

ISSN 1175-5326 (print edition) ZOOTAXA ISSN 1175-5334 (online edition)

https://doi.org/10.11646/zootaxa.5222.6.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C9D6A84D-9961-4062-ACF0-CAF3CDE2AA7F

Molecular analyses of groundwater amphipods (Crustacea: Niphargidae) from Luxembourg: new species reveal limitations of morphology-based checklists

DIETER WEBER^{1,2,5}, JEAN-FRANÇOIS FLOT^{1,3}, ALAIN C. FRANTZ^{2,6} & ALEXANDER M. WEIGAND^{2,4}

¹Evolutionary Biology & Ecology, C.P. 160/12, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium ²Musée National d'Histoire Naturelle de Luxembourg, 25 rue Munster, L-2160 Luxembourg, Luxembourg

⁻Musee National a Histoire Naturelle de Luxembourg, 25 rue Munster, L-2160 Luxembo ³Interuniversity Institute of Bioinformatics in Brussels—(IB)², Brussels, Belgium

□ jean-francois.flot@ulb.be; ◎ https://orcid.org/0000-0003-4091-7916

■ Jean-Jrancols.flot(@ulb.be; ● https://orcia.org/0000-0003-4091-/910

⁴University of Duisburg-Essen, Universitätsstr. 5, D-45141 Essen, Germany alexander:weigand@mnhn.lu; ⁶ https://orcid.org/0000-0001-7587-6531

 \square alexander.weigund@mnnn.iu, \square nips.//orcia.org/0000-0001-/38/-0551

⁵ dieter.weber124@gmx.de; ⁶ https://orcid.org/0000-0001-7813-842X

⁶ alain.frantz@mnhn.lu; ^o https://orcid.org/0000-0002-5481-7142

Abstract

Niphargus amphipods were collected from 2007 to 2018 at 98 sites comprising artificial caverns, springs and interstitial waters in the Grand Duchy of Luxembourg. Opportunistic sampling was combined with passive trapping. Specimen identification was achieved using morphological keys and molecular data. Initial morphological determination and literature data suggested five species, whereas sequencing of fragments of the mitochondrial cytochrome *c* oxidase subunit 1 gene and nuclear 28S rDNA marker supported the presence of seven species: *Niphargus schellenbergi, Niphargus puteanus, Niphargus fontanus,* one species of the *Niphargus kochianus* complex, and three species of the *Niphargus aquilex* complex. *Niphargus schellenbergi* was by far the most abundant and widespread species. Limited overlap was observed between literature-based records, our initial morphological determinations based on classical taxonomic characters, and genetic sequence data. In general, the combination of phenotypically variable taxa, such as *N. schellenbergi*, and cryptic or near-cryptic species, as in the *N. aquilex* complex, renders morphological identification of niphargids from Luxembourg a challenging or even impossible task. DNA taxonomy will therefore have to be used in future studies of the fauna of this region.

résumé

Plusieurs amphipodes du genre *Niphargus* ont été prélevés de 2007 à 2018 sur 98 sites différents (cavernes artificielles, sources et eaux interstitielles) au sein du Grand-Duché de Luxembourg. Cet échantillonnage a été effectué de manière opportuniste et par piégeage passif. L'identification des échantillons a été réalisée à la fois à l'aide de clés morphologiques et aussi en utilisant des données moléculaires. La détermination morphologique initiale suggérait la présence de cinq espèces, tandis que le séquençage de fragments de la sous-unité 1 de la cytochrome *c* oxidase mitochondriale et du marqueur ADNr nucléaire 28S indique la présence de sept espèces : *Niphargus schellenbergi, Niphargus puteanus, Niphargus fontanus,* une espèce du complexe *Niphargus kochianus* et trois espèces du complexe *Niphargus aquilex. Niphargus schellenbergi* semble de loin l'espèce la plus abondante et la plus répandue. Le recouvrement entre les données basées sur la littérature existante et nos déterminations morphologiques initiales fondées sur les caractères taxonomiques classiques d'un part et les groupements opérés sur la base de séquences génétiques de l'autre apparaît relativement limité. De manière générale, la combinaison de taxons phénotypiquement variables, tels que *N. schellenbergi,* et d'espèces cryptiques ou quasi-cryptiques, comme dans le complexe de *N. aquilex* rend l'identification morphologique des niphargidés du Luxembourg une tâche difficile voire impossible. La taxonomie ADN devra donc être utilisée dans les études futures de la faune de cette region.

Zusammenfassung

Von 2007 bis 2018 wurden im Großherzogtum Luxemburg an 98 Standorten (künstliche Hohlräume, Quellen, Interstitial)

Amphipoden der Gattung *Niphargus* gesammelt. Gezieltes Sammeln wurde mit dem Aufstellen von Fallen kombiniert. Die Bestimmung der Tiere erfolgte anhand morphologischer Bestimmungsschlüssel und molekularer Daten. Anfängliche auf Morphologie basierende Bestimmungen in Kombination mit Daten aus der Literatur legten die Existenz von fünf Arten nahe, während die Analyse von Fragmenten des mitochondrialen Cytochrom-*c*-Oxidase-Untereinheit-1-Gens und des nuklearen 28S rDNA Markers sieben Arten belegen konnte: *Niphargus schellenbergi, Niphargus puteanus, Niphargus fontanus*, eine Art des *Niphargus kochianus* Komplexes und drei Arten des *Niphargus aquilex* Komplexes. *Niphargus schellenbergi* war bei weitem die am häufigsten vorkommende und am weitesten verbreitete Art. Die Überlappung zwischen älteren Literaturangaben und unseren anfänglichen morphologischen Bestimmungen mit den genetischen Daten war gering. Die morphologische Identifizierung von Niphargen aus Luxemburg ist bei phänotypisch variablen Taxa wie *N. schellenbergi* und kryptischen oder fast kryptischen Arten wie im *N. aquilex*-Komplex eine schwierige oder sogar unmögliche Aufgabe. Die DNA-Taxonomie wird daher in zukünftigen Studien der Fauna dieser Region verwendet werden müssen.

Key words: Niphargids, alpha diversity, species richness, COI, 28S

Introduction

Niphargidae is a family of amphipod crustaceans that comprises more than 400 formally described species (Horton *et al.* 2021). The family occupies a wide geographical area ranging from Spain (Karaman 2017) to Iran (Esmaeili-Rineh *et al.* 2017) and harbours numerous cryptic species complexes (Fišer & Zagmajster 2009, Meleg *et al.* 2013, Esmaeili-Rineh *et al.* 2019). Mediterranean Europe is the region with the highest known species richness. Almost all *Niphargus* species are obligate groundwater taxa (also called stygobionts) living in groundwater aquifers and groundwater-dependent ecosystems such as springs and riverine interstitial sediments (Fišer 2012). They also demonstrate typical ecophysiological adaptations to a subterranean lifestyle, such as lack of eyes (Schellenberg 1932a, Kureck 1964, Borowsky 2011), depigmentation and increased longevity (Bellan-Santini 2015).

Until the end of the last century, species delimitation and specimen identification of niphargids relied on morphotaxonomy. Yet, already during these times, taxonomic decisions were driven by permanent disputes and frequent revisions. Species were often downgraded to subspecies rank and vice versa: for instance, Niphargus schellenbergi became Niphargus aquilex schellenbergi (Schellenberg 1932b) then reverted to N. schellenbergi (Straškraba 1972). Similarly, new genera such as Niphargellus were erected (Schellenberg 1934). The taxonomy and systematics of niphargids are particularly challenging because of the difficulty of disentangling intraspecific and interspecific variation, and thus of defining reliable diagnostic morphological features (Fišer 2012). Although this is a common taxonomic problem, the situation within Niphargus is complicated by the fact that some species demonstrate quite distinct phenotypes, whereas others are part of so-called cryptic species complexes displaying nearly conserved morphologies. In such situations, DNA barcoding and molecular taxonomy can often be used to adequately disentangle species identities (Fontaneto et al. 2015). For instance, McInerney et al. (2014) integrated molecular data to investigate the niphargid fauna from Northern, Western and Central Europe. The authors revealed that several of the known morphospecies (Niphargus aquilex, N. fontanus, N. kochianus, N. schellenbergi) actually comprise complexes of genetically divergent lineages, which they called Operational Taxonomic Units (OTUs): six for N. aquilex, three for N. fontanus, four for N. kochianus and two for N. schellenbergi. As these OTUs were inferred from molecular data, we will refer to them as MOTUs (short for "Molecular Operational Taxonomic Units").

In the Grand Duchy of Luxembourg, the first inventory of niphargids dates back to more than 50 years ago when Hoffmann (1963) reported *Microniphargus leruthi* and four *Niphargus* taxa (*N. aquilex aquilex, N. aquilex schellenbergi, N. virei, N. fontanus*) for the country. Later, Gerecke *et al.* (2005) performed a national survey spanning 41 springs and 30 hyporheic interstitial sites, detecting two *Niphargus* species (*N. aquilex* and *N. schellenbergi*). More recently, Weber (2011), Flot & Weber (2013) and Weigand *et al.* (2016) collected *N. schellenbergi* from several mines and abundant railway tunnels. In this study, we apply for the first time a molecular taxonomic approach to provide a comprehensive inventory of the diversity and distribution of groundwater amphipods in Luxembourg. Our results are discussed in light of previous findings in the country as well as in adjacent regions.

Material and methods

Study region and sampling

Luxembourg is characterised by a rather complex geology, with schist in the North, sandstone and sandy limestone in the centre, limestone or dolomite in the East and Minette iron ore in the very South (Weber 2013). Between 2007–2018, niphargids were collected during various nationwide field campaigns (**Fig. 1A**). Specimens were collected mainly by hand and in an opportunistic way. Sieving was conducted in four mines (Schiefergrouf vu Schläif, Kofferminn Stolzebuerg Hauptsystem, Galerie Merkholtz, Antimonminn Goesdorf) and in one railway tunnel (Tunnel Huldange) with mesh sizes of 5000 μ m, 1000 μ m, 600 μ m and 200 μ m. Meat-baited tin cans were placed in five mines (Antimonminn Goesdorf, and the iron ore mines Minière Doihl, Minière Weltschegrond II, Minière Langegronn, Minière Prince Henry) and emptied after 2–3 days. In a parallel study, hundreds of Barber traps (with ethane-1,2-diol, without bait; Barber 1931) were installed to collect soil fauna. Springs were sampled by collecting and sieving mud, foliage or moss (same sieve mesh sizes as above). Interstitial sites were sampled using the Karaman-Chappuis-method (Chappuis 1942; Malard *et al.* 2002).

Captured specimens were immediately preserved in 96% ethanol and kept at -20°C. Whenever possible, at least one male and one female were preserved in 70% ethanol at room temperature for morphological investigation. Specimens collected before 2001 were first preserved in 70% isopropanol, then transferred to 70% ethanol and stored at -20°C. Specimens are stored in the collection of the National Museum of Natural History Luxembourg (MNHNL) (Supplementary Table 1).

Morphological identification and literature consulted for past records

All specimens were morphologically identified using available regionally relevant taxonomic keys and primary literature (Ginet 1991-1995; Schellenberg 1932b, 1933, 1935) using a Wang Biomedical stereo microscope with magnification of 7 to 40 times. Further, the following literature sources were consulted for data or status reports of *Niphargus* amphipods in Luxembourg: Sunnen (1957), Hoffmann (1963), Gerecke *et al.* (2005), Weber (2011), Flot & Weber (2013), Meisch & Massard (2015), Weigand *et al.* (2016).

DNA extraction

Since morphological determination of specimens was not always possible (e.g. for juveniles or intermediate morphs) and the aim was to integrate molecular data, a subset of specimens was analysed with two genetic markers. The subset included one specimen of each morphospecies from each site. In case of doubtful morphological identification, two or more specimens were sequenced. Additional specimens of *N. schellenbergi* from Luxembourg were integrated as part of an ongoing phylogeographic study (**Supplementary Table 1**). A single leg of specimens larger than 4 mm, two legs of specimens between 3–4 mm, and an entire specimen for smaller individuals were used for DNA isolation. DNA was extracted using either the DNeasy Blood & Tissue Kit (Qiagen) or the NucleoSpin Tissue Kit (Macherey-Nagel) following the manufacturers' protocols. DNA isolates were stored at -20°C in the collections of the Evolutionary Biology and Ecology research unit of the Université libre de Bruxelles (ULB, Solbosch campus), and in the collection of the National Museum of Natural History Luxembourg (MNHNL). In order to assess whether *N. aquilex sensu stricto* is present in Luxembourg and given that the neotype of *N. aquilex sensu stricto* was not suitable for molecular analyses, we analysed one newly collected *N. aquilex* specimens from a spring in Crowborough (sample UK1 in **Supplementary Table 1**), the neotype locality (Karaman 1980).

PCR and sequencing

The standard animal barcoding fragment of the cytochrome *c* oxidase subunit 1 (COI) gene (Folmer *et al.* 1994) was amplified via polymerase chain reaction (PCR) using the degenerate primer pair HCO2198-JJ and LCO1490-JJ (Astrin & Stüben 2008; Tab. 2). The PCR mix contained 1 μ l DNA extract (of variable concentration), 0.8 μ l of each primer (10 pmol/ μ l), 5 μ l of DreamTaq DNA Polymerase Master Mix (5 units/ μ l, Thermo Scientific) and 2.4 μ l of ultrapure water. PCR cycling conditions were an initial 3 minutes denaturation step at 94°C followed by 36 cycles of 20 s denaturation at 94°C, 45 s annealing at 50°C, and 60 s extension at 65°C; then a final elongation step of 2 minutes at 65°C.

Furthermore, a fragment of the nuclear 28S ribosomal RNA gene was investigated using primers Niph15 and Niph16 (Tab. 2 in Verovnik *et al.* 2005). The PCR mix for the 28S marker contained 2 µl of DNA extract (of vari-

able concentration), 1 µl of each primer (10 pmol/µl), 0.2 µl of REDTaq Polymerase (1 unit /ul in 20 mM Tris-HCl, Sigma-Aldrich), 5 µl REDTaq reaction buffer and 15.8 µl ultrapure water. PCR cycling conditions for 28S were an initial 3 minutes denaturation step at 95°C followed by 56 cycles of 30s denaturation at 94°C, 60 s annealing at 45°C, and 90 s extension at 72°C. PCR amplification results were visualised on a 1.2% agarose gel. PCR products were bi-directionally Sanger-sequenced at Genoscreen (Lille, France). The COI marker was sequenced using the same primer pair as during PCR amplification, whereas the 28S marker was sequenced using three primers (**Table 1**).

Primer	Nucleotide sequence	PCR	Sequencing	Reference
LCO1490-JJ	5'-CHA CWA AYC ATA AAG ATA TYG G-3'	Х	Х	Astrin & Stüben (2008)
HCO2198-JJ	5'-AWA CTT CVG GRT GVC CAA ARA ATC A-3'	Х	Х	Astrin & Stüben (2008)
Niph15	5'-CAA GTA CCG TGA GGG AAA GTT-3'	Х	Х	Verovnik et al. (2005)
Niph16	5'-AGG GAA ACT TCG GAG GGA ACC-3'	Х		Verovnik et al. (2005)
Niph20	5'-AAA CAC GGG CCA AGG AGT AT-3'		Х	Flot et al. (2010a)
Niph21	5'-TAT ACT CCT TGG CCC GTG TT-3'		Х	Flot et al. (2010a)

TABLE 1. PCR and sequencing pri	imers. X letters indicate	for which steps a given	primer was used
---------------------------------	---------------------------	-------------------------	-----------------

Analysis of molecular data

Chromatograms were edited and assembled into contigs using Sequencher version 4.1.4 (Gene Codes Corporation, USA); the resulting consensus sequences were deposited in GenBank (accessions OK378185-OK378243 for 28S and OK380764-OK380901 for COI; Supplementary Table 1). For connecting our specimens to previously delimited species and MOTUs, the COI and 28S sequences from three N. schellenbergi individuals from Germany (Flot 2010a) as well as 16 COI sequences and 16 28S sequences used to delimit MOTUs in McInerney et al. (2014) were added to the datasets. In the case of COI, a Crangonyx subterraneus sequence (accession number MT993546.1) from Weber et al. (2020b) was also included as an outgroup for phylogenetic analyses. The resulting datasets were aligned by hands in the case of COI and using MAFFT webserver's E-INS-i algorithm (Katoh et al. 2019) in the case of 28S. For the COI marker, MEGAX (Kumar et al. 2018) was used to compute a neighbour-joining (NJ) tree of the 139 sequences (the Crangonyx outgroup + 136 Niphargus specimens, two of which represented by two COI sequences each) using p-distances with 1,000 bootstrap replicates (Felsenstein 1985). In the case of 28S, a haploweb (Flot et al. 2010b) based on a minimum spanning network (with additional curves connecting sequences found cooccurring in heterozygous individuals) was produced using HaplowebMaker (Spöri & Flot 2021) by masking all positions with indels in the alignment, then redrawn using Inskscape (Bah 2011). Molecular delimitation of species was also performed using Assemble Species by Automatic Partitioning (ASAP; Puillandre et al. 2021) with default parameters and using K over Theta (KoT; Spöri et al. 2021) with pairwise deletion, transitivity and a threshold K/ theta ration of 6 (corresponding to a 0.99 minimal probability of monophyly).

Results

Taxonomic records from literature

The literature sources named five niphargid species for Luxembourg: *N. schellenbergi*, *N. fontanus*, *N. aquilex*, *N. virei* and *Microniphargus leruthi* (Table 2). Additional literature sources were consulted for niphargid records in adjacent regions, which we will refer to in the species-specific discussions.

Taxonomic records from field survey and morphology

A total of 241 sites were visited between 2007 and 2018 (Fig. 1). Most of these sites were springs (119; 43%) followed by mines and tunnels (58; 24%), natural caves (34; 14%) and interstitial waters (30; 12%) (Table 2). Among all sites, 175 (73%) contained water and from a subset of 98 sites (41% of the total, 56% of water-containing sites) *Niphargus* specimens were successfully sampled—primarily from springs (70% of all sites with water). In total, 1,763 specimens were collected and investigated morphologically. Out of this material, we recognized six *Niphargus* morphotypes: *N. schellenbergi*, *N. fontanus* (sometimes difficult to distinguish clearly from *N. schellenbergi*), *N. puteanus*, *N. kochianus*, *N. aquilex*, and another distinct *Niphargus* morphotype that was later genetically assigned to *N. schellenbergi*.

FIGURE 1. Sampling sites. A: All sampling sites with aquatic habitats. Red circles indicate locations where no *Niphargus* specimens were observed; B: Distribution of *N. schellenbergi*; C: Distribution of MOTUs within the *N. aquilex* complex. White dots mark localities where two taxa co-occur; D: Distribution of remaining *Niphargus* taxa.

	Number of sites visited	Number of sites containing	Number of sites
		water	with Niphargus
Springs	119	119	69
Natural caves	34	0	0
Mines and tunnels	58	26	20
Interstitial waters	30	30	9
Total	241	175	98

TABLE 2. Collection sites in Luxembourg from 2007–2018. Barber trap collection sites are not included as they tar
geted soil species and niphargids in these traps were only found by chance.

Taxonomic records from molecular species delimitation

169 specimens were sequenced for the COI marker alone (99 specimens), for the 28S marker alone (16 specimens) or for both markers (54 specimens) (**Supplementary Table 1**). Among those, 135 specimens were newly sequenced for this study (**identifiers for COI sequences MNHNL006-20 to MNHNL140-20**), whereas 18 COI and 17 28S sequences were added from previous studies (Flot & Weber 2013, Weigand *et al.* 2016). COI sequences were obtained for a total of 93 sites and 28S sequences for 50 sites. We found in Luxembourg three of the seven *N. aquilex* MOTUs identified by McInerney *et al.* (2014)—namely, MOTU B, MOTU E and MOTU F—and delineated one additional *N. aquilex* MOTU that had not been previously observed, which we will refer to as MOTU G. Specimen UK1 from the neotype locality of *N. aquilex* in Crowborough (UK) turned out to belong to *N. aquilex* MOTU B. All specimens of *N. fontanus* collected in Luxembourg were assigned to *N. fontanus* (without suffix) following Trontelj *et al.* (2009), which corresponds to *N. fontanus* MOTU A following McInerney *et al.* (2014).

The COI chromatograms of two individuals comprised double peaks (three in BR1 and one in KF2), either as a result of heteroplasmy or because of the presence of numts, i.e. nuclear pseudogenes. The COI haplotypes of these specimens were phased using Clark's method (Clark, 1990) and then included in downstream analyses.

ASAP applied to the COI dataset (**Tab. 3**) detected seven *Niphargus* MOTUs among the Luxembourg individuals sequenced for this marker: *N. aquilex* MOTU E (10 specimens), *N. aquilex* MOTU F (6 specimens), *N. aquilex* MOTU G (one specimen), *N. fontanus* MOTU A (three specimens), *N. kochianus* (one specimen), *N. puteanus* (one specimen), *N. schellenbergi* (113 specimens). In contrast to the results of McInerney *et al.* (2014), this analysis lumped together the two *N. aquilex* MOTUs A1 and A2, the two *N. fontanus* MOTUs A1 and A2 as well as the three *N. kochianus* MOTUs A, B and C.

Niphargus aquilex MOTU A	KC315623(A1) JF420841(A2)
Niphargus aquilex MOTU B	UK1
Niphargus aquilex MOTU E	<u>GK2</u> <u>GK3</u> <u>GK9</u> <u>GK13</u> <u>GK14</u> <u>GK15</u> <u>GK16</u> <u>MK2</u> <u>GO2</u> <u>GO3</u> KC315621(E)
Niphargus aquilex MOTU F	<u>II1 IL3 IL4 IS1 WP1 MH2</u> KC315622(F)
Niphargus aquilex MOTU G	<u>MK3</u>
Niphargus fontanus MOTU A	KE1 KE2 LG2 KC315633(A1) KC315629(A2) KC315630(A2)
Niphargus fontanus MOTU C	KC315632
Niphargus kochianus MOTU ABC	KC315682(A) KC315687(A) KC315688(A) <u>MU5</u> KC315661(B) KC315662(B)
	KC315667(B) KC315659(C) KC315660(C)
Niphargus puteanus	QL1
Niphargus schellenbergi	<u>AK1 AS1 AS2 AW1 AW2 BA1 BA2 BA3 BB1 BC1 BR1 BR2 DF1 DI1 DK1</u>
	<u>DK2 DL1 DL2 DL3 DL4 DL5 DL6 DL7</u> DU1 DU2 DU3 <u>EC1 EH1 EH2 FN1</u>
	<u>GD1 GD2 GK1 GK10 GK11 GK12 GK4 GK5 GK6 GK7 GK8 GO1 HN1 HR1</u>
	<u>HS1 IA1 IL1 IL2 IW1 KC1 KF1 KF2 KF3 KK1 KO1 KR1 KS1 KT1 KZ1 LB1</u>
	<u>LB2 LE1 LE2 LG1 LI1 MF1 MH1 MK1 ML1 MU1 MU2 MU3 MU4 NE1 NR1</u>
	PA1 QA1 QB1 QG1 QL2 QN1 QS1 QT1 RM1 RP1 SB1 SB2 SC1 SF1 SG1 SI1
	<u>SL1 SM1 SW1 SW2 SW3 TF1 TI1 TN1 TO1 TS1 UE1 UR1 VM1 WD1 WE1</u>
	<u>WH1 WI1 WN1 WR1 WS1 WT1 WT2 WT3 WU1 WY1</u>

TABLE 3. Results of ASAP species delimitation based on COI sequences (individuals from Luxembourg are underlined)

KoT applied to the same COI dataset (**Tab. 4**) detected eight *Niphargus* MOTUs among the Luxembourg individuals sequenced for this marker, as the 10 specimens attributed by ASAP to *N. aquilex* MOTU E were split by KoT into two MOTUs both considered distinct from *N. aquilex* MOTU E. The result of KoT was more similar to the conclusions of McInerney *et al.* (2014) in separating the two *N. aquilex* MOTUs A1 and A2 as well as the three *N. kochianus* MOTUs A, B and C, but the two *N. fontanus* MOTUs A1 and A2 were still lumped by KoT.

KC315623
JF420841
UK1
KC315621(E)
<u>GK2 GK3 GK9 GK13 GK14 GK15 GK16 MK2</u>
<u>GO2</u> <u>GO3</u>
<u>II1 IL3 IL4 IS1 WP1 MH2</u> KC315622(F)
<u>MK3</u>
KE1 KE2 LG2 KC315633(A1) KC315629(A2) KC315630(A2)
KC315632
KC315682 KC315687 KC315688
<u>MU5</u> KC315661 KC315662 KC315667
KC315659 KC315660
<u>QL1</u>
<u>AK1 AS1 AS2 AW1 AW2 BA1 BA2 BA3 BB1 BC1 BR1 BR2 DF1 DI1 DK1 DK2</u>
<u>DL1 DL2 DL3 DL4 DL5 DL6 DL7</u> DU1 DU2 DU3 <u>EC1 EH1 EH2 FN1 GD1 GD2</u>
<u>GK1 GK10 GK11 GK12 GK4 GK5 GK6 GK7 GK8 GO1 HN1 HR1 HS1 IA1 IL1</u>
<u>IL2 IW1 KC1 KF1 KF2 KF3 KK1 KO1 KR1 KS1 KT1 KZ1 LB1 LB2 LE1 LE2</u>
<u>LG1 LI1 MF1 MH1 MK1 ML1 MU1 MU2 MU3 MU4 NE1 NR1 PA1 QA1 QB1</u>
<u>QG1 QL2 QN1 QS1 QT1 RM1 RP1 SB1 SB2 SC1 SF1 SG1 SI1 SL1 SM1 SW1</u>
<u>SW2 SW3 TF1 TI1 TN1 TO1 TS1 UE1 UR1 VM1 WD1 WE1 WH1 WI1 WN1</u>
<u>WR1 WS1 WT1 WT2 WT3 WU1 WY1</u>

TABLE 4. Results of KoT species delimitation based on COI sequences (individuals from Luxembourg are underlined)

The 28S chromatograms of four individuals comprised double peaks and those specimens were treated as heterozygous in downstream analyses: *Niphargus aquilex* MOTU F (GK16 with 2 double peaks, GK3 with 2 double peaks, MK2 with 3 double peaks) and *N. aquilex* MOTU G (LG3 with 1 double peak).

The ASAP analysis for 28S (**Table 5**) detected six *Niphargus* MOTUs among the Luxembourg individuals sequenced for this marker: *N. aquilex* MOTUs A&B (one specimen), *N. aquilex* MOTUs E&F (12 specimens), *N. aquilex* MOTU G (two specimens), *N. fontanus* MOTUs A&B (two specimens), *N. puteanus* (one specimen) and *N. schellenbergi* (35 specimens). It also lumped the three *N. kochianus* MOTUs A, B and C from McInerney *et al.* (2014) into a single putative species.

The KoT analysis for 28S (**Table 6**) detected seven *Niphargus* MOTUs among the Luxembourg individuals sequenced for this marker: the difference was that *N. aquilex* MOTU E and *N. aquilex* MOTU F, which were lumped by ASAP, were separated by KoT. However, one heterozygous individual (MK2) was represented in both MOTUs, as one of his haplotypes grouped with *N. aquilex* MOTU E and the other haplotype grouped with *N. aquilex* MOTU F. This suggests that these two MOTUs are actually a single species, and the final result of KoT can therefore be considered to be six MOTUs, just like ASAP. The KoT analysis of the 28S data also lumped *N. kochianus* MOTUs A, B and C. Compared to ASAP, however, KoT separated *N. aquilex* MOTU A from *N. aquilex* MOTU B, thereby making it possible to attribute individual IS3 to *N. aquilex* MOTU B.

TABLE 5. Results of the ASAP species delimitation based on 28S sequences (individuals from Luxembourg are underlined)

Niphargus aquilex MOTU AB	IS3 UK1 KC315604(A1) JF420874(A2) KC315605(B)
Niphargus aquilex MOTU C	KC315602(C)
Niphargus aquilex MOTU D	KC315603(D)
Niphargus aquilex MOTU EF	<u>GK2 GK3 GK16 GO2 II1 IL3 IS1 IS2 MH2 MH3 MK2 WP1</u> KC315606(E)
	KC315607(F)
Niphargus aquilex MOTU G	<u>LG3 MK3</u>
Niphargus fontanus MOTU AB	KE1 LG4 KC315608(A1) KC315614(A2) EF025852(B)
Niphargus fontanus MOTU C	KC315609(C)
Niphargus kochianus ABC	KC315610(A) KC315611(B) KC315612(C)
Niphargus kochianus D	KC315613(D)
Niphargus puteanus	<u>QL1</u> EF617302
Niphargus schellenbergi	<u>DF1</u> <u>DL1</u> <u>DL2</u> <u>DL8</u> DU1 DU2 DU3 <u>FN2</u> <u>FO1</u> <u>GF1</u> <u>GK1</u> <u>HN1</u> <u>HS1</u> <u>IL1</u> <u>IL2</u> <u>IL5</u> <u>IW1</u>
	KO1 KS1 KT1 LB1 LG1 LI1 MH1 MU6 NE1 NR1 NW1 PA1 PH1 QH1 RP2 SC1 TH1
	<u>TII UEI WII ASI</u>

TABLE 6. Results of the KoT species delimitation based on 28S sequences (individuals from Luxembourg are underlined, and the asterisk indicates one heterozygous individual whose two haplotypes were in two different MOTUs)

Niphargus aquilex MOTU A	KC315604(A1) JF420874(A2)
Niphargus aquilex MOTU B	<u>IS3</u> UK1 KC315605(B)
Niphargus aquilex MOTU C	KC315602(C)
Niphargus aquilex MOTU D	KC315603(D)
Niphargus aquilex MOTU E	<u>GK2</u> <u>GK3</u> <u>GK16</u> <u>GO2</u> <u>MK2*</u> KC315606(E)
Niphargus aquilex MOTU F	<u>II1 IL3 IS1 IS2 MH2 MH3 MK2* WP1</u> KC315607(F)
Niphargus aquilex MOTU G	<u>LG3 MK3</u>
Niphargus fontanus MOTU AB	KE1 LG4 KC315608(A1) KC315614(A2) EF025852(B)
Niphargus fontanus MOTU C	KC315609(C)
Niphargus kochianus ABC	KC315610(A) KC315611(B) KC315612(C)
Niphargus kochianus D	KC315613(D)
Niphargus puteanus	<u>QL1</u> EF617302
Niphargus schellenbergi	<u>DF1 DL1 DL2 DL8</u> DU1 DU2 DU3 <u>FN2 FO1 GF1 GK1 HN1 HS1 IL1 IL2 IL5 IW1</u>
	<u>KO1 KS1 KT1 LB1 LG1 LI1 MH1 MU6 NE1 NR1 NW1 PA1 PH1 QH1 RP2 SC1</u>
	<u>TH1 TI1 UE1 WI1 AS1</u>

Finally, the haploweb analysis of 28S was congruent with both the ASAP and KoT results in delimiting six species among the Luxembourg individuals sequenced for this marker, suggesting the presence of a total of seven *Niphargus* species in Luxembourg (since the single *N. kochianus* sampled in Luxembourg had no 28S sequence available) (**Fig. 2**). Compared to COI, this consensus of the various approaches applied to 28S differs only by the number of MOTUs delimited for *N. aquilex*: whereas COI results suggest the presence of four *N. aquilex* MO-TUs in Luxembourg (MOTUs B, E, F and the new MOTU G), the 28S results indicate that *N. aquilex* MOTUs E and F may be a single species. In the remaining part of our paper, we chose the most conservative approach and considered *N. aquilex* MOTUs E and F as conspecific (as well as *N. kochianus* MOTUs A, B and C), yielding the following tentative list of seven molecularly defined *Niphargus* species for Luxembourg: *N. aquilex* MOTU B, *N. aquilex* MOTU G, *N. fontanus* MOTU A, *N. kochianus* MOTU ABC, *N. puteanus*, and *N. schellenbergi* (**Fig. 3** and **Table 7**).

TABLE 7. Recorded presence of niphargids in Luxemb	ourg. Past literature records	compared to the findings of the pres-
ent study (morphology and DNA-based).		

Species	Known from past literature	Initial morphological	Molecular findings
	findings	findings (this study)	(this study)
N. schellenbergi	Yes	Yes, two morphotypes	Yes, a single lineage
N. fontanus	Yes	(Yes)	Yes, MOTU A
N. aquilex	Yes	Yes	Yes, MOTUs B, EF and G
N. kochianus	No	Yes	Yes, MOTU ABC
N. puteanus	No	Yes	Yes
N. virei	Yes	No	No
Microniphargus leruthi	Yes	No	No

FIGURE 2. Haploweb for *Niphargus* 28S sequences obtained from Luxembourg. The size of the circles is proportional to the number of sequences bearing a specific 28S allele. The 28S alleles of heterozygous specimens are connected by dotted curves. Hypothetical, unsampled haplotypes are shown as white dots. *Niphargus kochianus* MOTU ABC is represented by a consensus of the three sequences from McInerney *et al.* (2014), and the 28S sequence of specimen UK1 from the neotype locality of *Niphargus aquilex sensu stricto* is included in the analysis (in *Niphargus aquilex* MOTU B). The species delineation shown as boxes is based on the consensus of the ASAP and KoT outcomes, stating the number of sequences for each species.

Distribution and abundance

Niphargus schellenbergi was by far the most abundant and widespread species in Luxembourg. It was collected in springs, interstitial sites, mines and abandoned railway tunnels (**Fig. 1**, **Table 8**). Records originated from all types of rocks, in a temperature regime from 5.9 to 14.9° C (n = number of measured sites = 42, x = arithmetic average = 9.8, s = standard deviation = 2.0), in German hardness ranging from 1° to 46° (n = 23, x = 14.5, s = 13.1), pH values

from 4.2 to 7.9 (n = 13, x = 6.6, s = 2.1) and in total dissolved solid values ranging from 39 to 451 ppm (n = 53, x = 246, s = 165). All the other species were much rarer (*N. fontanus* MOTU A and *N. aquilex* MOTUs EF and G), with single-specimen records for *N. puteanus*, *N. kochianus* MOTU ABC and *N. aquilex* MOTU B).

FIGURE. 3. Neighbor-joining tree of *Niphargus* COI sequences from Luxembourg. This tree was generated using p-distances in MEGA X. Coloured boxes indicate the different species delineated by ASAP and correspond with the 28S haploweb. *Niphargus aquilex* MOTU B from Luxembourg had no COI sequence data, hence the COI sequence of individual UK1 from the neotype locality of *Niphargus aquilex sensu stricto* was included.

TABLE 8. Luxembourg's Niphargus species and their main habitats [from Weber & Flot (2013), Weigand et al.(2016) and the present study] * = including artificial cavities and tunnels.

Species	springs	caves*	interstitial	main habitat
Niphargus aquilex MOTU B	-	-	1	interstitial
Niphargus aquilex MOTU EF	1	1	6	interstitial, spring, mine
Niphargus aquilex MOTU G	-	2	-	mine
Niphargus fontanus MOTU A	1	1	-	spring, mine
Niphargus kochianus MOTU ABC	1	_	-	interstitial
Niphargus puteanus	1	_	-	spring
Niphargus schellenbergi	68	20	6	spring, mine, interstitial

Discussion

Niphargid diversity in Luxembourg with notes on morphological and ecological peculiarities

Microniphargus leruthi Schellenberg, 1934 has been found in Luxembourg only once (Hoffmann 1963) in a galena mine in the North of Luxembourg. This mine is not accessible anymore. Our collections in springs around this mine only yielded *N. schellenbergi. Microniphargus leruthi* was also reported from adjacent areas along the Meuse River in Belgium (e.g. Fišer *et al.* 2018) and in Germany (Spangenberg 1973; Karaman & Ruffo 1986). The presence of *M. leruthi* in Luxembourg seems therefore possible, although unconfirmed by our present study.

Niphargus aquilex Schiödte, 1855 extends over an area ranging from South East England to Western Germany. MOTU B had only been reported so far in England, and our study is the first published report of this species from continental Europe. MOTU EF is frequently observed from Devon (UK) to Saxony (Germany). It comprises two genetically well-separated COI clades with no apparent morphological differences and that were lumped in our 28S molecular analyses. MOTU G is new to science, and can be also found in the Czech Republic and in several sites in Germany (unpublished data). In Luxembourg, we collected it in an ancient schist mine in the Oesling (53 m past the entrance) and in a Minette mine in the South of Luxembourg (850 m from the entrance). The description of this new species is in preparation.

Hoffmann (1963; as *N. aquilex aquilex*) stated that the *N. aquilex* morphospecies was less common in Luxembourg than *N. schellenbergi*, but could be found in all regions as well as in different habitats such as mines, water catchments, wells, and springs, although never in streamlets or rivers. Gerecke *et al.* (2005) did not report any *N. aquilex* in springs, but with 146 specimens from ten sites, the morphospecies seemed common in interstitial water. Gerecke *et al.* (2005) already assumed that *N. aquilex* comprises several species, even though specimens they examined were described as morphologically extremely close to the original English material. In our study, MOTU B and MOTU EF co-occurred in the interstitial of the Sauer River. Within MOTU EF, both clades were detected in Luxembourg, with one exclusively inhabiting interstitial sites in the Oesling region in the North of Luxembourg, which also seems to be the main habitat for this lineage. The other clade was found in springs, mines and interstitial sites. Both clades showed overlapping distributions in Luxembourg.

Niphargus fontanus Spence Bate, 1859 is regularly found in Belgium (Leruth 1939; Delhez *et al.* 1999; Stoch *et al.* 2004; Fišer *et al.* 2018) and in the western part of Germany (Weber 2001, 2012). Population densities seem always far lower than for *N. schellenbergi* (Leruth 1939; Delhez *et al.* 1999; Stoch *et al.* 2004; Fišer *et al.* 2018; Weber 2001, 2012). This morphospecies nowadays is recognised as a species complex comprising three main clades (Trontelj *et al.* 2009; as *N. fontanus*, *N. cf. fontanus* 1, and *N. cf. fontanus* 2). One clade is reported from Germany, Switzerland, and Austria (Trontelj *et al.* 2009; Fišer *et al.* 2016), one clade is known from France (Trontelj *et al.* 2009, McInerney *et al.* 2014), and the third clade is present in UK, France and Belgium (Hardtke *et al.* 2011, Lefébure *et al.* 2007, Trontelj *et al.* 2009, Altermatt *et al.* 2014, McInerney *et al.* 2014). In Luxembourg, only *N. fontanus* MOTU A (sensu McInerney *et al.* 2014) was detected, and only at two sites: in the Minière Langegronn occurring in syntopy with *N. schellenbergi* and in the spring of Klengelbuer (genetically confirmed by two specimens). The type locality for *N. fontanus* is located in Great Britain (Spence Bate 1859) with currently only one clade found in this country (Trontelj *et al.* 2009; Hartke *et al.* 2011; McInerney *et al.* 2014). Once the three clades will be formally described, specimens from Luxembourg most probably belong to *N. fontanus sensu stricto* since they cluster with the British *N. fontanus* MOTU A.

N. schellenbergi and *N. fontanus* morphologically much resemble each other. The ovoid gnathopods for *N. fontanus* versus the trapezoidal gnathopods of *N. schellenbergi* on Luxembourg's material are by far not as easy distinguishable, as shown in many drawings (e.g. Gledhill *et al.* 1976; Hartke *et al.* 2011). Because the drawings of Hoffmann (1963) do not clearly indicate the gnathopods of *N. fontanus*, it is likely that Hoffmann confused these two species.

Although literature records exist from the Minière Laangebierg for this species (being not identical to Minière Langegronn) and from springs near Echternach (Hoffmann 1963), and the species is frequently mentioned to be a typical member of the Minette mines in the South of Luxembourg, our investigations of sites where Hoffmann (1963) reported *N. fontanus* only yielded specimens of *N. schellenbergi*.

Niphargus kochianus Spence Bate, 1859 is a species complex currently under revision. McInerney *et al.* (2014) distinguished four MOTUs, but the authors did not investigate specimens from the whole distribution area. For Luxembourg, a single specimen at the Sickerquelle Maulusmühle was provisionally assigned by genetics as

N. kochianus MOTU ABC (lumping three MOTUs from McInerney *et al.* 2014, including MOTU B reported as most widespread MOTU in the Benelux area). At this spring, we found eight niphargid specimens in total, but none was an adult suitable for morphological determination. The five additional specimens that were sequenced from this site were identified as *N. schellenbergi*.

Niphargus puteanus (C.L. Koch in Panzer, 1836) is widely distributed in Baden-Württemberg (Dobat 1975; Weber *et al.* 2020a) and parts of Bavaria (Fišer *et al.* 2016), but rarely found in North Rhine-Westphalia (Weber 1991) and Switzerland (Chappuis 1924; Altermatt *et al.* 2014). Occurrences from West of the Rhine River are generally sparse (Weber *et al.* 2020a). It was previously reported from a single site in Belgium [Leloup & Jacquemart 1963; but this was not confirmed in a later study by Fišer *et al.* (2018)], as well as from four sites in Alsace (Hertzog 1930; and our own investigation), all very close to the Rhine River. For a general overview of the distribution and habitat preferences of the species see Weber *et al.* (2020a).

Only one specimen of *N. puteanus* was found in a spring in the Minette region in the South of Luxembourg, where it occurred in sympatry with *N. schellenbergi*. This single-specimen record was confirmed by conducting a second DNA isolation then by performing separate PCRs and separate sequencing reactions for both markers. *Niphargus puteanus* and *N. schellenbergi* are two spring-inhabiting species that seem to exclude each other (Weber, pers. obs.).

Niphargus schellenbergi S. Karaman, 1932 is the most abundant and widespread niphargid species in Belgium (Leruth 1939; Delhez & Houssa 1969; Notenboom 1982; Stoch et al. 2004; Fišer et al. 2018), the Netherlands (Stock 1961; Cuppem 1978; Weber 2018) and the Western part of Germany (Weber 2001, 2012). It is therefore not surprising that this is the case for Luxembourg as well. Hoffmann (1963; as Niphargus aquilex schellenbergi) considered this species to be common in springs in the Oesling and the Gutland. Notably, Hoffmann (1963) reported this species also from nine streamlets and rivers. Gerecke et al. (2005) observed N. schellenbergi in 26 springs and at two interstitial sites. This indicates that N. schellenbergi is a common species in springs of Luxembourg, but rarer in the interstitial. Our records of N. schellenbergi confirm the wide habitat range of this species. The majority of findings originated from springs, but we also recovered the species in subterranean and interstitial habitats. Notably, in five mines (Minn vun Asselbuer, two specimens; Ardoisière de Merkholtz, three specimens; Schiefergrouf vu Schläif II, one specimen, Schlefergrouf vu Pärel, three specimens; Minière Laange Gronn XII, 33 specimens) and in one railway tunnel (Eisebunns Tunnel Fouhren, nine specimens), N. schellenbergi specimens were found in Barber traps outside the water and up to 3 m from the edges of the mine lakes. Flooding of the traps before they were collected seems unlikely as the traps were still filled with ethane-1,2-diol. We therefore assume that specimens crawled on the damp ground from the subterranean river into the traps. Such a behaviour was reported by Sket (2004) for the amphipod Typhlogammarus mrazeki (Schäferna, 1907), but to the best of our knowledge never for niphargids.

Comparison of COI as well as of 28S to *N. schellenbergi* molecular data from the type locality (data not shown) indicates that all Luxembourgish specimens belong to *N. schellenbergi sensu stricto*. Furthermore, the morphology of the specimens collected in Luxembourg generally matched the morphological variability found at the type locality (Karaman 1932; re-collected by the first author in 2018). However, a few specimens displayed strong deviations from this morphology. Some, but by far not all adult specimens from the Minière Doihl exhibited a slightly to strongly rounded epimeral plate III. This is indicative of the *N. aquilex* complex. The rami of uropod II of these *N. schellenbergi* are about 60% of the length of their peduncle, while in *N. schellenbergi* normally it is close to 100%. All other characters, such as 3–4 spines in the dactylus of the gnathopods, indicate them as belonging to *N. schellenbergi*. One adult male (individual DL1 in **Supplementary Table 1**) very clearly possessed this rounded epimeral plate but sequencing revealed it as a *N. schellenbergi* instead (as was the case for all sequenced specimens from Minière Doihl). In addition, some specimens of our collections had spines >60% of the length of the telson length) at the end of the telson, whereas all the specimens of our collections had spines >60% of the length of the telson (thereby differing from the literature, e.g. the first description by Karaman in 1932). All other deviations from the first description (e.g. antennae I 40% of body length vs. 33% in the original description) seemed to be within the variability of this species (according to our own investigations, data not shown).

All adult males from Sept-Fontaines deviated strongly from all known *N. schellenbergi* morphs. They had 5 spines at the dactyli of the gnathopods whereas all other adult specimens of our material showed 3–4 spines. Their 3rd epimeral plate was slightly rounded. The end-spines of their telsons had a length only 40–50% of the telson length. The specimens bear 26–28 segments on the flagellum of antennae I. *Niphargus schellenbergi* normally possesses 22–25 segments on this part. It seems thus likely that *N. schellenbergi* harbors a much greater intraspecific morphological variability than currently recognized.

Niphargus virei Chevreux, 1896 was reported by Hoffmann (1963) from two sites: Minière Langegronn and Sept-Fontaines (=Sieweboure) in the city of Luxembourg. It was stated to co-occur with *N. schellenbergi*. We were not able to re-collect *N. virei* in Luxembourg, although we re-visited both sites. Our collection in Sept-Fontaines re-sulted in 42 individuals (9 males, 11 supposed females and 22 juveniles). Their morphology deviated strongly from the typical *N. virei* as well as from *N. schellenbergi*, to the point they could have been considered a different, undescribed species. Surprisingly, however, both genetic markers allocated the specimens clearly to *N. schellenbergi*. Field sampling at the other potential *N. virei* site (Minière Langegronn) only yielded *N. schellenbergi* (confirmed by morphology, COI and 28S). In springs above the mines, where predominantly *N. schellenbergi* was detected, one specimen was assigned to *N. puteanus*.

The presence of *N. virei* in Luxembourg remains doubtful. For the moment, we assume that Hoffmann (1963) was misled by the peculiar morphotype of *N. schellenbergi* in Sept-Fontaines. It might explain why Hoffmann (1963) did not attribute them to *N. schellenbergi*, but it does not explain why he identified them as belonging to *N. virei*. Given the morphological characters stated by Hoffmann (1963) for his material from Minière Langegronn (**Table 9**), we can exclude the possibility that he had collected *N. puteanus* (based on overall size, number of spines of telson, length coxal plate IV, end spines:telson) or *N. virei* (based on number of spines on the dactylus, telson length:width, end spines:telson). Currently, no known morphospecies fits his investigations and we tentatively interpret his results as misidentifications.

drawn by Hoffmann (1963) determined as <i>N. virei</i> .					
	N. puteanus	N. virei	Hoffmann (1963)		
Size in mm	10–22	about 35	30–33		
Coxal plate IV	not longer than V	longer than V	longer than V		
Spines on the dactylus of the gnathopods	5-8	2–10	1		

90°

4–5

1.2 - 1.35

1.2 - 1.25

0.25-0.44

90°

1.25

1

5

0.22

80°-120°

0.86 - 1.05

0.33-0.53

1.2 - 2

3

TABLE 9. Relevant morphological characters of *Niphargus puteanus* and *Niphargus virei* in comparison to the specimen drawn by Hoffmann (1963) determined as *N. virei*.

Combining past and present findings

Epimeral plate 3, angle at posterior edge

Uropod I internal branch:external branch

Telson length:width

End spines of telson

End spines:telson

Our integrative taxonomic survey for groundwater amphipods of the family Niphargidae in Luxembourg detected *N. schellenbergi* as the predominant species. All other taxa were less frequent (*N. fontanus* MOTU A, *N. aquilex* MOTUS EF and G), and for three species only a single-specimen record was retrieved (*N. aquilex* MOTU B, *N. kochianus* MOTU ABC, *N. puteanus*). When compared, species overlap between literature reports (**Fig. 4**), morphology-based identifications from our study and DNA-based species identifications was limited to three (morpho)species: *N. aquilex*, *N. fontanus* and *N. schellenbergi*. Neither *M. leruthi* nor *N. virei* were re-detected.

As stated above, we faced several difficulties when identifying specimens based on their morphology, partly leading to questionable or imprecise determination results attributable to the following causes:

- mistakes or ambiguities in determination keys (e.g. in Ginet, 1991-1995, where *N. schellenbergi* is described with the external ramus of uropod 1 being longer than internal, whereas at least in Luxembourg and further Central European material both rami have similar lengths);
- lack of taxonomic keys to distinguish species within species complexes (*N. aquilex* complex, *N. kochianus* complex), which so far can only be addressed using genetic data;
- mismatches between the historical drawings of diagnostic morphological characters and their features in the specimens at hand (e.g. the supposedly ovoid gnathopods in *N. fontanus* compared to the square-shaped gnathopods of *N. schellenbergi*);
- high intraspecific morphological variability, as e.g. observed in *N. schellenbergi* for which two distinct morphotypes were observed. Without molecular data (COI and 28S), we would have wrongly described the distinct phenotype from Sept-Fontaines as a species new to science;

abundance of juveniles among our collected individuals, which are always difficult to determine with confidence.

FIGURE 4. Venn diagram of niphargids from Luxembourg, comparing historical literature findings and genetic findings of this study. The presence of *Microniphargus leruthi* seems likely, but the species was not recollected.

The outcomes of our integrative taxonomic survey hence strongly corroborate previous statements that morphology-based identifications of the niphargid fauna of Northern France, the Benelux countries and Germany is error-prone, or, for some species complexes, even impossible (McInerney *et al.* 2014; Weber *et al.* 2020b). Currently, only adult *N. puteanus* can be reliably identified using their morphology (Weber *et al.* 2020a). For some part also, an accurate morphological determination of *N. schellenbergi* seems possible, i.e. when referring to i) the form of gnathopods, ii) the setae on the outer ramus of the dactylus of gnathopods and iii) the rounded epimeral plate; the length of the two rami of uropod I, on the other hand, does not appear informative. In contrast, several individuals not matching the set of diagnostic characters mentioned in the original description of *N. schellenbergi* by Karaman (1932) turned out to belong to this species after integration of mitochondrial and nuclear sequence data.

In conclusion, a safe determination of niphargids from Luxembourg—and the Greater Region of Saarland, Lorraine, Luxembourg, Wallonia and Rhineland-Palatinate—appears only possible using molecular data. The commonly applied COI barcode marker seems highly suitable here as species delineations and assignments were consistent with nuclear 28S data. A large-scale molecular inventory of niphargids in the Greater Region would also allow shedding further light on the distribution and ecological preferences of the rare species detected in our study.

Acknowledgements

We thank Robert Dondelinger, Christine Harbusch, Thomas Sebastian Lechner, Christa Locke, Ann-Cathrin Thierry and Verena Weber for their assistance in collecting specimens in Luxembourg. We also acknowledge Jessica Durkota and Tim Johns for their help in collecting material of *Niphargus aquilex* from the type locality in England. Fabio Stoch confirmed the morphological determination of some unusual morphotypes of the *N. aquilex* group and of *N. schellenbergi*, and uploaded sequence data to GenBank. Tim Johns determined the *N. aquilex* material from England. The German Science Foundation (DFG, WE 6055/1-1), the National Museum of Natural History Luxembourg and the Fonds de la Recherche Scientifique (FNRS, CDR J.0272.17) financially supported this project.

References

Astrin, J.J. & Stüben, P.E. (2009) Molecular phylogeny in "nano-weevils" description of a new subgenus *Nanoacalles* and two new species of *Calacalles* from the Macaronesian Islands (Curculionidae: Cryptorhynchidae). *Zootaxa*, 2300, 51–67.

Bah, T. (2011) Inkscape. Guide to a vector drawing program. 4th Edition. Prentice Hall, Boston, 504 pp.

- Barber, H.S. (1931) Traps for cave-inhabiting insects. Journal of the Elisha Mitchell Scientific Society, 46, 259–266.
- Bellan-Santini, D. (2015) Order Amphipoda Latreille, 1816. In: von Vaupel Klein, J.C., Charmantier-Daures, M. & Schram, F.R. (Eds.), Treatise on zoology—anatomy, taxonomy, biology. The Crustacea, 5, pp. 93–248. https://doi.org/10.1163/9789004232518 006
- Borowsky, B. (2011) Response to light in two eyeless cave dwelling amphipods (*Niphargus ictus* and *Niphargus frasassianus*). Journal of Crustacean Biology, 31 (4), 613–616. https://doi.org/10.1651/10-3450.1
- Chappuis, P.-A. (1924) Die Fauna der unterirdischen Gewässer der Umgebung von Basel. Archiv für Hydrobiologie, 14, 1-88.
- Chappuis, P.-A. (1942) Eine neue Methode zur Untersuchung der Grundwasserfauna. Acta scientiarum mathematicarum et naturalium / Universitas Francisco Joseephina, Kolozsvar, 6, 3–7.
- Chevreux, M.E. (1896) Sur un Amphipode d'eau douce, *Niphargus Virei* nov. sp., provenant des grottes du Jura. *Bulletin du muséum d'histoire naturelle*, 2, 136–137.
- Clark, A.G. (1990) Inference of haplotypes from PCR-amplified samples of diploid populations. *Molecular Biology and Evolution*, 7 (2), 111–122.

https://doi.org/10.1093/oxfordjournals.molbev.a040591

- Delhez, F. & Houssa, M. (1969) L'Araine de Richeronfontaine à Liège. Etude écologique de la faune cavernicole d'un réseau souterrain artificiel. *Les Naturalistes Belges*, 50 (4), 194–212.
- Delhez, F., Dethier, M. & Hubart, J.-M. (1999) Contribution à la connaissance de la faune des grottes de Wallonie. *Bulletin des Chercheurs de la Wallonie*, 39, 27–54.
- Dobat, K. (1975) Die Höhlenfauna der Schwäbischen Alb mit Einschluss des Dinkelberges, des Schwarzwaldes und des Wutachgebietes. *Abhandlungen zur Karst- und Höhlenkunde, Reihe D, Paläontologie*, Zoologie, 2, 260–381.
- Esmaeili-Rineh, S., Mamaghani-Shishvan, M., Fišer, C., Akmali, V. & Najafi, N. (2019) Range sizes of groundwater amphipods (Crustacea) are not smaller than range sizes of surface amphipods: a case study from Iran. *Contributions to Zoology*, 1, 1–13.

https://doi.org/10.1163/18759866-20191418

Esmaeili-Rineh, S., Sari, A., Fišer, C. & Bargrizaneh, Z. (2017) Completion of molecular taxonomy: description of four amphipod species (Crustacea: Amphipoda: Niphargidae) from Iran and release of database for morphological taxonomy. *Zoologischer Anzeiger*, 271, 57–79.

https://doi.org/10.1163/18759866-20191418

- Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using the bootstrap. *Evolution*, 39, 783–791. https://doi.org/10.2307/2408678
- Fišer, C. (2012) Niphargus: A model system for evolution and ecology. In: White, W.B. & Culver, D.C. (Eds.), Encyclopaedia of caves. 2nd Edition. Academic press, Amsterdam, pp. 555–564. https://doi.org/10.1016/B978-0-12-814124-3.00090-X
- Fišer, C. & Zagmaister, M. (2009) Cryptic species from cryptic space: the case of *Niphargus fongi* sp. n. (Amphipoda, Niphargidae). *Crustaceana*, 82 (5), 593–614.
 - https://doi.org/10.1163/156854009X407704
- Fišer, C., Zagmajster, M. & Dethier, M. (2018) Overview of Niphargidae (Crustacea: Amphipoda) in Belgium: distribution, taxonomic notes and conservation issues. *Zootaxa*, 4387 (1), 47–74. https://doi.org/10.11646/zootaxa.4387.1.2
- Fišer, C., Konec, M., Alther, R., Švara, V. & Altermatt, F. (2016) Taxonomic, phylogenetic and ecological diversity of *Niphargus* (Amphipoda: Crustacea) in the Hölloch cave system (Switzerland). *Systematics and Biodiversity*, 15, 218–237. https://doi.org/10.1080/14772000.2016.1249112
- Flot, J.-F. & Weber, D. (2013) Amphipods from caves of the Grand Duchy of Luxembourg. Ferrantia, 69, 186–190.
- Flot, J.-F., Wörheide, G. & Dattagupta, S. (2010a) Unsuspected diversity of *Niphargus* amphipods in the chemoautotrophic cave ecosystem of Frasassi, central Italy. *BMC Evolutionary Biology*, 10, 171. https://doi.org/10.1186/1471-2148-10-171
- Flot, J.-F., Couloux, A. & Tillier, S. (2010b) Haplowebs as a graphical tool for delimiting species: a revival of Doyle's "field for recombination" approach and its application to the coral genus *Pocillopora* in Clipperton. *BMC Evolutionary Biology*, 10, 372.

https://doi.org/10.1186/1471-2148-10-372

- Flot J.-F. (2010) Vers une taxonomie moléculaire des amphipodes du genre *Niphargus* : exemples d'utilisation de séquences d'ADN pour l'identification des espèces. *Bulletin de la Société des Sciences Naturelles de l'Ouest de la France*, 32 (2), 62–68.
- Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome *c* oxidase subunit I from diverse metazoan invertebrates. *Molecular Marine Biology and Biotechnology*, 3, 294–299.

Fontaneto, D., Flot, J.-F. & Tang, C.Q. (2015) Guidelines for DNA taxonomy, with a focus on the meiofauna. *Marine Biodiversity*, 45, 433–451.

https://doi.org/10.1007/s12526-015-0319-7

Gerecke, R., Stoch, F., Meisch, C. & Schrankel, I. (2005) Die Fauna der Quellen und des hyporheischen Interstitials in Luxembourg. *Ferrantia*, 41, 1–140.

Ginet, R. (1991-1995) Bilan systématique du genre Niphargus en France. s.n., Lyon, 243 pp.

- Gledhill, T, Sutcliffe, D.W. & Williams, W.D. (1976) Key to the British freshwater Crustacea: Malacostraca. Freshwater Biological Association, scientific publications, 32, 1–72.
- Hartke, T.R., Fišer, C., Hohagen, J., Kleber, S., Hartmann, R. & Koenemann, S. (2011) Morphological and molecular analyses of closely related species in the stygobiontic genus *Niphargus* (Amphipoda). *Journal of Crustacean Biology*, 31 (4), 701–709.

https://doi.org/10.1651/10-3434.1

- Hertzog, L. (1930) Notes sur quelques Crustacés nouveaux pour la plaine d'Alsace (Bas-Rhin). Bulletin de l'Association Philomathique d'Alsace et de Lorraine, 7 (5), 355–364.
- Hoffmann, J. (1963) Faune des Amphipodes du Grand-Duché de Luxembourg. Crustacea, Malacostraca, Amphipoda. Musée d'Histoire Naturelle Luxembourg. *Extrait des Archives de la Section des Sciences de l'Institut Grand-Ducal, Nouvelle Série*, 29, 77–128.
- Horton, T., Lowry, J., De Broyer, C., Bellan-Santini, D., Coleman, C.O., Corbari, L., Costello, M.J., Daneliya, M., Dauvin, J.-C., Fišer, C., Gasca, R., Grabowski, M., Guerra-García, J.M., Hendrycks, E., Hughes, L., Jaume, D., Jazdzewski, K., Kim, Y.-H., King, R., Krapp-Schickel, T., LeCroy, S., Lörz, A.-N., Mamos, T., Senna, A.R., Serejo, C., Sket, B., Souza-Filho, J.F., Tandberg, A.H., Thomas, J.D., Thurston, M., Vader, W., Väinölä, R., Vonk, R., White, K. & Zeidler, W. (2021) World Amphipoda Database. Available from: http://www.marinespecies.org/amphipoda (accessed 20 September 2021) https://doi.org/10.14284/368
- Karaman, G.S. (1980) Contribution to the knowledge of the Amphipoda 113. Redescription of *Niphargus aquilex* Schiödte and its distribution in Great Britain. *Biosistematika*, 6 (2), 175–185.
- Karaman, G. (2017) New data on two subterranean species of the family Niphargidae from Spain, Niphargus gallicus Schell., 1935 and N. delamarei Ruffo, 1954 (Contribution to the Knowledge of the Amphipoda 282). Contributions, Section of Natural, Mathematical and Biotechnical Sciences, 36 (2), 105–120. https://doi.org/10.20903/csnmbs.masa.2015.36.2.72
- Karaman, G.S. & Ruffo, S. (1986) Amphipoda: *Niphargus*-group (Niphargidae sensu Bousfield, 1982) *In*: Botosaneanu L. *Sty-gofauna Mundi*, 514–535.
- Karaman, S. (1932) 5. Beitrag zur Kenntnis der Süsswasser-Amphipoden (Amphipoden unterirdischer Gewässer). Prirodoslovne Razprave, 2, 179–232.
- Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. *Briefings in Bioinformatics*, 20 (4), 1160–1166. https://doi.org/10.1093/bib/bbx108
- Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. *Molecular Biology and Evolution*, 35, 1547–1549. https://doi.org/10.1093/molbev/msy096
- Koch, C.L. (1836) Gammarus puteanus. In: Panzer, G.W.F. (Ed.), Fauna Insectorum Germanica Initia, 138, pp. 1–2.
- Kureck, A. (1964) Light sensitivity in the amphipode, Niphargus aquilex schellenbergi Karaman. Experientia, 20 (9), 523-524.
- Lefébure, T., Douady, C.J., Malard, F. & Gibert, J. (2007) Testing dispersal and cryptic diversity in a widely distributed groundwater amphipod (*Niphargus rhenorhodanensis*). *Molecular Phylogenetics and Evolution*, 42 (3), 676–686. https://doi.org/10.1016/j.ympev.2006.08.020
- Leloup, E. & Jacquemart, S. (1963) Ecologie d'une tourbière bombée (Haute-Ardenne, La Fange aux Mochettes). *Mémoires de l'Institut royal des Sciences naturelles de Belgique*, 149, 1–159.
- Leruth, R. (1939) Biologie du domaine souterrain et faune cavernicole de la Belgique. *Memoires du Musee royal d'Histoire naturelle de Belgique, Bruxelles*, 87, 1–506.
- Malard, F., Dole-Olivier, M.-J., Mathieu, J. & Stoch, F. (2002) Sampling manual for the assessment of regional groundwater biodiversity. European Project PASCALIS, Villeurbanne, 74 pp.
- McInerney, C.E., Maurice, L, Robertson, A.L., Knight, L.R.F.D., Arnscheidt, J., Venditti, C., Doodley, J.S.G., Mathers, T., Matthijs, S., Eriksson, K., Proudlove, G.S. & Hänfling, B. (2014) The ancient Britons: groundwater fauna survived extreme climate change over tens of millions of years across NW Europe. *Molecular Ecology*, 23 (5), 1153–1166. https://doi.org/10.1111/mec.12664
- Meisch, C. & Massard, J.A. (2015) Les recherches sur les crustacés (Crustacea) du Luxembourg: aperçu historique. *Bulletin de la Société des naturalistes luxembourgeois*, 116, 381–390.
- Meleg, J.N., Zakšek, V., Fišer, C., Kelemen, B.S. & Moldovan, O.T. (2013) Can environment predict cryptic diversity? The case of *Niphargus* inhabiting Western Carpathian groundwater. *PLoS ONE*, 8, 1–13.

https://doi.org/10.1371/journal.pone.0076760

Notenboom, J. (1982) Een inventarisatie van de fauna in een aantal Zuid-Limburgse waterputten. Natuurhistorisch Maandblad,

71 (2), 27–32.

- Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. *Molecular Ecology*, 21, 1864–1877.
 - https://doi.org/10.1111/j.1365-294X.2011.05239.x
- Schellenberg, A. (1932a) Vier blinde Amphipodenarten aus einem Brunnen Oberbayerns. Zoologischer Anzeiger, 98 (5/6), 131–139.
- Schellenberg, A. (1932b) Deutsche subterrane Amphipoden. Zoologischer Anzeiger, 99 (11/12), 311-323.
- Schellenberg, A. (1933) Niphargus puteanus am alten Fundort neu entdeckt, Revision der deutschen Niphargus-Arten. Zoologischer Anzeiger, 102 (9/10), 255–257.
- Schellenberg, A. (1934): Eine neue Amphipoden-Gattung aus einer belgischen Höhle, nebst Bemerkungen über die Gattung *Crangonyx. Zoologischer Anzeiger*, 106 (9), 125–128.
- Schellenberg, A. (1935) Schlüssel der Amphipodengattung *Niphargus* mit Fundortangaben und mehreren neuen Formen. *Zoologischer Anzeiger*, 111 (7/8), 204–211.
- Schiödte, J.C. (1855) Om den i England opdagede Art af Hulekrebe-Slaegten *Niphargus*. Oversigt over det Kgl. danske Vidensk. Selsk. Forhandl. *Medlemmers Arb. Kjobenhavn*, 1855, 349–351.
- Sket, B. (2004) The cave hygropetric—a little known habitat and its inhabitants. *Archiv für Hydrobiologie*, 160 (3), 413–425. https://doi.org/10.1127/0003-9136/2004/0160-0413
- Spangenberg, H.-J. (1973) Beitrag zur Faunistik von Höhlengewässern im Zechstein des Südharzes und Kyffhausers. *Hercynia*, Neue Folge, 10 (2), 143–160.
- Spence Bate, C.S. (1859) On the genus Niphargus (Schiödte). Proceedings of the Dublin university zoological and botanical association, 1, 237–240.
- Spöri, Y. & Flot, J. (2020) HaplowebMaker and CoMa: two web tools to delimit species using haplowebs and conspecificity matrices. *Methods in Ecology and Evolution*, 1, 1434–1438. https://doi.org/10.1111/2041-210X.13454
- Spöri, Y., Stoch, F., Dellicour, S., Birky, C.W. & Flot, J.-F. (2021) KoT: an automatic implementation of the K/θ method for species delimitation. *BioRxiv*, 2021.08.17.454531. [published online] https://doi.org/10.1101/2021.08.17.454531
- Straškraba, M. (1972) Les groupement des espèces du genre Niphargus (sensu lato). In: Ruffo, S. (Ed.), Actes du Ier Colloque International sur le Genre Niphargus, Verona, 1972, 85–90.
- Stoch, F., Malard, F., Castellarini, F., Dole-Olivier, M.-J. & Gibert, J. (2004) *Statistical analyses and identification of indicators*. European Project Report WP7 D8 (PASCALIS No EVK-CT-2001-00121), Villeurbanne, 156 pp.
- Stock, J.H. (1961) Ondergrondse waterdieren in Zuid-Limburg. Overdruk uit het Natuurhistorich Maandblad, 50 (7-8), 77-85.
- Sunnen, T. (1957) Les Niphargus des chambres de captage du Grès de Luxembourg. Archives de l'Institut grand-ducal, Section des sciences naturelles, physiques et mathématiques, New Series, 24, 57–60.
- Trontelj, P., Douady, C.J., Fišer, C., Gibert, J., Gorički, Š., Lefébure, T., Sket, B. & Zakšek, V. (2009) Molecular test for cryptic diversity in ground water: how large are the ranges of macro-stygobionts? *Freshwater Biology*, 54, 727–744. https://doi.org/10.1111/j.1365-2427.2007.01877.x
- Verovnik, R., Sket, B. & Trontelj, P. (2005) The colonization of Europe by the freshwater crustacean Asellus aquaticus (Crustacea: Isopoda) proceeded from ancient refugia and was directed by habitat connectivity. Molecular Ecology, 14, 4355– 4369.

https://doi.org/10.1111/j.1365-294X.2005.02745.x

- Weber, D. (1991) Die Evertebratenfauna der Höhlen und künstlichen Hohlräume des Katastergebietes Westfalen einschließlich der Quellen- und Grundwasserfauna. Abhandlungen zur Karst- und Höhlenkunde, München, 25, 1–701.
- Weber, D. (2001) Die Höhlenfauna und -flora des Höhlenkatastergebietes Rheinland-Pfalz/Saarland. 4. Teil. Abhandlungen zur Karst- und Höhlenkunde, München, 33, 1–1088.
- Weber, D. (2011) Höhlenfaunenerfassung in Luxemburg. Mitteilungen des Verbandes der deutschen Höhlen- und Karstforscher e.V., München, Jg. 2011 (3), 99–100.
- Weber, D. (2012) Die Höhlenfauna und -flora des Höhlenkatastergebietes Rheinland-Pfalz/Saarland. 5. Teil. Abhandlungen zur Karst- und Höhlenkunde, München, 36, 1–2367.
- Weber, D. (2013) Die Höhlenfauna Luxemburgs. Ferrantia, 69, 5–95.
- Weber, D. (2018) 'Grot garnelen' in Limburg. SOK Medelingen, 69, 18-23.
- Weber, D., Flot, J.-F., Weigand, H. & Weigand, A.M. (2020) Demographic history, range size and habitat preferences of the groundwater amphipod *Niphargus puteanus* (C.L. Koch in Panzer, 1836). *Limnologica*, 8, 125765. https://doi.org/10.1016/j.limno.2020.125765
- Weber, D., Stoch, F., Knight, L.R.F.D., Chauveau, C.A. & Flot, J.-F. (2021) The genus *Microniphargus* (Crustacea, Amphipoda): evidence for three lineages distributed across northwestern Europe and transfer from Niphargidae to Pseudoniphargidae. *Belgian Journal of Zoology*, 161, 169–191. https://doi.org/10.1101/2020.08.25.266817
- Weigand, A.M., Kremers, J. & Grabner, D.S. (2016) Shared microsporidian profiles between an obligate (*Niphargus*) and facultative subterranean amphipod population (*Gammarus*) at sympatry provide indications for underground transmission pathways. *Limnologica*, 58, 7–10.

https://doi.org/10.1016/j.limno.2016.01.005

SUPPLEMENTARY TABLE 1. Overview of sequenced specimens used in the present article. Habitat: mine = artificial cavern mined for minerals; tunnel = artificial cavern with two opposite entrances on same level; interstitial = hyporheic porous sediment zone along and under the river bed; rheocrene = flowing spring where water emerges into a defined downstream channel; helocrene = spring where water emerges diffusely over a wider area; limnocrene = flowing spring where water emerges upwards into a lake or lakelet; basin = spring where water flows mostly via a rheocrene or a man-made pipe into a basin. Lat. = Latitude, Long. = Longitude. 28S and COI refer to molecular sequences available, either new from this study (with Genbank number) or from the literature (with x). To protect subterranean sites, we have removed the 3rd decimal place of the WGS84 coordinates for all artificial caverns.

Code	Object name	Ha-bitat	Collection	Species	Country	Lat.	Long.	28S	COI	Literature
			date							
AK1	Quelle am aale Koepchen	rheocrene	20.05.2018	Niphargus schellenbergi	Luxembourg	50.073	6.047		OK380764	
ASI	Schiefergrouf Asselborn	mine	14.03.2017	Niphargus schellenbergi	Luxembourg	50.10	5.96	OK378185	OK380765	
AS2	Schiefergrouf Asselborn	mine	14.03.2017	Niphargus schellenbergi	Luxembourg	50.10	5.96		OK380766	
AW1	Sickerquelle auf Weg	helocrene	11.02.2018	Niphargus schellenbergi	Luxembourg	50.005	5.954		OK380767	
AW2	Sickerquelle auf Weg	helocrene	11.02.2018	Niphargus schellenbergi	Luxembourg	50.005	5.954		OK380768	
BA1	Source 1 Bambesch	rheocrene	25.08.2018	Niphargus schellenbergi	Luxembourg	49.636	6.116		OK380769	
BA2	Source 1 Bambesch	rheocrene	25.08.2018	Niphargus schellenbergi	Luxembourg	49.636	6.116		OK380770	
BA3	Source 1 Bambesch	rheocrene	25.08.2018	Niphargus schellenbergi	Luxembourg	49.636	6.116		OK380771	
BB1	Source 2 Bambesch	rheocrene	25.08.2018	Niphargus schellenbergi	Luxembourg	49.636	6.116		OK380772	
BC1	Lavoir Brachtenbach	basin	27.02.2017	Niphargus schellenbergi	Luxembourg	50.019	5.908		OK380773	
BR1	Source rue de Bridel	rheocrene	26.08.2018	Niphargus schellenbergi	Luxembourg	49.629	6.113		OK380774,	
									OK380775	
BR2	Source rue de Bridel	rheocrene	26.08.2018	Niphargus schellenbergi	Luxembourg	49.629	6.113		OK380776	
DF1	Quelle 1 Decken Fiels	rheocrene	03.01.2017	Niphargus schellenbergi	Luxembourg	49.643	6.041	OK378186	OK380777	
DII	Quelle 2 Decken Fiels	rheocrene	03.01.2017	Niphargus schellenbergi	Luxembourg	49.642	6.028		OK380778	
DK1	Quelle Diekirch	rheocrene	11.02.2018	Niphargus schellenbergi	Luxembourg	49.875	6.154		OK380779	
DK2	Quelle Diekirch	rheocrene	11.02.2018	Niphargus schellenbergi	Luxembourg	49.875	6.154		OK380780	
DL1	Minière Doihl	mine	26.07.2016	Niphargus schellenbergi	Luxembourg	49.54	5.85	OK378187	OK380781	
DL2	Minière Doihl	mine	26.07.2016	Niphargus schellenbergi	Luxembourg	49.54	5.85	OK378188	OK380782	
DL3	Minière Doihl	mine	26.07.2016	Niphargus schellenbergi	Luxembourg	49.54	5.85		OK380783	
DL4	Minière Doihl	mine	26.07.2016	Niphargus schellenbergi	Luxembourg	49.54	5.85		OK380784	
DL5	Minière Doihl	mine	26.07.2016	Niphargus schellenbergi	Luxembourg	49.54	5.85		OK380785	
DL6	Minière Doihl	mine	26.07.2016	Niphargus schellenbergi	Luxembourg	49.54	5.85		OK380786	
									continued on th	ie next page

		(non)								
Code	Object name	Ha-bitat	Collection	Species	Country	Lat.	Long.	28S	COI	Literature
			date							
DL7	Minière Doihl	mine	26.07.2016	Niphargus schellenbergi	Luxembourg	49.54	5.85		OK380787	
DL8	Minière Doihl	mine	04.10.2014	Niphargus schellenbergi	Luxembourg	49.54	5.85	OK378189		
DUI	Jettenhöhle	cave	02.05.2019	Niphargus schellenbergi	Germany	51.69	10.27	Х	Х	Flot 2010
DU2	Jettenhöhle	cave	02.05.2019	Niphargus schellenbergi	Germany	51.69	10.27	Х	Х	Flot 2010
DU3	Jettenhöhle	cave	02.05.2019	Niphargus schellenbergi	Germany	51.69	10.27	Х	Х	Flot 2010
EC1	Quelle südlich Echternach	rheocrene	31.01.2018	Niphargus schellenbergi	Luxembourg	49.811	6.455		OK380788	
EH1	Quelle 2 südlich Echter-	rheocrene	31.01.2018	Niphargus schellenbergi	Luxembourg	49.811	6.454		OK380789	
	nach									
EH2	Quelle 2 südlich Echter-	rheocrene	31.01.2018	Niphargus schellenbergi	Luxembourg	49.811	6.454		OK380790	
	nach									
FN1	Sept-Fontaines	rheocrene	11.08.2018	Niphargus schellenbergi	Luxembourg	49.627	6.100		OK380791	
FN2	Sept-Fontaines	rheocrene	11.08.2018	Niphargus schellenbergi	Luxembourg	49.627	6.100	OK378190		
FO1	Eisebunns Tunnel	tunnel	21.03.2015	Niphargus schellenbergi	Luxembourg	49.91	6.19	OK378191		
	Fouhren									
GD1	Grünelscheid-Quelle	rheocrene	11.02.2018	Niphargus schellenbergi	Luxembourg	49.976	5.87		OK380792	
GD2	Grünelscheid-Quelle	rheocrene	11.02.2018	Niphargus schellenbergi	Luxembourg	49.976	5.87		OK380793	
GF1	Quelle bei Grundhaff	rheocrene	13.07.2016	Niphargus schellenbergi	Luxembourg	49.835	6.328	OK378192		
GK1	Source de Girsterklaus	basin	04.09.2016	Niphargus schellenbergi	Luxembourg	49.785	6.498	OK378193	OK380794	
GK10	Source de Girsterklaus	basin	17.02.2018	Niphargus schellenbergi	Luxembourg	49.785	6.498		OK380795	
GK11	Source de Girsterklaus	basin	17.02.2018	Niphargus schellenbergi	Luxembourg	49.785	6.498		OK380796	
GK12	Source de Girsterklaus	basin	17.02.2018	Niphargus schellenbergi	Luxembourg	49.785	6.498		OK380797	
GK13	Source de Girsterklaus	basin	17.02.2018	Niphargus aquilex MOTU EF	Luxembourg	49.785	6.498		OK380798	
GK14	Source de Girsterklaus	basin	17.02.2018	Niphargus aquilex MOTU EF	Luxembourg	49.785	6.498		OK380799	
GK15	Source de Girsterklaus	basin	17.02.2018	Niphargus aquilex MOTU EF	Luxembourg	49.785	6.498		OK380800	
									continued on	he next page

SUPPLEM	ENTARY TABLE 1. (Contin-	ued)								
Code	Object name	Ha-bitat	Collection date	Species	Country	Lat.	Long.	28S	COI	Literature
GK16	Source de Girsterklaus	basin	30.01.2018	Niphargus aquilex MOTU EF	Luxembourg	49.785	6.498	OK378194, OK378195	OK380801	
GK2	Source de Girsterklaus	basin	10.07.2016	Niphargus aquilex MOTU EF	Luxembourg	49.785	6.498	OK378196	OK380802	
GK3	Source de Girsterklaus	basin	04.09.2016	Niphargus aquilex MOTU EF	Luxembourg	49.785	6.498	OK378197, OK378198	OK380803	
GK4	Source de Girsterklaus	basin	30.01.2018	Niphargus schellenbergi	Luxembourg	49.785	6.498		OK380804	
GK5	Source de Girsterklaus	basin	30.01.2018	Niphargus schellenbergi	Luxembourg	49.785	6.498		OK380805	
GK6	Source de Girsterklaus	basin	30.01.2018	Niphargus schellenbergi	Luxembourg	49.785	6.498		OK380806	
GK7	Source de Girsterklaus	basin	30.01.2018	Niphargus schellenbergi	Luxembourg	49.785	6.498		OK380807	
GK8	Source de Girsterklaus	basin	30.01.2018	Niphargus schellenbergi	Luxembourg	49.785	6.498		OK380808	
GK9	Source de Girsterklaus	basin	30.01.2018	Niphargus aquilex MOTU EF	Luxembourg	49.785	6.498		OK380809	
GOI	Interstitial Gouschtenger- bach 1	interstitial	12.10.2018	Niphargus schellenbergi	Luxembourg	49.607	6.386		OK380810	
G02	Interstitial Gouschtenger- bach 1	interstitial	12.10.2018	Niphargus aquilex MOTU EF	Luxembourg	49.607	6.386	OK378199	OK380811	
GO3	Interstitial Gouschtenger- bach 1	interstitial	12.10.2018	Niphargus aquilex MOTU EF	Luxembourg	49.607	6.386		OK380812	
HN1	Hunnebuer 4	rheocrene	04.02.2017	Niphargus schellenbergi	Luxembourg	49.727	6.087	OK378200	OK380813	
HR1	Hunnebur	rheocrene	01.05.2018	Niphargus schellenbergi	Luxembourg	49.727	6.08		OK380814	
HS1	Quelle 4 Helmsange	rheocrene	04.01.2017	Niphargus schellenbergi	Luxembourg	49.649	6.143	OK378201	OK380815	
IA1	Interstitial Attert bei Evelingen	interstitial	12.10.2017	Niphargus schellenbergi	Luxembourg	49.775	5.953		OK380816	
III	Interstitial Wiltz	interstitial	02.09.2017	Niphargus aquilex MOTU EF	Luxembourg	49.969	5.901	OK378202	OK380817	
IL1	Interstitial Schlënner	interstitial	01.08.2017	Niphargus schellenbergi	Luxembourg	49.949	6.066	OK378203	OK380818	
1L2	Interstitial Schlënner	interstitial	01.08.2017	Niphargus schellenbergi	Luxembourg	49.949	6.066	OK378204	OK380819	
								:	continued on the	e next page

	Literature	0820	0821		0822			0823	0824	0825	0826	0827	0828, 3829	0830	0831	0832	0833	0834	0835	0836	
	COI	5 OK38(OK38(5	7 OK38(80	•) OK38(OK38(I 0K38(OK38(OK38(OK38(OK38(OK38(OK38(2 OK38(OK38(3 OK38(4 OK38(OK38(
	28S	OK37820:		OK378200	OK37820	OK378208	OK378209	OK37821(OK37821]						OK378212		OK37821	OK378214		
	Long.	6.066	6.066	6.066	6.094	6.094	6.094	5.971	6.363	6.149	6.149	6.15	6.15	6.15	6.296	6.085	6.119	6.083	6.119	5.951	
	Lat.	49.949	49.949	49.949	49.888	49.888	49.888	49.963	49.796	49.571	49.571	49.97	49.97	49.97	49.794	49.677	49.631	49.674	49.631	50.009	
	Country	Luxembourg	Luxembourg	Luxembourg	Luxembourg	Luxembourg	Luxembourg	Luxembourg	Luxembourg	Luxembourg	Luxembourg	Luxembourg	Luxembourg	Luxembourg	Luxembourg	Luxembourg	Luxembourg	Luxembourg	Luxembourg	Luxembourg	
	Species	Niphargus aquilex MOTU EF	Niphargus aquilex MOTU EF	Niphargus schellenbergi	Niphargus aquilex MOTU EF	Niphargus aquilex MOTU EF	Niphargus aquilex MOTU B	Niphargus schellenbergi	Niphargus schellenbergi	Niphargus fontanus MOTU A	Niphargus fontanus MOTU A	Niphargus schellenbergi	Niphargus schellenbergi	Niphargus schellenbergi							
	Collection date	01.08.2017	01.08.2017	01.08.2017	02.08.2017	02.08.2017	02.08.2017	02.09.2017	14.05.2017	28.01.2018	28.01.2018	23.02.2018	23.02.2018	23.02.2018	11.05.2017	06.01.2017	13.12.2016	06.01.2017	13.12.2016	11.02.2018	
ued)	Ha-bitat	interstitial	interstitial	interstitial	interstitial	interstitial	interstitial	interstitial	basin	rheocrene	rheocrene	mine	mine	mine	basin	rheocrene	rheocrene	rheocrene	rheocrene	limnocre-	ne
TABLE 1. (Contin	Object name	Interstitial Schlënner	Interstitial Schlënner	Interstitial Schlënner	Interstitial Sauer	Interstitial Sauer	Interstitial Sauer	Interstitial Wiltz 2	Quelle beim Kalkesbach	Klengelbuer	Klengelbuer	Kofferminn Stolzebuerg	Kofferminn Stolzebuerg	Kofferminn Stolzebuerg	Kuhtränke	Source Kopstal K8	Katzebour 1	Source Kopstal non Capté	Katzebour 2	Quelle an der Kreuzung	
SUPPLEM	Code	IL3	IL4	IL5	IS1	IS2	IS3	IW1	KC1	KEI	KE2	KF1	KF2	KF3	KK1	KO1	KR1	KS1	KT1	KZ1	

SUPPLEM	ENTARY TABLE 1. (Contin	nued)								
Code	Object name	Ha-bitat	Collection	Species	Country	Lat.	Long.	28S	COI	Literature
			date							
LB1	Lédeleschbur	rheocrene	07.01.2017	Niphargus schellenbergi	Luxembourg	49.678	6.076	OK378215	OK380837	
LB2	Lédeleschbur	rheocrene	07.01.2017	Niphargus schellenbergi	Luxembourg	49.678	6.076		OK380838	
LE1	Strassenböschung L'Écluse	rheocrene	01.02.2018	Niphargus schellenbergi	Luxembourg	49.570	6.357		OK380839	
LE2	Strassenböschung L'Écluse	rheocrene	01.02.2018	Niphargus schellenbergi	Luxembourg	49.570	6.357		OK380840	
LG1	Minière Langegronn	mine	24.07.2016	Niphargus schellenbergi	Luxembourg	49.46	6.04	OK378216	OK380841	
LG2	Minière Langegronn	mine	01.01.2016	Niphargus fontanus MOTU A	Luxembourg	49.46	6.04		OK380842	
LG3	Minière Langegronn	mine	01.01.2016	Niphargus aquilex MOTU G	Luxembourg	49.46	6.04	OK378217, OK378218		
LG4	Minière Langegronn	mine	24.01.2016	Niphargus fontanus MOTU A	Luxembourg	49.46	6.04	OK378219		
LII	Quelle Laangebierg Italien	rheocrene	27.04.2016	Niphargus schellenbergi	Luxembourg	49.468	6.076	OK378220	OK380843	
MF1	Source à Moestroff	rheocrene	20.05.2018	Niphargus schellenbergi	Luxembourg	49.864	6.243		OK380844	
MH1	Mëchelbaach	interstitial	30.06.2017	Niphargus schellenbergi	Luxembourg	49.852	6.012	OK378221	OK380845	
MH2	Mëchelbaach	interstitial	30.06.2017	Niphargus aquilex MOTU EF	Luxembourg	49.852	6.012	OK378222	OK380846	
MH3	Mëchelbaach	interstitial	30.06.2017	Niphargus aquilex MOTU EF	Luxembourg	49.852	6.012	OK378223		
MK1	Galerie Merkholtz	mine	23.02.2018	Niphargus schellenbergi	Luxembourg	49.97	5.97		OK380847	
MK2	Galerie Merkholtz	mine	23.02.2018	Niphargus aquilex MOTU EF	Luxembourg	49.97	5.97	OK378224, OK378225	OK380848	
MK3	Galerie Merkholtz	mine	23.02.2018	Niphargus aquilex MOTU G	Luxembourg	49.97	5.97	OK378226	OK380849	
ML1	Source non captée Muellerthal	rheocrene	11.05.2017	Niphargus schellenbergi	Luxembourg	49.787	6.301		OK380850	
									continued on t	he next page

SUFFLEN	ENTARY LABLE 1. (CORU	unea)								
Code	Object name	Ha-bitat	Collection	Species	Country	Lat.	Long.	28S	COI	Literature
			date							
MUI	Sickerquelle	helocrene	16.05.2017	Niphargus schellenbergi	Luxembourg	50.095	6.023		OK380851	
	Maulusmühle									
MU2	Sickerquelle	helocrene	16.05.2017	Niphargus schellenbergi	Luxembourg	50.095	6.023		OK380852	
	Maulusmühle									
MU3	Sickerquelle	helocrene	16.05.2017	Niphargus schellenbergi	Luxembourg	50.095	6.023		OK380853	
	Maulusmühle									
MU4	Sickerquelle	helocrene	16.05.2017	Niphargus schellenbergi	Luxembourg	50.095	6.023		OK380854	
	Maulusmühle									
MU5	Sickerquelle	helocrene	16.05.2017	Niphargus kochianus	Luxembourg	50.095	6.023		OK380855	
	Maulusmühle			MUTU ABC						
MU6	Sickerquelle	helocrene	16.05.2017	Niphargus schellenbergi	Luxembourg	50.095	6.023	OK378227		
	Maulusmühle									
NE1	Quelle 1 Neuhäuschen	rheocrene	02.06.2017	Niphargus schellenbergi	Luxembourg	49.625	6.232	OK378228	OK380856	
NR1	Quelle Nr. 1	rheocrene	07.01.2017	Niphargus schellenbergi	Luxembourg	49.674	6.083	OK378229	OK380857	
NWI	Interstitial Nieder-	interstitial	02.09.2017	Niphargus schellenbergi	Luxembourg	50.001	5.824	OK378230		
	wampach									
PA1	Schiefergrouf vu Pärel	mine	30.01.2016	Niphargus schellenbergi	Luxembourg	49.81	5.77	OK378231	OK380858	
PH1	Minière Prince Henry	mine	02.09.2016	Niphargus schellenbergi	Luxembourg	49.47	5.99	OK378232		
QA1	Quelle 2 Laangebierg	rheocrene	10.02.2018	Niphargus schellenbergi	Luxembourg	49.467	6.066		OK380859	
	Italien									
QB1	Quelle 6 Laangebierg	helocrene	10.02.2018	Niphargus schellenbergi	Luxembourg	49.468	690.9		OK380860	
	Italien									
QG1	Quelle 3 Laangebierg	rheocrene	10.02.2018	Niphargus schellenbergi	Luxembourg	49.467	6.067		OK380861	
	Italien									
QH1	Quelle 1 Helmsange	rheocrene	04.01.2017	Niphargus schellenbergi	Luxembourg	49.651	6.14	OK378233		
QL1	Quelle 4 Laangebierg	limnocre-	10.02.2018	Niphargus puteanus	Luxembourg	49.467	6.068	OK378234	OK380862	
	Italien	ne								
QL2	Quelle 4 Laangebierg	limnocre-	10.02.2018	Niphargus schellenbergi	Luxembourg	49.467	6.068		OK380863	
	Italien	ne								
									continued on th	e next page

SUPPLEM	ENTARY TABLE 1. (Continu	ued)								
Code	Object name	Ha-bitat	Collection	Species	Country	Lat.	Long.	28S	COI	Literature
			date							
QN1	Quelle 5 Laangebierg Italien	limnocre- ne	10.02.2018	Niphargus schellenbergi	Luxembourg	49.467	6.068		OK380864	
QS1	Quelle Schiltzhaus	rheocrene	31.01.2018	Niphargus schellenbergi	Luxembourg	49.787	6.507		OK380865	
QT1	Quelle am Strassenrand	rheocrene	15.05.2017	Niphargus schellenbergi	Luxembourg	49.829	6.227		OK380866	
RM1	Brunnen Rue de Mamer	rheocrene	12.02.2017	Niphargus schellenbergi	Luxembourg	49.661	690.9		OK380867	
RP1	Quelle unter den Rasch-	rheocrene	04.02.2017	Niphargus schellenbergi	Luxembourg	49.667	6.146		OK380868	
	petzern									
RP2	Quelle unter den Rasch-	rheocrene	04.02.2017	Niphargus schellenbergi	Luxembourg	49.667	6.146	OK378235		
	petzern									
SB1	Strassenbassin	rheocrene	11.02.2018	Niphargus schellenbergi	Luxembourg	50.017	5.905		OK380869	
SB2	Strassenbassin	rheocrene	11.02.2018	Niphargus schellenbergi	Luxembourg	50.017	5.905		OK380870	
SC1	Schenzelbuer	rheocrene	16.01.2017	Niphargus schellenbergi	Luxembourg	49.666	6.19	OK378236	OK380871	
SF1	Quelle Schleif	rheocrene	11.02.2018	Niphargus schellenbergi	Luxembourg	49.992	5.86		OK380872	
SG1	Strassenquelle Girst	basin	30.01.2018	Niphargus schellenbergi	Luxembourg	49.781	6.487		OK380873	
SII	Quelle bei Schleif	rheocrene	21.05.2018	Niphargus schellenbergi	Luxembourg	49.986	5.855		OK380874	
SL1	Schiefergrouf vu Schläif	mine	28.02.2017	Niphargus schellenbergi	Luxembourg	50.00	5.82		OK380875	
SM1	Quelle über Schendelsem-	helocrene	01.05.2018	Niphargus schellenbergi	Luxembourg	49.725	6.103		OK380876	
	ıllen									
SW1	Schwiewelbur	rheocrene	28.01.2018	Niphargus schellenbergi	Luxembourg	49.546	6.272		OK380877	
SW2	Schwiewelbur	rheocrene	28.01.2018	Niphargus schellenbergi	Luxembourg	49.546	6.272		OK380878	
SW3	Schwiewelbur	rheocrene	28.01.2018	Niphargus schellenbergi	Luxembourg	49.546	6.272		OK380879	
TF1	Tümpelquelle Fromburg	limnocre-	31.01.2018	Niphargus schellenbergi	Luxembourg	49.777	6.414		OK380880	
		ne								
TH1	Tunnel Huldange	tunnel	14.12.2013	Niphargus schellenbergi	Luxembourg	50.16	6.03	OK378237		
TI1	Quelle Thilsmillen	rheocrene	03.01.2017	Niphargus schellenbergi	Luxembourg	49.462	6.059	OK378238	OK380881	
TN1	Saint Thomas Neben-	rheocrene	14.03.2017	Niphargus schellenbergi	Luxembourg	50.114	5.908		OK380882	
	quelle									
TO1	Source Saint Thomas	basin	14.03.2017	Niphargus schellenbergi	Luxembourg	50.114	5.909		OK380883	
								:	continued on t	he next page

SUPPLEM	ENTARY TABLE 1. (Continu	ued)								
Code	Object name	Ha-bitat	Collection	Species	Country	Lat.	Long.	28S	COI	Literature
			date							
TS1	Tussen-Quelle	rheocrene	28.02.2017	Niphargus schellenbergi	Luxembourg	50.16	6.03		OK380884	
UE1	Quelle Uechelsbaach	rheocrene	27.04.2016	Niphargus schellenbergi	Luxembourg	49.478	6.105	OK378239	OK380885	
UK1	Spring		20.05.2018	Niphargus aquilex MOTU B	Luxembourg	51.056	0.182	OK378240, OK378241	OK380886	
URI	Wiesenquelle Urspelt	basin	20.05.2018	Niphargus schellenbergi	Luxembourg	50.085	6.045		OK380887	
VMI	Source au Vieux Moulin	rheocrene	31.01.2018	Niphargus schellenbergi	Luxembourg	49.798	6.389		OK380888	
WD1	Quelle 5 Weidendall	rheocrene	12.02.2017	Niphargus schellenbergi	Luxembourg	49.653	6.064		OK380889	
WE1	Quelle beim Wemperbach	rheocrene	21.05.2018	Niphargus schellenbergi	Luxembourg	50.106	6.044		OK380890	
WH1	Waschhaus Schandel	rheocrene	12.10.2017	Niphargus schellenbergi	Luxembourg	49.789	5.97		OK380891	
W11	Quelle Winteringen	rheocrene	05.01.2017	Niphargus schellenbergi	Luxembourg	49.498	6.333	OK378242	OK380892	
WN1	Wiesenquelle Nidderland	helocrene	16.05.2017	Niphargus schellenbergi	Luxembourg	50.074	6.049		OK380893	
WP1	Interstitial Wamperbach	interstitial	21.05.2018	Niphargus aquilex MOTU EF	Luxembourg	50.106	6.044	OK378243	OK380894	
WR1	Quelle am Wegrand	rheocrene	15.05.2017	Niphargus schellenbergi	Luxembourg	49.829	6.227		OK380895	
WS1	Wegequelle Syr	helocrene	21.05.2018	Niphargus schellenbergi	Luxembourg	49.904	5.786		OK380896	
WT1	Waldquelle Girst	rheocrene	30.01.2018	Niphargus schellenbergi	Luxembourg	49.781	6.487		OK380897	
WT2	Waldquelle Girst	rheocrene	30.01.2018	Niphargus schellenbergi	Luxembourg	49.781	6.487		OK380898	
WT3	Waldquelle Girst	rheocrene	30.01.2018	Niphargus schellenbergi	Luxembourg	49.781	6.487		OK380899	
WU1	Geborstene Wasserleitung	rheocrene	11.05.2017	Niphargus schellenbergi	Luxembourg	49.823	6.276		OK380900	
WY1	Lavoir Weydig	basin	28.08.2018	Niphargus schellenbergi	Luxembourg	49.717	6.331		OK380901	
EF025852	Lorrain, Vaux, Moselle			Niphargus fontanus MOTU AB	France	9	49	X		Lefébure <i>et</i> al. 2007
EF617302	Spring at the Gasthof Zur Walba, Regensburg			Niphargus puteanus	Germany	12	49	X		Trontelj <i>et</i> al. 2009
JF420841	Weser, Hessisch Olden- dorf			Niphargus aquilex MOTU A	Germany	6	52		×	Hartke <i>et</i> al. 2011
JF420874	North German Plain, We- ser, Hessisch Oldendorf			Niphargus aquilex MOTU AB	Germany	6	52	X		Hartke <i>et</i> al. 2011
								:	continued on 1	he next page

SUPPLEME	NTARY TABLE 1. (Contin	iued)								
Code	Object name	Ha-bitat	Collection	Species	Country	Lat.	Long.	28S	COI	Literature
			date							
KC315602	Pleine-Fougeres, Brittany			Niphargus aquilex MOTU C	France	5	49	X		McInerney et al. 2013
KC315603	Pleine-Fougeres, Brittany			Niphargus aquilex MOTU D	France	2	49	x		McInerney et al. 2013
KC315604	Damage Barton, War- combe, Devon			Niphargus aquilex MOTU AB	United Kingdoms	4	51	x		McInerney et al. 2013
KC315604	North Kenwood, Devon			Niphargus aquilex MOTU AB	United Kingdoms	4	51	x		McInerney et al. 2013
KC315604	Netton Farm, Christow , Devon			Niphargus aquilex MOTU AB	United Kingdoms	4-	51	x		McInerney et al. 2013
KC315604	Postlake Farm, Devon			Niphargus aquilex MOTU AB	United Kingdoms	ŝ	51	x		McInerney et al. 2013
KC315604	Ashfields well, Half Moon village, Devon			Niphargus aquilex MOTU AB	United Kingdoms	4	51	x		McInerney et al. 2013
KC315604	Swallow great limber, North England			Niphargus aquilex MOTU AB	United Kingdoms	0	54	x		McInerney et al. 2013
KC315604	River Till			Niphargus aquilex MOTU AB	United Kingdoms	-7	51	x		McInerney et al. 2013
KC315604	Anglesey, Cae Glan-y- Mor			Niphargus aquilex MOTU AB	United Kingdoms	4	53	x		McInerney et al. 2013
KC315604	Welton le wold, North England			Niphargus aquilex MOTU AB	United Kingdoms	0	53	x		McInerney et al. 2013
KC315604	North elkington, North England			Niphargus aquilex MOTU AB	United Kingdoms	0	53	x		McInerney et al. 2013
KC315604	Beelsby, North England			Niphargus aquilex MOTU AB	United Kingdoms	0	54	×		McInerney et al. 2013
KC315604	Hendale wood great limber			Niphargus aquilex MOTU AB	United Kingdoms	0	54	x		McInerney et al. 2013
									continued or	the next page

SUPPLEME	NTARY TABLE 1. (Contin	ued)								
Code	Object name	Ha-bitat	Collection date	Species	Country	Lat.	Long.	28S	COI	Literature
KC315604	South Ferriby			Niphargus aquilex MOTU AB	United Kingdoms	0	54	×		McInerney et al. 2013
KC315604	Havant, Hampshire			Niphargus aquilex MOTU AB	United Kingdoms	Ţ	51	×		McInerney et al. 2013
KC315605	Little Stour, Kent			Niphargus aquilex MOTU AB	United Kingdoms	1	51	x		McInerney et al. 2013
KC315606	Fountain on village square of Lesterny			Niphargus aquilex MOTU EF	Belgium	5	50	×		McInerney et al. 2013
KC315606	Water well nr 3 in Wa- vreille			Niphargus aquilex MOTU EF	Belgium	5	50	×		McInerney et al. 2013
KC315607	Stour Park, Dorset			Niphargus aquilex MOTU EF	United Kingdoms	-2	51	×		McInerney et al. 2013
KC315607	Pridhamsleigh, Devon			Niphargus aquilex MOTU EF	United Kingdoms	4-	50	×		McInerney et al. 2013
KC315607	Plymouth garden centre, Devon			Niphargus aquilex MOTU EF	United Kingdoms	4-	50	×		McInerney et al. 2013
KC315607	Red Hill, Dorset			Niphargus aquilex MOTU EF	United Kingdoms	-2	51	×		McInerney et al. 2013
KC315608	Ashwell Springs, Hert- fordshire			Niphargus fontanus MOTU AB	United Kingdoms	0	52	×		McInerney et al. 2013
KC315608	Dunstable, Hertfordshire			Niphargus fontanus MOTU AB	United Kingdoms	0	52	×		McInerney et al. 2013
KC315608	South Wales, Breconshire, Ogof Ffynnon Ddu			Niphargus fontanus MOTU AB	United Kingdoms	4-	52	×		McInerney et al. 2013
KC315608	Little Gaddesden, Hert- fordshire			Niphargus fontanus MOTU AB	United Kingdoms	-	52	×		McInerney et al. 2013
KC315608	Wheathampstead, Hert- fordshire			Niphargus fontanus MOTU AB	United Kingdoms	0	52	х		McInerney et al. 2013
									continued on	the next page

MOLECULAR ANALYSES OF GROUNDWATER AMPHIPODS

SUPPLEME	NTARY TABLE 1. (Contin	ued)								
Code	Object name	Ha-bitat	Collection	Species	Country	Lat.	Long.	28S	COI	Literature
KC315608	Amersham, Buckingham-			Niphargus fontanus	United Kingdoms	-	52	x		McInerney
	shire			MOTU AB						<i>et al.</i> 2013
KC315608	St Cuthberts Swallet, Somerset			Niphargus fontanus MOTU AB	United Kingdoms	ŝ	51	x		McInerney et al. 2013
KC315608	Little Stour, Kent			Niphargus fontanus MOTU AB	United Kingdoms	1	51	X		Hänfling et. al. 2008
KC315609	39 Pz2-Balmettes			Niphargus fontanus MOTU C	France	9	46	x		McInerney et al. 2013
KC315609	39 St Rambert			Niphargus fontanus MOTU C	France	5	46	x		McInerney et al. 2013
KC315610	Amersham, Buckingham- shire			Niphargus kochianus MOTU ABC	United Kingdoms	-	52	x		Hänfling et. al. 2008
KC315610	Waterston Cress Beds, Dorset			Niphargus kochianus MOTU ABC	United Kingdoms	-2	51	x		McInerney et al. 2013
KC315610	Ashwell Springs, Hert- fordshire			Niphargus kochianus MOTU ABC	United Kingdoms	0	52	×		McInerney et al. 2013
KC315610	Luton			Niphargus kochianus MOTU ABC	United Kingdoms	0	52	Х		McInerney et al. 2013
KC315610	Little Gaddesden, Hert- fordshire			Niphargus kochianus MOTU ABC	United Kingdoms	-	52	x		McInerney et al. 2013
KC315610	Warmwell, Cressbeds, Dorset			Niphargus kochianus MOTU ABC	United Kingdoms	-2	51	x		McInerney et al. 2013
KC315610	Martinstown well, Dorset			Niphargus kochianus MOTU ABC	United Kingdoms	-2	51	x		McInerney et al. 2013
KC315610	Hurst Green cottage, Dorset			Niphargus kochianus MOTU ABC	United Kingdoms	-2	51	x		McInerney et al. 2013
KC315610	Throop, Dorset			Niphargus kochianus MOTU ABC	United Kingdoms	-2	51	x		McInerney et al. 2013
									continued o	n the next page

SUPPLEME	INTARY TABLE 1. (Contin	iued)								
Code	Object name	Ha-bitat	Collection date	Species	Country	Lat.	Long.	28S	COI	Literature
KC315610	West Lodge, Dorset			Niphargus kochianus MOTU ABC	United Kingdoms	-2	51	×		McInerney et al. 2013
KC315610	Barcombe farm, Dorset			Niphargus kochianus MOTU ABC	United Kingdoms	-2	51	×		McInerney et al. 2013
KC315610	Brightwalton Holt, Berk- shire			Niphargus kochianus MOTU ABC	United Kingdoms	-	51	×		McInerney et al. 2013
KC315610	Calversley Farm, Berk- shire			Niphargus kochianus MOTU ABC	United Kingdoms		51	×		McInerney et al. 2013
KC315610	Crane Bridge, Cotswolds			Niphargus kochianus MOTU ABC	United Kingdoms	-2	52	×		McInerney et al. 2013
KC315610	Digswell, Herfordshire			Niphargus kochianus MOTU ABC	United Kingdoms	0	52	×		McInerney et al. 2013
KC315610	Cowdown, Berkshire			Niphargus kochianus MOTU ABC	United Kingdoms	-	52	X		McInerney et al. 2013
KC315611	Résurgence at the cave Tridaine			Niphargus kochianus MOTU ABC	Belgium	5	50	×		McInerney et al. 2013
KC315611	Water well of the Castle of Houx			Niphargus kochianus MOTU ABC	Belgium	5	50	×		McInerney et al. 2013
KC315611	Water well 4 in Cham- palle			Niphargus kochianus MOTU ABC	Belgium	S	50	×		McInerney et al. 2013
KC315611	Stone quarry of Warnant			Niphargus kochianus MOTU ABC	Belgium	5	50	×		McInerney et al. 2013
KC315611	Water catchment gallery of Senenne (in Spontin)			Niphargus kochianus MOTU ABC	Belgium	S	50	×		McInerney et al. 2013
KC315611	Resurgence in Embiérin			Niphargus kochianus MOTU ABC	Belgium	9	50	×		McInerney et al. 2013
KC315611	Water well in Prés de l'Abreux			Niphargus kochianus MOTU ABC	Belgium	9	51	×		McInerney et al. 2013
									continued or	1 the next page

MOLECULAR ANALYSES OF GROUNDWATER AMPHIPODS

SUPPLEME	INTARY TABLE 1. (Contin	ued)								
Code	Object name	Ha-bitat	Collection date	Species	Country	Lat.	Long.	28S	COI	Literature
KC315611	Water well in the Reijmer- stokker-Dorpstraat			Niphargus kochianus MOTU ABC	Netherlands	9	51	×		McInerney et al. 2013
KC315611	Water well in Koeberg			Niphargus kochianus MOTU ABC	Netherlands	9	51	X		McInerney et al. 2013
KC315612	Water well 4 in Cham- palle			Niphargus kochianus MOTU ABC	Belgium	5	50	X		McInerney et al. 2013
KC315612	Water well of the Castle of Houx			Niphargus kochianus MOTU ABC	Belgium	2	50	Х		McInerney et al. 2013
KC315613	39 Boutillon			Niphargus kochianus MOTU D	France	ŝ	47	×		McInerney et al. 2013
KC315614	Main gallery of the Néblon			Niphargus fontanus MOTU AB	Belgium	5	50	X		McInerney et al. 2013
KC315614	Water catchment gallery of Senenne (in Spontin)			Niphargus fontanus MOTU AB	Belgium	5	50	X		McInerney et al. 2013
KC315614	Water catchment in Crupet			Niphargus fontanus MOTU AB	Belgium	5	50	×		McInerney et al. 2013
KC315621	Water well nr 3 in Wavreille			Niphargus aquilex MOTU EF	Belgium	5	50		X	McInerney et al. 2013
KC315621	Fountain on village square of Lesterny			Niphargus aquilex MOTU EF	Belgium	5	50		X	McInerney et al. 2013
KC315622	Pridhamsleigh, Devon			Niphargus aquilex MOTU EF	United Kingdom	4-	50		Х	McInerney et al. 2013
KC315622	Plymouth garden centre, Devon			Niphargus aquilex MOTU EF	United Kingdom	4-	50		Х	McInerney et al. 2013
KC315623	Hendale wood great limber			Niphargus aquilex MOTU A	United Kingdom	0	54		X	McInerney et al. 2013
KC315623	Welton le wold, North England			Niphargus aquilex MOTU A	United Kingdom	0	53		Х	McInerney et al. 2013
									continued on	the next page

ENTARY TABLE 1 Object name	L. (Contin	ued) Ha-bitat Collectio	n Species	Country	Lat.	Long.	28S	COI	Literature
date	date								
Beelsby, North England			Niphargus aquilex MOTU A	United Kingdom	0	54		X	McInerney et al. 2013
Swallow great limber, North England			Niphargus aquilex MOTU A	United Kingdom	0	54		X	McInerney <i>et al.</i> 2013
North Elkington, North England			Niphargus aquilex MOTU A	United Kingdom	0	53		X	McInerney et al. 2013
Main gallery of the Néblon			Niphargus fontanus MOTU A	Belgium	S	50		X	McInerney et al. 2013
Water catchment in Crupet			Niphargus fontanus MOTU A	Belgium	5	50		X	McInerney et al. 2013
39 St Rambert			Niphargus fontanus MOTU B	France	5	46		X	McInerney et al. 2013
Little Gaddesden, Hertfordshire			Niphargus fontanus MOTU A	United Kingdom	-	52		X	McInerne et al. 2013
Wheathampstead, Hertfordshire			Niphargus fontanus MOTU A	United Kingdom	0	52		X	McInerne et al. 2013
St. Cuthberts Swallet, Somerset			Niphargus fontanus MOTU A	United Kingdom	<u>.</u>	51		X	McInerne. <i>et al.</i> 2013
Dunstable, Hertfordshire			Niphargus fontanus MOTU A	United Kingdom	0	52		X	McInerne <i>et al</i> . 201
South Wales, Breconshire, Ogof Ffynnon Ddu			Niphargus fontanus MOTU A	United Kingdom	4-	52		X	McInerne et al. 201
Water well of the Castle of Houx			Niphargus kochianus MOTU ABC	Belgium	5	50		X	McInerne et al. 201
Water well of the Castle of Houx			Niphargus kochianus MOTU ABC	Belgium	5	50		X	McInerney <i>et al.</i> 2013
Water well in Koeberg			Niphargus kochianus MOTU ABC	Netherlands	9	51		Х	McInerne) et al. 2013
								continued	on the next page

MOLECULAR ANALYSES OF GROUNDWATER AMPHIPODS

SUPPLEME	NTARY TABLE 1. (Contin	ued)								
Code	Object name	Ha-bitat	Collection date	Species	Country	Lat.	Long.	28S	COI	Literature
KC315662	Water well in Koeberg			Niphargus kochianus MOTU ABC	Netherlands	9	51		х	McInerney et al. 2013
KC315662	Water well in the Reijmer- stokker-Dorpstraat			Niphargus kochianus MOTU ABC	Netherlands	9	51		×	McInerney et al. 2013
KC315667	Water well in Koeberg			Niphargus kochianus MOTU ABC	Netherlands	9	51		х	McInerney et al. 2013
KC315682	Brightwalton Holt, Berkshire			Niphargus kochianus MOTU ABC	United Kingdom		51		х	McInerney et al. 2013
KC315682	Cowdown, Berkshire			Niphargus kochianus MOTU ABC	United Kingdom	-1	52		x	McInerney et al. 2013
KC315682	Hurst Green cottage, Dorset			Niphargus kochianus MOTU ABC	United Kingdom	-2	51		х	McInerney et al. 2013
KC315682	Calversley Farm, Berkshire			Niphargus kochianus MOTU ABC	United Kingdom	-1	51		×	McInerney et al. 2013
KC315682	Crane Bridge, Cotswolds			Niphargus kochianus MOTU ABC	United Kingdom	-2	52		×	McInerney et al. 2013
KC315682	Little Gaddesden, Hertfordshire			Niphargus kochianus MOTU ABC	United Kingdom		52		х	McInerney et al. 2013
KC315687	Calversley Farm, Berkshire			Niphargus kochianus MOTU ABC	United Kingdom	-1	51		×	McInerney et al. 2013
KC315688	Calversley Farm, Berkshire			Niphargus kochianus MOTU ABC	United Kingdom	-	51		×	McInerney et al. 2013

ONLINE SUPPLEMENTARY MATERIAL

Online Supplementary Data 1. Sequencher file containing all the COI chromatograms of the present study (136 chromatogram pairs, two of which displayed double peaks attributable to Numts or heteroplasmy).

Online Supplementary Data 2. Sequencher file containing all the 28S chromatograms of the present study (55 chromatogram pairs, five of which displayed double peaks attributable to heterozygosity).

Online Supplementary Data 3. FASTA alignment of all the COI sequences used in the present study (138 sequences from 136 individuals from the present study plus three sequences from Flot 2010 and 16 sequences from McInerney *et al.* 2014).

Online Supplementary Data 4. FASTA alignment of all the 28S sequences used in the present study (60 sequences from 55 individuals from the present study plus three sequences from Flot 2010 and 16 sequences from McInerney *et al.* 2014).