DTPs, ER activity 

is induced further and SGK3 transcription is upregulated. SGK3 then phosphorylates and 

inactivates TSC2 to mediate mTORC1 activation and survival (Fig. 7J). Mesenchymal-like 

DTPs do not induce ER activation, yet they also activate mTORC1 in an AKT-independent 

fashion, via an undefined kinase(s) (Fig. 7J). Most importantly, cells resembling pre-DTPs 

are seen in HER2+ breast tumors and appear to correlate with decreased response to 

neo-adjuvant lapatinib treatment. Our results provide new insights into HER2 TKI-DTP 

ontogeny and identify potential vulnerabilities for these cells. We also provide evidence that 

“pre-DTPs” might also exist in other sub-types of breast cancer.

Previous studies showed that some HER2+ breast cancer lines could give rise to lapatinib-

DTPs, but whether this was a general property of such lines remained unclear (20,31,59). 

Nearly half of the HER2+ breast cancer lines that we examined (Type III lines) displayed 

characteristic DTP behavior. By contrast, others (Type I/Type II lines) proliferated or failed 

to die upon TKI exposure. All Type I/II cells have PTEN copy number loss or “hotspot” 

activating PIK3CA mutations (i.e., E545K or H1047R), and PI3K pathway activation can 

cause resistance to lapatinib (12,60,61). However, two Type III lines (BT474, EFM192A) 

also harbor potentially transforming PIK3CA mutants (K111N, C420R) (38), so the mere 

presence of such a mutation does not preclude DTP generation. Notably, Vasan et al. 
demonstrated that mutant PIK3CA alleles differ in transforming potency in human breast 

epithelia, although they did not study these particular mutants (62).

Contrary to Sharma et al.’s initial report on NSCLC (20) and other studies (31,32,56,57), 

only one Type III line (EFM192A) gave rise to DTEPs. The NSCLC lines studied by 

Sharma et al. and others contain cells with pre-existing TKI resistance mutations, which give 

rise to “early resistance”. By contrast, 12–16 weeks of TKI exposure are needed before “late 

resistance” emerges (56). Conceivably, our 8-week observation period might have been too 

short to observe the latter. Two very recent studies identified cells with properties of “cycling 

DTPs” in several cancer cell lines (31,32); presumably, these cells correspond to DTEPs. 

However, consistent with our failure to observe cells with DTEP-like behavior in most Type 

III lines, cycling DTPs were not observed in the two HER2+ breast cancer lines analyzed by 

Oren et al. (31).

HER2+ tumors can be divided into “HER2-enriched” and “HER2-luminal” subtypes (63). 

The former express higher levels of RTK and mesenchymal genes; the latter feature luminal 

and estrogen response genes (64). We find that cell lines that model these patient subgroups 

yield DTPs with distinct transcriptomes. Luminal-like DTPs survive via an ER-driven 

program, as demonstrated by their sensitivity to HER2-TKI/fulvestrant combinations. These 

results provide a mechanistic underpinning for the empirically derived use of anti-estrogen 

plus HER2-targeted therapy in HER2+/ER+ patients (65). By contrast, mesenchymal 

DTPs appear to use a SMAD/SOX-driven transcriptional program. It will be important 

to delineate the molecular drivers for this program (e.g., TGFβ, BMPs) so that it too 

can be targeted prospectively in patients with HER2+/ER- tumors. While our manuscript 

was in revision, diapause (28,29), senescence-like (30), chemotherapy-induced (30), and 

MYC-gene signatures (28–30), were found to be upregulated or repressed in other DTPs. 
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We also had noted downregulation of MYC genes in our original analyses, but the other 

signatures were not present in the pathway gene sets that we initially used for GSEA. 

Re-analysis with an expanded collection revealed enrichment for the diapause and, in some 

cell lines, the chemotherapy-induced and senescence-like signatures. Thus, while luminal 

and mesenchymal programs dominate the transcriptomes of DTPs from HER2+ER+ and 

HER2+ER- lines, respectively, these cells also share features with DTPs induced by other 

agents and in other tumor types. Notably, these signatures are also detectable in select cells 

from primary HER2+ and triple negative breast cancers.

Concepts such as dormancy, quiescence, “cancer stem cells”, persistence, residual disease 

and their relationship to disease recurrence and therapeutic resistance have long been 

debated (66–69). The classical “cancer stem cell” (CSC) hypothesis, for example, posits 

a defined hierarchy in which a limited number of CSCs can self-renew and give rise to 

all other cells in a tumor (70,71). CSCs are often portrayed as slow-cycling and more drug-

resistant than bulk tumor cells (although these properties are not necessarily intrinsic to the 

concept). Earlier studies of other malignancies, using limiting dilution, cell surface marker, 

and/or genetically encoded reporter approaches (21,23,72), suggested that, by contrast, 

DTPs have a stochastic origin. Our lentiviral barcoding experiments provide unambiguous 

evidence that HER2 TKI-DTPs arise stochastically: over a several week period, essentially 

every initially tagged HER2+ breast cancer cell exhibited the capacity to give rise to a DTP. 

While our manuscript was in revision, two groups used lentiviral barcoding of xenografts 

to reach similar conclusions about chemotherapy-induced DTPs (28,29). In concert, then, 

the preponderance of the evidence argues against drug resistance arising from intrinsically 

therapy-resistant CSCs in HER2+ breast cancer and most, if not all, other malignancies.

Yet while every cell can, over time, become a DTP, fluctuation analysis implies that at 

any given time, HER2+ breast cancer cells differ in their propensity to become DTPs. 

Consistent with this implication, scRNA-seq reveals “pre-DTPs”, characterized by a G0-like 

transcriptional signature, increased or decreased expression of subsets of DTP DEGs that 

are up- or down-regulated, respectively, in DTPs, and consistent repression of MYC genes 

and genes that are downregulated during embryonic diapause. Trajectory analysis of two 

HER2+/ER+ cell lines indicates that G0-like pre-DTPs give rise to most DTPs, and direct 

evidence is provided by the increased DTP-forming activity of untreated BT474 cells 

expressing high levels of either of two cell surface markers suggested by the scRNA-seq 

analysis to be enriched in pre-DTPs, NPY1R or ABCC5. NPY1Rhi-enriched BT474 cells 

have increased basal expression of ER target genes and further induce the ER transcriptome 

upon TKI exposure. These findings are consistent with a model in which a subset of 

cells (pre-DTPs) is “primed” for induction into bona fide DTPs upon TKI (and possibly, 

chemotherapy) exposure, as opposed to the concept of drug-induced epigenetic change. This 

“priming/induction” model implies that some, although certainly not all, genes enriched in 

DTPs reflect selection for pre-DTP genes. For example, Hangauer et al. (59) reported that 

compared with parental cells, BT474-DTPs feature global downregulation of antioxidant 

genes, including genes encoding glutathione peroxidases (e.g., GPX1, GPX2, GPX4). They 

also found that GPX4 inhibition is selectively toxic to DTPs. BT474 pre-DTPs also display 

lower levels of GPX1 and GPX4 compared with other untreated cells (Supplementary Tables 

4 and 5). These findings suggest selection of pre-existing GPX1/4-low pre-DTPs, rather 
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than induction of a GPX1/4-low state and provide an alternate explanation for why GPX4 

inhibitor pre-treatment prevents lapatinib-DTP generation (66).

Our results indicate that nearly all (~90%) BT474-DTPs arise from cells with a G0-like 

expression signature (DTP1). Although it is generally believed that cultured cells in 

complete media cycle continuously and enter G0 only upon growth factor depletion, Spencer 

and Meyer showed that depending on the level of CDK2 activity at M phase exit, cells 

transit either through G0 or directly enter G1 (73). Our finding that untreated HER2+ 

breast cancer lines harbor cells with a G0-like transcriptome extends their observations. 

BRAFV600E-mutant melanoma cell lines (especially in 3D culture) also have a “slow 

cycling” fraction of cells marked by JARID1B (KDM5B) expression, which is required 

for continuous passaging of tumors (72). Similar to the pre-DTPs in our study, JARID1B-

positive and -negative cells stochastically interconvert, and vemurafenib treatment enriches 

for JARID1B+ cells (24). These lines also stochastically express select RTKs (e.g., EGFR, 

TRKA/NGFR, AXL) in the absence of drug exposure, and these RTK+ cells are enriched 

for vemurafenib resistance (23). Human melanoma samples also have small populations of 

KDM5B-positive cells (72) and scRNA-seq (74) shows that KDM5B expression correlates 

with a “G0/G1” signature. Furthermore, cells in a G0-like neural crest state pre-exist in a 

zebrafish melanoma model and are selected for upon BRAF inhibitor treatment (75). While 

none of these reports explicitly equate G0-like cells with pre-DTPs, in concert these data are 

certainly consistent with such a model.

Conversely, a small fraction of DTPs (DTP2) is enriched for G2/M genes (Fig. 5K). 

Conceivably, DTP2 cells correspond to the recently observed “cycling DTPs” (31,32). 

Because we saw no expansion/colony formation of lapatinib- or tucatinib-treated BT474 

cells over an ~8-week period, we cannot exclude the possibility that these cells are 

growth arrested permanently or committed to die. Interestingly, the DTP1 and DTP2 states 

correspond to the two “decision” points in the cell cycle (G0/G1 and G2/M) identified 

by Spencer and Meyer, raising the possibility that cellular plasticity might be greatest in 

these cell cycle phases. Interestingly, Drosophila neural stem cells subjected to nutritional 

deprivation (the same conditions that induce diapause) arrest in, and re-enter the cell cycle 

from, either G0 or G2/M (76). Regardless, “non-cycling” DTPs comprise the majority DTP 

population in HER2+ breast cancer lines (as well as in nearly all cell lines studied in these 

recent reports), remain capable of resuming proliferation, and forming new tumors after drug 

removal, and appear to be present in primary HER2+ tumors from patients. Furthermore, a 

high G0 expression signature correlates with decreased pCR in a clinical trial of neoadjuvant 

lapatinib. Hence, strategies to eliminate both non-cycling and cycling DTPs will be required 

to obtain durable remissions/cures.

Our results suggest several such strategies. As determined empirically in the clinic, 

combining fulvestrant with HER2 TKI results in markedly decreased DTP formation. 

Notably, BCL2 is up-regulated in luminal-like DTPs (Supplementary Table 2) and might 

be targeted with BH3 agonists (e.g., Venetoclax). Furthermore, we find that luminal- and 

mesenchymal-like DTPs reactivate PI3K/mTOR signaling via pathway rewiring. Although 

combining lapatinib and PI3K inhibitors could be limited by toxicity (77), targeting these 

rewired pathways could prove beneficial. Comporting with previous reports that SGK1 or 

Chang et al. Page 14

Cancer Discov. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SGK3 can mediate AKT-independent activation of mTORC1 and survival in cancer cells 

treated with PI3K⍺-specific or AKT inhibitors (48,52), we find that SGK3 is a key ER 

target that mediates survival in luminal-like DTP and could be targeted to prevent DTP 

generation. Our results also provide new mechanistic insight into how SGK3 activates 

mTORC1. AKT phosphorylates five sites on TSC2 (S939, S981, S1130, S1132, T1462), 

and all of these sites are required for AKT-mediated mTORC1 activation (49–51,53). Our 

MS analysis demonstrates that SGK3, like SGK1 (52), can phosphorylate these five sites on 

TSC2, as well S1798. Furthermore, all six SGK3-evoked sites must be ablated to abolish 

SGK3-mediated mTORC1 activation. Our results also contrast with previous work arguing 

that PRAS40 is a selective AKT target (48); at least when SGK3 levels are increased, it can 

mediate PRAS40 phosphorylation (Fig. 7H). Conversely, NDRG1 (T346) phosphorylation 

is primarily dependent on SGK3, although we did observe additive inhibition of NDRG1 

(T346) phosphorylation when AKT and SGK3 inhibitors were combined, consistent with 

previous reports that both kinases can phosphorylate this site (52,78,79).

While mesenchymal DTPs also rewire their signaling pathways to enable AKT-independent 

mTORC1 activation, the alternative kinase and detailed mechanism remains to be elucidated. 

Future work is also needed to uncover the epigenetic mechanism(s) for priming of the 

“pre-DTP” state and its transient, but differential heritability in HER2+ breast cancer cells.

MATERIALS AND METHODS

Reagents

Tissue culture reagents, including regular DMEM, RPMI, and FBS were purchased 

from Wisent Bioproducts. PD0325901 was synthesized as described (80), and 14h was 

synthesized by BioDuro according to a published protocol (54). Lapatinib ditosylate was 

purchased from LC Laboratories, tucatinib was purchased from MedChemExpress, 5-FU 

was purchased from Sigma, and Trastuzumab was obtained from the NYU Langone Health 

pharmacy. Fulvestrant, BKM120, MK2206, and GSK690693 were purchased from Selleck 

Chemicals. GSK2334470 was purchased from Tocris. Recombinant SGK3 (cat #14–647) 

was purchased from EMD-Millipore.

Plasmids and Site-directed Mutagenesis

The expression construct for SGK3-GST was provided by Dr. Alex Toker (Beth Israel 

Deaconess Medical Center, Boston, MA). pcDNA3-based plasmids encoding FLAG-tagged 

wild type and SATA (S939A/T1462A)-mutant TSC2 (50) were obtained from Addgene. The 

TSC2–5A (S939A, S981A, S1130A, S1132A, T1462A) and TSC2–6A plasmids (S939A, 

S981A, S1130A, S1132A, T1462A, S1798A) were constructed using TSC2-SATA as the 

template for site-directed mutagenesis and the QuikChange Multi Site-Directed Mutagenesis 

Kit (Agilent Technologies). The sequences of all point mutations were verified by Sanger 

sequencing.

Cell Culture and Transfections

Cell lines were purchased from the American Type Culture Collection or Deutsche 

Sammlung von Mikroorganismen und Zellkulturen, and their genotypes were confirmed 
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by short tandem repeat (STR) analysis (81). Cells were tested regularly for mycoplasma 

by using a PCR-based kit from Agilent Technologies. MDA-MB-453, BT474, SKBR3, 

UACC893, and 293T cells were maintained in DMEM supplemented with 10% fetal 

bovine serum (FBS) and penicillin and streptomycin (Pen/Strep). MDA-MB-361 cells were 

maintained in DMEM supplemented with 20% FBS and Pen/Strep. HCC1569, HCC202, 

HCC1419, and EFM192A cells were maintained in RPMI supplemented with 10% FBS 

and Pen/Strep. SUM225 cells were maintained in Ham’s F12 supplemented with 5% FBS, 

5 μg/ml insulin, 1 μg/ml hydrocortisone, and 10 mM HEPES. Transient transfections 

of plasmids were performed by using LipoD293™ In Vitro DNA Transfection Reagent 

(SignaGen Laboratories). Transient transfections of SMARTPool SGK3 siRNA (L-004162–

00-0005, Horizon Discovery) were performed with Lipofectamine RNAiMAX Transfection 

Reagent (Thermo Fisher Scientific).

Cell Proliferation Assays

HER2+ breast cancer lines were exposed to 2.5 μM lapatinib or 1.2 μM tucatinib. Viable cell 

number at each time point was quantified by using a Vi-Cell counter (Beckman-Coulter), 

and % survival was calculated relative to viable count before drug exposure (t=0). To 

assess the reversibility of lapatinib/tucatinib tolerance, cells were trypsinized, washed three 

times in PBS, and re-plated in standard growth media without lapatinib/tucatinib. At the 

indicated times after TKI withdrawal, cells were trypsinized and re-plated on 6-well plates 

at 500,000–1,000,000 cells/well. Cells were allowed to attach overnight, some wells were 

trypsinized to obtain an initial viable cell count (Countt0), and the rest were treated with 

lapatinib for 7 days to obtain the day 7 viable cell count (Countt7). Survival of cells 

following drug re-challenge was calculated as Countt7/Countt0.

For assessing the response of parental cells to lapatinib in combination with fulvestrant or 

estrogen depletion, cells (10,000/well) were seeded into 96-well plates. NPY1R-selected 

cells were treated immediately after FACS with lapatinib and/or the indicated treatments for 

14 days and then switched to the regular growth media without the drug for 14 days to assay 

for regrowth. Residual cells were imaged by using an IncuCyte apparatus with a colored 

mask used to show cells that remained on the plate. ABCC5-selected cells were treated 

immediately after FACS with lapatinib or tucatinib for 14 days. Cells were then counted 

using Countess II FL Automated Cell Counter (Invitrogen) with trypan blue to exclude dead 

cells.

The cytotoxic effects of various drugs were assessed by treating DTPs in 96-well plates 

(1,000–3,000 cells/well) with serial dilutions of each agent for 96 hours. At the assay 

end point, cell number was estimated by using AlamarBlue® Cell Viability Reagent (Life 

Technologies) and measuring fluorescence (excitation: 540 nm; emission: 590 nm) with a 

Spectramax microplate reader (Molecular Devices).

Tumorigenicity Assays

All animal studies were approved by the Animal Care Committee of University Health 

Network and were performed in accordance with the standards of the Canadian Council 

on Animal Care. The indicated numbers of parental BT474 cells and BT474-DTPs in 1:1 
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HBSS:Matrigel (BD Biosciences) were injected into the mammary fat pads of NSG mice. 

Mice were monitored for tumor formation for up to 5 months.

Lentiviral Barcoding

Barcode Library: Oligonucleotides comprising a 12 base pair degenerate region (the 

barcode) followed by two stable bases (C or G) and one of several four base pair 

library codes were synthesized with common flanking regions (Sigma Aldrich, St. Louis, 

MO, USA). Nested PCR using the common regions generated double-stranded DNA, 

which was ligated into the second-generation lentiviral vector pLJM1, which contains a 

puromycin resistance cassette and ZsGreen fluorescent marker. Three barcode libraries, each 

identifiable by a unique library code, were cloned, transformed into E. coli, and plated as 

a pool on solid media. More than 5×106 bacterial colonies were scraped and pooled for 

two of the high diversity libraries. Plasmid DNA was isolated, and a sample was sequenced 

to confirm a diversity of >106 unique barcodes. These libraries were named Library 0 and 

Library 1. The third library was generated to use for standard spike-in controls. Single 

colonies were selected, prepped and Sanger sequenced to identify several standard barcodes.

Lentiviral Transduction and Barcoding Experiments: Lentiviruses containing 

barcode plasmid libraries were produced in HEK293T cells. BT474 cells (1×106) were 

plated on a 6 cm dish and infected with the lentiviral library at MOI=0.1 to ensure that 

each barcode was present in only a single cell. The infected population was expanded to 

50 million cells, and cells were not discarded during passaging to preserve representation 

of the barcodes. One million cells were analyzed in triplicate to assess initial representation 

of the barcodes. Ten million cells were plated in triplicate on 15 cm dishes, and cells were 

treated with 2.5 µM lapatinib for 14 days (experiment 1). The remaining cells were kept 

in culture until the start of experiment 2 (below). After 14 days of lapatinib treatment, the 

remaining cells (approximately 1 million cells) were collected for genomic DNA (gDNA) 

extraction. The experiment was repeated (experiment 2) after 14 days of culture of the 

remaining cells from above. Single barcoding experiments were performed on HCC1419, 

SKBR3, and EFM192A cells by following the protocol described above for experiment 1.

Barcode Amplification and Sequencing: The gDNA for all samples was adjusted to 

400ng/µL using nuclease-free water. Sequencing libraries were constructed by PCR 

amplification using a common 3’ primer “BL Seq Amp 3’: 

AATGATACGGCGACCACCGAGATCT and one of 166 unique 5’ primers “BL Seq Amp 

5’ 

XXX”:CAAGCAGAAGACGGCATACGAGATNNNNNNCGATTAGTGAACGGATCTCG

ACGGT, where the “N”s represent a unique sample index. Each gDNA was amplified as a 

technical triplicate with unique indexes using ExTaq (Takara Cat#RR001A) with PCR 

program of 95˚C for 5 minutes, 94˚C for 30 seconds, 65˚C for 30 seconds, 72˚C for 30 

seconds, and back to step 2, 32x followed by a 5 minute hold at 72˚C. PCR efficiency was 

assessed by running the product on a 3% agarose gel. The 137 bp barcode library band was 

quantified using Bio Rad Image Lab software. Equal amounts of each PCR product were 

pooled into batches and purified on 15% TBE PAGE gels (Novex). Purified PCR products 

were quantified by using a Qubit, pooled, and sequenced on an Illumina HiSeq2500 with 
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version 4 chemistry using Illumina sequencing primer: 

ACACTCTTTCCCTACACGACGCTCTTCCGATCT and custom primer: 

ATCGATACCGTCGAGATCCGTTCACTAATCG for multiplexed sample ID. Samples were 

de-multiplexed and barcode abundances were analyzed.

Barcode Processing and Analysis: FASTQ files for each sequenced sample were 

processed using a bespoke Perl script. Each read was examined to identify one of the three 

expected library codes (CCAA, ACGT, or TGGA) followed by eight bases corresponding 

to the vector sequence (e.g., ATCGATAC), allowing up to one mismatched base for each 

feature. Reads lacking both of these sequences were discarded. The nucleotide sequence 

corresponding to the barcode was extracted as the 18 nucleotides preceding the vector 

sequence, and all unique barcodes were counted. All barcode count files, one per sample, 

were then merged into a single matrix. Noise introduced through sequencing or PCR errors 

was reduced by collapsing barcodes within a Hamming distance of two into a single barcode 

record, where the barcode with the highest average abundance was retained as the “parent” 

barcode. Next, samples with fewer than 100,000 filtered sequence reads were removed, 

and each sample was normalized for sequencing depth by dividing all read counts in a 

sample by the sum of all read counts. Technical replicates were combined by averaging, and 

barcodes that were observed in only one sample were removed as potential artefacts. The 

final barcode matrix comprised 154,262 barcode sequences.

Fluctuation Analysis: We consider a model wherein individual cells switch stochastically 

between the non-DTP and a DTP state. Each state is transiently heritable; i.e., cells remain 

in that state for multiple generations before switching to the other state. Recent work used 

the classical Luria-Delbrück fluctuation test framework to estimate switching rates based 

on variations in the number of DTP-like cells between single-cell derived lineages (23,42). 

In essence, if DTP cells arise purely randomly, then one expects a Poisson distribution 

(i.e., minimal fluctuation) for the number of DTP cells across lineages. By contrast, large 

lineage-to-lineage fluctuations imply transient heritability of the DTP state with increasing 

heritability driving enhanced fluctuation.

Let f denote the fraction of cells that are DTPs. Then, the extent of fluctuation in the fraction 

of DTP cells between lineages (as quantified by the coefficient of variation CV) is given by:

CV 2 × f =
2 × TDTPeT − 2T

TDTP − 2 − TDTP
2eT − 1 TDTP − 2

where T is the number of generations that single cells were expanded before treatment, and 

TDTP is the average number of generations a cell remains in the DTP state before switching 

to a non-DTP state (42). Based on the barcoding data, we first compute the fraction of DTP 

cells in each lineage by taking the ratio of the number of reads after 14-days of treatment 

to that at the start of treatment. The analysis was restricted to lineages with >5,000 barcode 

counts at treatment onset. We obtain CV2 = 0.96, 0.13, 2.2, 0.25 for EFM192A, HCC1419, 

SKBR3 and BT474, respectively. To estimate the technical noise, we quantified variations in 

the fraction of DTP cells between technical replicates averaged across all lineages and found 
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this variation to be ~0.04. As the technical noise is at least an order of magnitude lower 

than the computed inter-lineage CVs, this result strongly argues against the random Poisson 

model and points to memory in the DTP state. We then use the above equation to calculate 

transient heritability (TDTP) from the CV values. For these experiments, t = 6 generations, 

and f = 0.1 for SKBR3 and BT474, f = 0.3 for EFM192A, f = 0.4 for HCC1419 (see Fig. 

1A). Hence, the transient heritability of the DTP state is estimated as 6.2 ± 0.9 (SKBr3), 2.6 

± 0.4 (HCC1419), 7.3 ± 1 (EFM192A), and 2.2 + 0.4 (BT474), where the 95% confidence 

interval is estimated using bootstrapping. The experimentally obtained distributions of the 

fraction of DTP cells together with model fits are illustrated in Supplementary Fig. S2C. 

Model fits are based on a beta distribution with mean f and coefficient of variation as 

predicted by the above equation.

Bulk RNA-seq

Bulk RNA sequencing was conducted by the Princess Margaret Genomics Center or the 

Perlmutter Cancer Center (PCC) Genome Technology Center (GTC). RNA was extracted 

using the RNeasy Mini Kit followed by treatment with RNase-free DNase to remove 

contaminating genomic DNA. RNA (200 ng) was reverse transcribed by using the Illumina 

TruSeq Stranded Total mRNA kit. Libraries were sized on an Agilent Bioanalyzer, and their 

concentrations were validated by qPCR. The libraries were then loaded onto an Illumina 

NextSeq cartridge V2 for cluster generation, and the flow cell was subjected paired-end 

sequencing on Illumina Nextseq500.

For lapatinib DTPs, alignment was performed with STAR v.2.5.2, and reads were mapped 

to the human reference genome (hg38). Mapped reads were quantified by RSEM v.1.3.0, 

and differential expression was assessed by using DESeq2. DEGs were identified by a 2×2 

analysis that compared genes expressed in DTP and parental cells after separating lines 

into luminal-like (BT474 and HCC1419) and mesenchymal-like (EFM192A and SKBR3) 

groups. Sequencing reads for tucatinib DTPs were mapped to the reference genome (hg19) 

using the STAR aligner (v2.5.0c) (82). Alignments were guided by a Gene Transfer Format 

(GTF) file. Mean read insert sizes and their standard deviations were calculated using Picard 

tools (v.1.126) (http://broadinstitute.github.io/picard). The read count tables were generated 

using HTSeq (v0.6.0) (83), normalized based on their library size factors using DEseq2 (84), 

and differential expression analysis was performed. The top 500 differentially expressed 

(sorted by the highest adjusted p value) genes were visualized in heatmaps. The Read 

Per Million (RPM) normalized BigWig files were generated using BEDTools (v2.17.0) 

(85) and bedGraphToBigWig tool (v4). Gene set enrichment analysis was performed 

using GSEA tool (86). Samples were compared by principal component analysis or 

Euclidean distance-based sample clustering. All downstream analyses were performed in 

R environment (v3.1.1) (https://www.r-project.org/). ChIP Enrichment Analysis (ChEA) was 

performed with Enrichr. Pathway and gene ontology analysis were performed by ranking 

genes according to fold-change in the 2×2 or the 4×4 analysis using Bader lab pathway 

gene sets (Human_GOBP_AllPathways_no_GO_iea_August_01_2018_symbol.gmt, http://

download.baderlab.org/EM_Genesets/August_01_2018/Human/symbol/). To compare the 

overlap of DEGs between DTPs and NPY1Rhi cells, the cut-off was set at abs FC>2 

and p<0.05. Statistical enrichment was then assessed by calculating the Fisher’s exact test. 
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To ask if NPY1Rhi breast cancers are enriched for ER targets, transcript enrichment was 

assessed by using cBioPortal and TCGA human breast cancer datasets (63).

Analysis of NeoALTTO Trial Data

RNA-seq data on tumor samples from the NeoALTTO clinical trial (87) were processed 

using STAR aligner (82) and the R package Rsamtools (version 1.24.0). G0 gene signatures 

along with the gene specific weight of +1 or −1, indicating the direction of association 

with the G0 state, were obtained from the original publication using FDR q<0.1 (88). These 

gene-specific weights along with z-score normalized count per million values were used 

to compute the weighted sum score for each sample in the dataset. Association between 

weighted gene signature score and pathologic complete response (pCR) was computed using 

two-sided Student’s t-test. An analogous approach was used to compute the diapause, CISG, 

senescence, and Myc targets scores in Supplementary Fig. S4.

Single Cell RNA-sequencing

BT474 and HCC1419 samples were prepared by the Princess Margaret Genomic Centre 

following the 10X Genomics Single Cell 3’ Reagent Kits v2 user guide. Briefly, samples 

were washed two times in PBS (Life Technologies) + 0.04% BSA (Sigma), re-suspended 

in PBS + 0.04% BSA, and loaded onto a 10X single cell A chip. After droplet 

generation, samples were transferred onto pre-chilled 96-well plates (Eppendorf), heat-

sealed, and incubated overnight in a Veriti 96-well thermal cycler (Thermo Fisher) for 

reverse transcription (RT). Following RT, cDNA was recovered using the Recovery Agent 

provided by 10X and purified by using Silane DynaBead (Thermo Fisher) mix, as outlined 

by the user guide. Purified cDNA was amplified for 13 cycles before purification on 

SPRIselect beads (Beckman). Samples were diluted 4:1 (elution buffer (Qiagen):cDNA), 

and cDNA concentration was determined with a Bioanalyzer (Agilent Technologies). cDNA 

libraries were prepared as outlined by the Single Cell 3’ Reagent Kits v2 user guide with 

modifications to the PCR cycles based on the calculated cDNA concentration.

The molarity of each library was calculated based on library size, as measured by a 

Bioanalyzer and qPCR quantification (Roche/Kapa BioSystems). Samples were pooled and 

normalized to 10 nM, then diluted to 2 nM using elution buffer (Qiagen) containing 0.1% 

Tween20 (Sigma). Each 2 nM pool was denatured in an equal volume of 0.1N NaOH for 

5 minutes at room temperature. Library pools were further diluted to 20 pM using HT-1 

(Illumina), before dilution to a final loading concentration of 16 pM, and 100 μl from the 16 

pM pool were loaded into each well of an 8-well strip tube and placed onto a cBot (Illumina) 

for cluster generation. Samples were sequenced on a HiSeq 2500 V4 with the following run 

parameters: Read 1 – 26 cycles, read 2 – 98 cycles, index 1 – 8 cycles.

EFM192A, SKBR3, SUM225, and primary breast tumor samples were sequenced by 

the GTC. Primary samples were obtained under a protocol approved by the Institutional 

Research Board (IRB) of NYU Langone Health (IRB No. S15–00441, S17–01382 and 

S16–00122) and processed as described previously (89). Cell lines were stained using 

Biolegend TotalSeq anti-human Hashtag Antibodies 7–10 (Cat #’s 394613, 394615, 394617, 

394619) following the New York Genome Center Technology Innovation Lab’s posted 
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protocol (https://citeseq.files.wordpress.com/2019/02/cell_hashing_protocol_190213.pdf). 

Stained cellular suspensions were loaded on a 10x Genomics Chromium instrument to 

generate single-cell gel beads in emulsion (GEM). Approximately 10,000 cells/hash-tagged 

population were loaded per channel. Single-cell RNA-Seq and hashtag libraries were 

prepared using the following Single Cell 3’ Reagent Kits v3.1: Chromium Next GEM Single 

Cell 3’ GEM, Library & Gel Bead Kit v3.1, PN-1000121; Chromium Next GEM Chip G 

Single Cell Kit, PN-1000120; Chromium Single Cell 3’ Feature Barcode Library Kit, PN- 

1000079 and Single Index Kit T Set A PN-1000213 (10x Genomics), as described in (90) 

and the Single Cell 3’ Reagent Kits v3.1 User Guide with Feature Barcoding Technology 

(Manual Part # CG000206 Rev D). Libraries were sequenced on an Illumina Nextseq 2000 

using paired-end reads, read1 was 28 cycles, i7 index was 8 cycles, and read2 was 91 cycles. 

The libraries comprised 50% of the flow cell yielding >49% sequencing saturation.

scRNA-seq Data Analysis

Pre-processing: After confirming cDNA integrity, library quality, number of 

cells sequenced, and mean number of reads per cell, Cell Ranger Single-Cell 

Software (https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/

latest/what-is-cell-ranger) was used to map the reads and generate gene-cell matrices. 

Quality control was performed to calculate the number of genes, UMIs, and the proportion 

of mitochondrial genes for each cell using the iCellR R package (v1.6.4) (https://cran.r-

project.org/web/packages/iCellR/index.html). Cells with particularly low or high numbers of 

covered genes were filtered. The matrix was normalized (LogNormalize) by dividing the 

feature counts for each cell by the total counts for that cell and multiplying by the scaling 

factor and then the matrix was log transformed (log1p). Highly expressed and dispersed 

genes were used as a gene model for PCA. To fine-tune the results, a second round of 

PCA was performed based on the top 20 and bottom 20 genes predicted in the first 10 

dimensions of PCA (400 genes). Uniform Manifold Approximation and Projection (UMAP) 

and clustering were performed on the top 10 PCs.

Cell Cycle Analysis: The cell cycle phase-specific gene signatures defined by Xue et 
al. (44) were used to calculate phase-specific scores for G0, G1S, G2M, M, MG1, and S. 

To account for differences in gene set sizes, we used a scoring method similar to Tirosh 

et al. (74), implemented in the “i.score” function of iCellR. For Figure 3, we compared 

the sum of phase-specific gene expression (log10 transformed UMIs) to the distribution of 

random background gene sets, where the number of background genes is identical to the 

phase-specific gene set and are drawn from the same expression bins. Each cell was assigned 

to a cell-cycle stage based on its highest phase-specific score. Cell-cycle UMAP was 

performed using all of the cell-cycle-phase-specific gene-expression signatures as the input 

features in the RunUMAP function (umap.method = “umap-learn”, metric = “correlation”). 

For Figure 4, the raw data was normalized as described above using “LogNormalize”, 

and the scores were calculated with the following settings: i.score(my.obj, scoring.List = 

c(“G0”,”G1S”,”G2M”,”M”,”MG1”,”S”), scoring.method = “tirosh”, return.stats = TRUE). 

Each cell’s cell cycle phase was assigned as its highest cell cycle score. Scoring for other 

signatures was performed by using the same approach, and scores were then displayed 

as boxplots. DTP gene expression signature scores were calculated by selecting the top 
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150 most significant differentially expressed genes from bulk RNAseq and applying the 

approach for calculating the cell-cycle-phase specific score described above. All gene 

signatures are in Supplementary Table S12.

Trajectory Analysis: After pre-processing of the scRNA-seq data, we selected the first 

15 dimensions of the PCA for each time point (untreated, 6h-treated, DTP) of BT474 

and HCC1419 cells for additional clustering and dimensionality reduction. Clustering was 

performed by using iCellR with the following settings: iCellR options: clust.method = 

“ward.D”, dist.method = “euclidean”, index.method = “kl”; phonograph options: k =200, 

dims = 1:15 on these principal components, and dimension reduction was accomplished by 

using Uniform Manifold Approximation and Projection (UMAP) (91). For each cell line, 

we used Monocle2 (v2.16.0) to define pseudotime trajectories. The raw count matrix was 

used as the input, and the first 10 PCA dimensions of genes identified by iCellR were used 

for building the trajectories. The reduceDimension function with “DDRTree” algorithm was 

used to build the trajectory. Cells in the same branch of the trajectory share similar gene 

expression patterns.

Visualization and Statistical Analysis: All visualization and statistical analyses were 

performed in R (v4.0.0) (http://www.r-project.org/). Two groups were compared using an 

unpaired t-test. Significance was defined as ns, P > 0.05; *, P < 0.05; **, P < 0.01; ***, 

P < 0.0001; ****, P < 0.0001. Heatmaps were generated by using the pheatmap package 

(v1.0.12) with scale = “row” argument.

Quantitative RT-PCR

RNA was extracted using the RNeasy Mini Kit (Qiagen), mRNAs were reverse transcribed 

with SuperScript III First Strand Synthesis (Invitrogen), and iQ™ SYBR® Green Supermix 

was used for qPCR on CFX96 (Bio-Rad). Relative expression was calculated with the 

delta-delta Ct method (ΔΔCt). Briefly, the Ct value of the gene of interest was subtracted 

from the Ct value of the housekeeping gene TBP to yield ΔCt and the ΔCt from 

the sample of interest is subtracted with control sample to yield ΔΔCt. The relative 

expression is expressed as 2-ΔΔCt. The following primers were used for qPCR: SGK3: 

F, 5’-GTGCCCGAAGGTTGCATGAT-3’ and R, 5’-ATCCCTCAAGAGCACACCAA-3’; 

NPY1R: F, 5’- GCAGGAGAAATACCAGCGGA-3’ and R, 5’- 

TCCCTTGAACTGAACAATCCTCTT-3’; TBP: F, 5’-TGTGCACAGGAGCCAAGAGT-3’ 

and R, 5’-ATTTTCTTGCTGCCAGTCTGG-3’.

Flow Cytometry and Fluorescence Activated Cell Sorting (FACS)

Cells were released from plates by incubating with 0.05% trypsin and then stained with 

primary antibody (1 μg/106 live cells) against NPY1R (MAB6400; R&D Systems) followed 

by secondary antibody against human IgG for 30 minutes on ice and/or with PE-conjugated 

ABCC5 (sc-376965 PE; Santa Cruz). Flow cytometry was conducted on a Becton Dickinson 

analyzer, and FACS was performed by using a FACSAriaII. Post-FACS purity checks were 

performed to ensure that each fraction was >90% of the population of interest. Where 

specified, RT-qPCR was conducted to determine whether the sorted fractions showed the 

expected differential expression of NPY1R. For NPY1R and Hoechst33342 co-staining, 

Chang et al. Page 22

Cancer Discov. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.r-project.org/


NPY1R staining was first performed on live cells on ice as above, then cells were fixed with 

4% PFA, and permeabilized in 0.1% Triton-X. Finally, Hoechst33342 (10 μg/ml) was added 

for 20 minutes, and cells were analyzed on the flow cytometer.

Biochemical Assays

Immunoblotting: Cells were lysed in RIPA buffer (50 mM Tris-HCl, pH 7.5, 150 mM 

NaCl, 2 mM EDTA, 1% NP-40, 0.5% Na deoxycholate, and 0.1% SDS) with protease 

and phosphatase inhibitors (40 μg/ml PMSF, 20 mM NaF, 1 mM Na3VO4, 10 mM β-

glycerophosphate, 10 mM sodium pyrophosphate, 2 μg/ml antipain, 2 μg/ml pepstatin A, 20 

μg/ml leupeptin, and 20 μg/ml aprotinin). Lysates were cleared by centrifugation at 15,000 

g for 10 minutes at 4°C, and supernatants were collected. Protein concentrations were 

quantified by Bradford assay (Thermo Scientific), and 10–30 μg total cellular protein were 

resolved on SDS-PAGE and transferred onto Immobilon-FL PVDF membranes (Millipore). 

Bound antibodies were detected with IRDye infrared secondary antibodies using the 

Odyssey Infrared Imaging System (LI-COR Biosciences). Primary antibodies used for 

immunoblots included: pHER2 Y1221/1222 (2249; Cell Signaling Technology), c-ErbB2 

(OP15L; Millipore), pEGFR Y1068 (2234, Cell Signaling Technology), EGFR (2232, 

Cell Signaling Technology), pERBB3 Y1289 (4791; Cell Signaling Technology), ERBB3 

(sc-285, Santa Cruz Biotechnology), pAKT S473 (4060, Cell Signaling Technology), 

pPRAS40 T246 (13175; Cell Signaling Technology), p-p70 S6 Kinase T389 (9205; 

Cell Signaling Technology), p-p44/42 (9101L; Cell Signaling Technology), ERK2 (C-18; 

Santa Cruz Biotechnology Inc.), p-GSK3β S9 (9336; Cell Signaling Technology), pTSC2 

S939 (ab52962; Abcam), pS6 S240/244 (2215; Cell Signaling Technology). pFoxO1 

(Thr24)/FoxO3a (Thr32) (9464; Cell Signaling Technology), SGK3 (8156; Cell Signaling 

Technology), pNDRG1 (T346) (5482; Cell Signaling Technology), p-AKT substrate (9614L, 

Cell Signaling Technology), TSC2 (3990; Cell Signaling Technology).

Kinase Assays: To enrich for dephosphorylated TSC2 to use as a substrate for in 
vitro kinase assays, pcDNA3-wtTSC2 was transfected into 293T cells, and after 24 hours, 

transfected cells were treated with 1 μM BKM 120 for 1 hour before lysis in kinase assay 

lysis buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% NP-40, 1 mM EDTA, 1 mM 

EGTA, 40 μg/ml PMSF, 20 mM NaF, 1 mM Na3VO4, 10 mM β-glycerophosphate, 10 mM 

sodium pyrophosphate, 2 μg/ml antipain, 2 μg/ml pepstatin A, 20 μg/ml leupeptin, 20 μg/ml 

aprotinin, 0.1% (v/v) 2-mercaptoethanol). FLAG-tagged TSC2 was immunoprecipitated 

with ANTI-FLAG® agarose beads (Sigma) for 2 hours at 4°C. Beads were subsequently 

washed once with high-salt kinase assay wash buffer (50 mM Tris-HCl, pH7.5, 500 mM 

NaCl, 1% NP-40, 1 mM EDTA, 1 mM EGTA, 40 μg/ml PMSF, 20 mM NaF, 1 mM 

Na3VO4, 10 mM β-glycerophosphate, 10 mM sodium pyrophosphate, 2 μg/ml antipain, 2 

μg/ml pepstatin A, 20 μg/ml leupeptin, 20 μg/ml aprotinin, 0.1% (v/v) 2-mercaptoethanol), 

once with kinase assay lysis buffer, and twice with kinase assay buffer (50 mM Tris-HCl pH 

7.5, 10 mM MgCl2, 0.1 mM EGTA). Kinase reactions contained recombinant SGK3 (100 

ng), 100 μM ATP, 0.1% (vol/vol) 2-mercaptoethanol, 20 mM NaF, 1 mM Na3VO4, 10 mM 

β-glycerophosphate, and 10 mM sodium pyrophosphate. Reactions were allowed to proceed 

for 30 minutes at 30°C, and then were terminated by boiling in SDS-PAGE sample buffer. 

Proteins from these assays were resolved with 6–10% SDS-PAGE.
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To monitor SGK3 phosphorylation of TSC2 in vivo, 293T cells on 60 mm dishes were co-

transfected with 1.5 μg GST-SGK3 and 1.5 μg FLAG-tagged TSC2 (wildtype TSC2, TSC2-

SATA, TSC2–5A or TSC2–6A). Cells were allowed to recover in regular growth media for 

24 hours, and then were lysed in kinase assay lysis buffer. TSC2 was immunoprecipitated 

with ANTI-FLAG® beads and subjected to immunoblotting with pAKT substrate antibody. 

Whole cell lysates and immunoprecipitated TSC2 were resolved by 6–15% SDS-PAGE.

Mass Spectrometry

Scaled-up kinase reaction mixtures were resolved by SDS-PAGE. Gels were stained with 

Coomassie Brilliant Blue R-250 Staining Solution (BioRad), and a band corresponding to 

FLAG-TSC2 was excised and submitted to the Perlmutter Cancer Center Proteomics shared 

resource at NYU School of Medicine (New York, NY, USA). Bands were cut into 1 mm3 

pieces and de-stained for 15 minutes in a 1:1 (v/v) solution of methanol/100mM ammonium 

bicarbonate. The buffer was exchanged, and the samples were de-stained for another 15 

minutes. This process was repeated for another 3 cycles. Gel pieces were then dehydrated 

by washing in acetonitrile, dried in a SpeedVac for 20 minutes, reduced in 100μl of 0.02M 

dithiothreitol (Sigma)/pH 7.5 for one hour at 57 °C, and alkylated with 100μl of 0.05M 

iodoacetamide (Sigma) for 45 minutes at room temperature in the dark. Gel pieces were 

once again dehydrated by washing in acetonitrile, and then dried in a SpeedVac for 30 

minutes. Sequencing grade modified trypsin (500 ng, Promega) was added directly to the 

dried gel pieces, followed by enough 100mM ammonium bicarbonate to cover them. The gel 

plugs were agitated at room temperature, and digestion was allowed to proceed overnight. 

Reactions were halted by adding a slurry of R2 50 μm Poros beads (Applied Biosystems) in 

5% formic acid/0.2% trifluoroacetic acid (TFA) to each sample at a volume equal to that of 

the ammonium bicarbonate added for digestion. Samples were allowed to shake at 4°C for 

120 mins, and the beads were loaded onto C18 ziptips (Millipore) equilibrated with 0.1% 

TFA by centrifugation for 30s at 6,000 rpm in a microfuge. The beads were then washed 

with 0.5% acetic acid, and peptides were eluted in 40% acetonitrile in 0.5% acetic acid, 

followed by 80% acetonitrile in 0.5% acetic acid. The organic solvent was removed by using 

a SpeedVac, and the sample was reconstituted in 0.5% acetic acid.

An aliquot of each sample was loaded onto an Acclaim PepMap trap column (2 cm x 75 µm) 

in line with an EASY-Spray analytical column (50 cm x 75 µm ID PepMap C18, 2 μm bead 

size) by using the auto-sampler of an EASY-nLC 1200 HPLC (Thermo Fisher Scientific) 

with solvent A (2% acetonitrile in 0.5% acetic acid) and solvent B (80% acetonitrile in 0.5% 

acetic acid). Peptides were eluted into an Orbitrap QExactive HF-X Mass Spectrometer 

(Thermo Fisher Scientific) by using the following gradient: 5–35% in 120 min, 36–45% in 

10 min, followed by 45–100% in 10 min. High resolution full MS spectra were recorded 

at a resolution of 45,000, an AGC target of 3e6, a maximum ion time of 45ms, and a 

scan range from 400 to 2000m/z. Following each full MS scan, parallel reaction monitoring 

(PRM) scans were acquired for the peptides of interest. MS/MS spectra were collected at a 

resolution of 15,000, an AGC target of 2e5, maximum ion time of 120ms, one microscan, 

2m/z isolation window, fixed first mass of 150 m/z, dynamic exclusion of 30 sec, and 

Normalized Collision Energy (NCE) of 27.
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MS/MS spectra were searched against the Uniprot human reference proteome database, 

(downloaded 10/2016) using Byonic software(92,93) (Protein Metrics Inc., San Carlos, CA). 

The mass tolerance was set to 10 ppm for MS1 and 0.02 Da for MS2 searches. A false 

discovery rate (FDR) of 1% was applied at the protein level. The Byonic search included 

fixed modifications of carbamidomethylation on cysteine and variable modifications of 

oxidation on methionine, deamidation on asparagine and glutamine, and phosphorylation 

at serine, threonine and tyrosine residues. The spectra of the peptides of interest were 

verified manually to localize phosphorylation sites. Relative quantification of the peptides 

was calculated using Byologic software (Protein Metrics Inc., San Carlos, CA), which uses 

extracted ion chromatogram areas (XIC areas). The XIC is automated by Byologic from the 

Byonic search results of potentially identified peptides.

Statistical Analysis

Data are expressed as mean ± SEM unless specified otherwise. All statistical analyses were 

generated by using GraphPad Prism 5. Significance was assessed by two-way ANOVA, 

one-way ANOVA, or Student’s t-test, as appropriate. For ANOVAs, the post-hoc analysis 

used is indicated in the figure legend. A p-value of less than 0.05 was considered significant.

Data Availability

RNAseq and scRNA-seq data have been deposited in Gene Expression Omnibus (GEO: 

GSE155342 and GEO: GSE156246). Codes for scRNA-seq bioinformatic analyses are 

available https://github.com/rezakj/iCellR/wiki/i.score. Primary HER2+ and TN breast 

cancer single-cell RNA-seq samples can be requested from Drs. Sylvia Adams 

and Kwok-kin Wong. All other reagents are available upon request from B.G.N 

(Benjamin.neel@nyulangone.org) or J.M. (jmoffat@utoronto.ca).

Code Availability

The bespoke Perl script for the barcode library analysis is available from J.M. upon request. 

The code for NeoALTTO analysis is available at https://github.com/bhklab/DTP_HER2_BC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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STATEMENT OF SIGNIFICANCE

DTPs are implicated in resistance to anti-cancer therapies, but their ontogeny and 

vulnerabilities remain unclear. We find that HER2 TKI-DTPs emerge from stochastically 

arising primed cells (“pre-DTPs”) that engage either of two distinct transcriptional 

programs upon TKI exposure. Our results provide new insights into DTP ontogeny and 

potential therapeutic vulnerabilities.
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Figure 1. Some HER2+ breast cancer cell lines give rise to HER2 TKI drug-tolerant persisters 
(DTP).
A and B, HER2+ breast cancer cell lines were treated with 2.5 μM lapatinib (A) or with 

1.2 μM tucatinib (B), counted at the indicated times, and the percentage of the initial cell 

number was determined. Mean ± SEM from three independent experiments is displayed 

shown. The inset shows a magnified view of the residual cells from Days 28–49. C, BT474 

and HCC1419 cells were treated with the indicated agents for 14 days and percentage 

survival was quantified. D, Cells from the indicated lines were cultured in lapatinib or 

tucatinib (as indicated) for 14 days to generate DTPs. Then drug was withdrawn, and cells 

were allowed to resume proliferation. At the indicated times, cells were re-challenged with 

the same drug. Parental cells were used as a control at each time point. Cell survival 

was assessed by counting viable cells after 7-days of TKI treatment and normalized to 

the viable cell number at Day 0 (t=0). Mean ± SEM from three independent experiments 

is displayed. Statistical significance was assessed by two-tailed t-test for SUM225. All 
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other cell lines were assessed by two-way ANOVA with Bonferroni post-hoc analysis (ns, 

p>0.05, *p<0.05 **p<0.01, ***p<0.001, ****p<0.0001). E, Number of tumors detected and 

estimated tumor-initiating cell (TIC) frequency of BT474 parental cells and lapatinib-DTPs 

after injection into the mammary fat pad of NSG mice. The top image shows tumors 5 

months post-injection.
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Figure 2. HER2+ breast cancer cells elicit distinct transcriptional programs after HER2 TKI 
treatment.
A, Heatmap shows unsupervised clustering of parental and lapatinib-DTP samples. Scale 

represents the z-score. B and C, GSEA shows enrichment of “Hallmark Epithelial 

Mesenchymal Transition” genes in mesenchymal-like DTPs (top) and “Hallmark Estrogen 

Responses Early” in luminal-like DTPs (bottom) evoked by lapatinib (B) or tucatinib (C). 

D, Heatmaps show supervised clustering of parental, lapatinib-DTPs and tucatinib-DTPs 

with mesenchymal-DTP DEGs (left) or luminal DTP DEGs (right). Scale represents the 

z-score. E-H, GSEA shows enrichment of the indicated gene sets in lapatinib-induced (E) 

and tucatinib-induced (F) mesenchymal-like DTPs, and lapatinib- (G) and tucatinib-induced 

(H) luminal-like DTPs.

Chang et al. Page 34

Cancer Discov. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. A fraction of randomly growing HER2-luminal cells occupies a pre-DTP state 
characterized by a G0-like signature.
A, Aggregate expression of BT474 lapatinib-DTP Up and Down DEGs in single cells 

from untreated (UT), 6-hour lapatinib-treated (6h) and DTP (14-day lapatinib) samples. 

****P<0.0001, unpaired t-test compared to UT. B, UMAP projection of scRNA-Seq of 

untreated BT474 cells. Cells are colored by their unsupervised clusters. C, Aggregate 

expression of BT474 lapatinib-DTP Up and Down DEGs, as indicated, in each unsupervised 

cluster of untreated BT474 cells from B. **P<0.01, ****P<0.0001, unpaired t-test compared 

to cluster B. D, UMAP projection of untreated BT474 cells using cell cycle signature genes 

as defined by Xue et al. (44) with cells colored by cell cycle stage (see Methods for details). 

E, UMAP projection showing untreated BT474 cells clustered by cell cycle genes as in D, 

but with cells colored according to their unsupervised clusters (as determined in B). F, Same 

projection as in D, but with pre-DTPs (based on their BT474-DTP combined DEG score) 

shown as larger circles compared with other cells. G, Heatmap displaying BT474-DTP Up 
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DEG score, BT474-DTP Down DEG score and BT474-DTP combined DEG score (up DEG 

score minus down DEG score), in each untreated BT474 cells. The upper panels show 

the unsupervised clusters from B and their cell cycle phase, determined by expression of 

the cell cycle genes of Xue et al. (44). H, UMAP projection of supervised clustering of 

untreated HCC1419 cells by their cell cycle genes. Cells are colored by cell cycle status. 

I, Heatmap displaying HCC1419-DTP Up DEG score, HCC1419-DTP Down DEG score, 

and HCC1419-DTP combined DEG score (up minus down DEG score) in single cells from 

HCC1419. Upper panels display the unsupervised cluster to which each untreated HCC1419 

cell belongs and its inferred cell cycle phase.
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Figure 4. G0-like, pre-DTP cells in HER2+ breast cancer cell lines and patients enrich for gene 
signatures associated with other DTPs and anti-correlate with pathological response rate (pCR) 
to lapatinib.
A and B, Cells with G0 signature in luminal-like HER2+ breast cancer lines, BT474 

and HCC1419, are enriched for Luminal DTP Unique Up genes (A), while cells with 

G0 signature in mesenchymal-like HER2+ breast cancer lines, SKBR3, EFM192A and 

SUM225, are enriched for Mesenchymal DTP Unique Up genes (B). G0-like cells were 

identified by using cell cycle signatures from Xue et al. (44). C-F, G0 cells in all HER2+ 

breast cancer cell lines are enriched for Rehman Diapause Up (28) (C), Duy CISG Up (30) 

(D), and Fridman Senescence Up (30,45) genes (E) and depleted for Hallmark MYC Target 

genes (F). G, G0 cells in two primary HER2+/ER- breast cancer patients are enriched for 

Mesenchymal DTP Unique Up genes. H, Distribution of G0 signature scores calculated from 

Oki et al. (88) in patients with or without pCR in the neoadjuvant lapatinib arm of the 

NeoALTTO trial, analyzed by two-sided Student’s t-test.
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Figure 5. Prospective purification of pre-DTPs.
A, Overlap of untreated BT474 cluster B DEGs with fold change (FC) >1.5 and BT474 

lapatinib-DTP DEGs with FC > 2. The 20 overlapping genes and the p-values from 

Fisher’s exact test are displayed. Genes encoding surface proteins are shown in bold. B, 
FACS-isolated NPY1Rhi, NPY1Rmid, and NPY1Rlo cells were treated with lapatinib for 14 

days. Average RFU indicates the Alamar Blue readings at the experimental endpoint. Mean 

± SEM for three independent experiments is displayed. Significance was evaluated by two-

tailed t-test (**p<0.01, ****p<0.0001). C, Overlap of NPY1R and BT474 lapatinib-DTP 

DEGs with directionality of the DEGs matched in the analysis and p-value from Fisher’s 

exact test is displayed. D, GSEA shows enrichment for “Hallmark Estrogen Response 

Early” genes in NPY1Rhi versus NPY1Rlo cells. E, qRT-PCR for NPY1R in FACS-isolated 

NPY1Rhi, NPY1Rmid, and NPY1Rlo cells that were either left untreated, treated with 

lapatinib for 6 hours (Lap), or treated with lapatinib and fulvestrant for 6 hours (Lap + Ful). 
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Relative NPY1R expression represents the 2-ΔΔCT relative to the untreated NPY1Rlo sample. 

The mean ± SEM of three independent experiments is displayed (ns, p>0.05, **p<0.01, 

****p<0.0001, two-tailed t-test). F, BT474 cells were stained with Hoechst 33342 and for 

surface NPY1R; the NPY1Rhi and NPY1Rlo populations are displayed. G, Quantification of 

cells in G0/G1 and S-G2M from panel F (**p<0.01, two-tailed t-test). H and I, Pseudotime 

analysis of cells from untreated BT474 cells, 6h lap-treated cells, and DTP samples with 

cells colored by sample condition (H) or NPY1R expression (I). J, Cells from BT474 

untreated and 6h Lap sample were isolated (computationally), and their respective positions 

on the pseudotime trajectory are displayed. Cells are colored by their relative NPY1R 
expression level. K, Cells from untreated and 6h lapatinib-treated BT474 cells were isolated 

(computationally), and their respective positions on the pseudotime trajectory are displayed. 

Cells are colored by their cell cycle phase.
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Figure 6. Luminal-like lapatinib-DTPs are more sensitive to PI3K than AKT inhibition and 
transcriptionally up-regulate SGK3 via estrogen receptor.
A, Alamar Blue readings of SKBR3, EFM192A, BT474, and HCC1419 cells treated 

as indicated for 7 days. Relative fluorescence units (RFU) were normalized to t=0. B, 
Changes in DTP numbers following fulvestrant plus lapatinib treatment compared with 

lapatinib treatment alone; Mean ± SEM of three independent experiments is displayed. 

Significance was assessed by two-tailed t-test (****p<0.0001). C, Incucyte images of 

SKBR3, EFM192A, BT474, and HCC1419 cells treated as indicated for 14 days and 

then cultured drug-free for 14 days to assess regrowth. Representative images from three 

independent experiments are displayed. D, DESeq2 normalized expression of ESR1 is 

displayed for parental cells and lapatinib-DTPs of each cell line. E and F, Lapatinib-DTPs 

from BT474 (E) or HCC1419 (F) cells were treated with increasing doses of BKM120 

(pan-PI3K inhibitor), GSK690693 (AKT catalytic inhibitor), or MK-2206 (AKT allosteric 

inhibitor) for 96 hours, and cell number was determined by Alamar Blue viability assay. 
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Mean ± SEM from three independent experiments is shown. G and H, Differential effect 

of PI3K and AKT inhibitors on PI3K pathway components. Cells were treated with the 

indicated inhibitors or vehicle (DMSO) for one hour before lysis. Whole cell lysates 

were resolved by SDS-PAGE and immunoblotted with the indicated antibodies to assess 

pathway activation. Numbers under blots represent relative band intensities compared to 

vehicle control. Representative blots from one of two independent experiments are shown. 

I, Relative SGK3 mRNA expression, quantified by RT-qPCR, normalized to TBP and 

to the parental cells in the indicated cell lines. Data represent Mean ± SEM from three 

independent experiments (*p< 0.05, ***p<0.001, ****p<0.0001, two-tailed t-test). J, SGK3 

levels in whole cell lysates from the indicated parental cells and lapatinib-DTPs, quantified 

by immunoblotting. ERK2 serves as a loading control. Numbers under blots represent the 

normalized relative intensity compared to parental cells. Representative blots from three 

independent experiments are shown. K and L, Relative SGK3 expression, quantified by 

qRT-PCR, from BT474 (K) and HCC1419 (L) cells treated with DMSO vehicle (Veh), 

lapatinib (Lap), fulvestrant (Ful), or lapatinib plus fulvestrant (Lap + Ful) for 48 hours. 

Expression values were normalized to TBP and to the vehicle control. Mean ± SEM from 

three independent experiments is displayed. (*p<0.05, **p<0.01, two-tailed t-test).
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Figure 7. SGK3 phosphorylates TSC2 to activate mTORC1.
A, FLAG-tagged TSC2 expression construct was transfected into 293T cells, which 

were then treated with 1 μM BKM120 for one hour to dephosphorylate PI3K-dependent 

sites. TSC2 was recovered from cell lysates by immunoprecipitation with ANTI-FLAG 

M2 agarose beads and incubated with 100 ng recombinant SGK3 at 30°C for 30 

minutes in presence of 100 μM ATP. Immunoprecipitates and lysates were subjected 

to immunoblot analysis with the indicated antibodies. Representative blots from two 

independent experiments are shown. B, A scaled-up in vitro kinase reaction was performed 

as in A and analyzed by mass spectrometry. Table shows relative phosphorylation of 

each pAKT motif site, compared with the TSC2-only control. C, Schematic showing 

wild type (WT) TSC2 and positions of S/T->A TSC2 phosphorylation mutants. Sites 

conforming to the AKT substrate motif sequence (RXRXXS/T) are displayed with reported 

AKT phosphorylation sites underlined. SGK3 sites identified by mass spectrometry are 
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highlighted in red. Specific S/T->A mutants analyzed also are shown. D, 293T cells 

were transfected with expression constructs for FLAG-tagged wild type (WT) or mutant 

TSC2 with or without SGK3-GST, as indicated, and then serum-starved overnight. Where 

indicated, cells were treated with 1 μM MK-2206 for 30 minutes prior to stimulation with 

50 ng/ml IGF1 for 30 minutes, and whole cell lysates and TSC2 immunoprecipitates were 

immunoblotted with the indicated antibodies. Numbers under the blots represent relative 

intensities compared with those from cells co-transfected with wt-TSC2 and SGK3-GST + 

MK-2206; signals from the wt-TSC2 + MK-2206 lanes were subtracted from each before 

quantification. Representative blots from one of two independent experiments are displayed. 

E and F, BT474 lapatinib-DTPs (E) and HCC1419 lapatinib-DTPs (F) were treated alone 

or in combination with 3 μM or 10 μM BKM120, 1 μM GSK690693, 1 μM MK-2206, or 3 

μM 14h for 96 hours, and cell survival was assessed by Alamar Blue assay. Mean ± SEM of 

the normalized relative fluorescence units from three independent experiments is displayed 

(*p<0.05, **p < 0.01, two-tailed t-test). G and H, BT474 lapatinib-DTPs (G) and HCC1419 

lapatinib-DTPs (H) were treated with the inhibitors for one hour, and whole cell lysates were 

subjected to immunoblot analysis with the indicated antibodies. Numbers under the blots 

indicate relative intensity compared with the vehicle control. Representative blots from two 

independent experiments are displayed. I, Proposed model for luminal-like DTP ontogeny. 

As luminal-like HER2+ breast cancer cells cycle through late mitosis, the population 

bifurcates, with a subset of cells (M/G1) cycling into G1, while another sub-population 

transits into G0. The latter state (or a subset of cells within this state, indicated by “?”) is 

“primed” to become DTPs upon TKI exposure. Pre-DTPs also show selective activation of 

ER target genes and activation/repression of genes associated with DTPs in other systems 

(diapause, senescence, and MYC targets). Upon exposure to a HER2 TKI, some pre-DTPs 

further increase their expression of estrogen receptor target genes, including SGK3. SGK3 

rewires the PI3K/mTORC1 pathway to enable PI3K-dependent, AKT-independent survival. 

J, Distinct survival programs are activated in luminal-like and mesenchymal-like DTPs. 

In luminal-like DTPs, ER transcriptionally up-regulates SGK3, which phosphorylates and 

inhibits TSC2 to mediate mTORC1 activation and survival. By contrast, mesenchymal-like 

DTPs exhibit an epithelial-to-mesenchymal (EMT)-like transcriptional program evoked by 

(an) unidentified transcription factor (s). Mesenchymal-like DTPs also activate mTORC1 in 

an AKT-independent manner by means of an as yet unidentified kinase.
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