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Abstract
Aim: In the context of intensifying threats of climate change on marine communi-
ties, ecological models are widely applied for conservation strategies, though polar 
studies remain scarce given the limited number of datasets available. Correlative (e.g. 
species distribution models, SDM) and mechanistic (e.g. dynamic energy budget mod-
els, DEB) modelling approaches are usually used independently in studies. Using both 
approaches in integrative, hybrid models could help to better estimate the species 
potential ecological niche, as mechanistic and correlative models complement each 
other very well, giving more insights into species potential response to fast- changing 
environmental conditions.
Location: The study focusses on the Baie du Morbihan, a silled basin located in the east 
of the Kerguelen Islands (sub- Antarctic).
Methods: A hybrid, correlative- mechanistic model was implemented to predict the 
response of the endemic sea urchin Abatus cordatus (Verrill, 1876). We compared the 
performances of classic and integrated approaches to predict A. cordatus distribution 
according to two dates representing seasonal contrasts. Two integrated approaches 
were studied and performed by either (1) including the spatial projection of the DEB 
model as an input layer inside the SDM (‘integrated SDM- DEB’) or (2) using a Bayesian 
procedure to use DEB model outputs as priors of the SDM (‘integrated Bayesian’ 
approach).
Results: Results show higher performances of ‘integrated Bayesian’ approaches to 
evaluate A. cordatus potential ecological niche compared with ‘classic’ and ‘integrated 
SDM- DEB’ methods. The influence of environmental conditions on model predictions 
is further captured with these Bayesian procedures and better highlights the environ-
mental influence on the species- predicted distribution. Model performance is good 
for the different simulations, and uncertainty in predictions is well- highlighted.
Main conclusions: The good performances of ‘integrated Bayesian’ approaches to es-
timate species potential ecological niche opens perspectives for future applications to 
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1  |  INTRODUC TION

For the last two decades, an ever- growing number of ecological 
studies have used modelling approaches to highlight the main eco-
logical drivers of species distribution and evaluate the response of 
species to changing environmental conditions and anthropogenic 
stressors (Elith et al., 2006; Elith & Leathwick, 2009; Franklin, 2009). 
The overall tendency is to use these models across groups of organ-
isms and regions (Gutt et al., 2012) to inform stakeholders and con-
servation policies (Mouquet et al., 2015; Singer et al., 2016; Thuiller 
et al., 2013).

Current developments are focussed on the integration of distinct 
modelling methods (i.e. hybrid modelling) that has long been consid-
ered as a way to improve the understanding of ecosystem functioning 
(Benito Garzón et al., 2019; Dormann et al., 2018; Guillaumot, Fabri- 
Ruiz, et al., 2018; Gutt et al., 2012). For instance, combining correla-
tive methods, which rely on the spatial relationship between species 
occurrence records and the environment (e.g. Species Distribution 
Models, SDMs), with ecophysiological approaches (e.g. mechanis-
tic models) was shown to improve the modelling performance com-
pared with single correlative methods (Elith et al., 2010; Pertierra 
et al., 2019; Schouten et al., 2020; Singer et al., 2016). Correlative 
models statistically assess the main drivers of species distribution 
(Elith et al., 2006; Peterson et al., 2011) and are used to estimate the 
potential ecological niche (Elith & Leathwick, 2009; Soberón, 2010). As 
a consequence, SDMs perform well when species distribution and the 
environment are in equilibrium, in static systems, a prerequisite that 
is not verified in highly dynamic ecosystems subject to environmental 
changes or in studies addressing environmental rapid changes (Fabri- 
Ruiz et al., 2021; Loehle & Leblanc, 1996; Schouten et al., 2020).

Mechanistic models can evaluate the effect of environmental 
conditions on the physiological performance of individuals or pop-
ulations (Kearney & Porter, 2009). Such models typically require a 
greater level of biological knowledge, but, in contrast to static, correl-
ative approaches, they explicitly include dynamic processes, offering 
the opportunity to describe process- based causes of species distri-
bution change (Dormann et al., 2012; Kearney & Porter, 2009), even 
in nonequilibrium systems (Kearney et al., 2008; Keith et al., 2008). 
They include a set of mathematical functions relating to species' 
functional traits (morphology, behaviour, physiology) or associated 
life history (development, growth, reproduction) and then evaluate 
the effect of environmental drivers on species physiological traits 
(Dormann et al., 2012; Kearney & Porter, 2009), which leads to es-
timating the species' fundamental niche (Kearney & Porter, 2009).

Several methods have been developed to integrate correlative 
and mechanistic models. For instance, mechanistic models can be 
spatially- projected and used as a input predictor in SDMs (Buckley 
et al., 2011; Elith et al., 2010; Mathewson et al., 2016; Rodríguez 
et al., 2019). Other close approaches consist in defining absence 
records from the mechanistic model and use the set of presence- 
absence records to implement SDMs (Elith et al., 2010; Feng & 
Papeş, 2017) or to fine- tune thresholds for lethal conditions from 
the mechanistic approach and associate uncertainty estimates to 
SDM predictions accordingly (Woodin et al., 2013). Bayesian in-
ference methods have also been widely used (Brewer et al., 2016; 
Ellison, 2004; Feng et al., 2020; Gamliel et al., 2020; Talluto 
et al., 2016), following the development and better accessibility of 
high- performance computers and programs (Van Dongen, 2006) and 
the development of more complex models (de Rivera et al., 2019). 
They were proved interesting to optimize the estimation of species 
habitat suitability (Zurell et al., 2016), to better assess the effect 
of seasonality in predictions and highlight critical tipping points in 
changing ecosystems (Oberle et al., 2016; Zhao et al., 2019) pro-
viding accurate uncertainty estimates (Zhao et al., 2019). Bayesian 
methods combine the information of a prior belief (i.e. the prior dis-
tribution, for instance, our knowledge of species physiology) with 
new information (i.e. the conditional probability given the data) to 
produce a posterior estimation (Van Dongen, 2006). These two 
steps therefore update the probability of the hypothetical distribu-
tion as more evidence or information on species physiology is avail-
able (Van Dongen, 2006).

Many regions of the Southern Ocean, either in Antarctic or sub- 
Antarctic zones (Convey et al., 2009; Féral et al., 2017), are currently 
exposed to fast environmental changes (Convey & Peck, 2019; 
Cook et al., 2016; Turner et al., 2016), including increasing seawa-
ter temperatures and shifting seasonality (Bers et al., 2013; Henley 
et al., 2019; Schofield et al., 2017); glacier melting, changing wind 
speed (Cook et al., 2016; Meredith & King, 2005), which in turn have 
an impact on food chains, organic matter production and processes 
of the benthopelagic coupling (see Convey & Peck, 2019; Henley 
et al., 2019 as reviews). Climate changes together with the ever- 
increasing maritime traffic (i.e. fisheries, tourism and science) boost 
the introduction of non- native species in Southern Ocean coastal 
areas, a major threat to polar ecosystems usually characterized 
by high levels of endemic species (Hughes et al., 2020; McCarthy 
et al., 2019). These combined issues strongly urge the need to fill 
the gaps in our knowledge of ecological processes and ecosystem 
dynamics (Kennicutt et al., 2015).

a broad panel of natural examples, noteworthy for decision- making and conservation 
management purposes.
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Due to remoteness and harsh weather conditions, above all in 
winter, access to the field and data collection in the Southern Ocean 
are strongly limited (De Broyer et al., 2014), resulting in missing data, 
spatial and temporal aggregations of observations and difficulties 
to conduct biological experiments (see Guillaumot et al., 2021 as a 
review). However, research on marine life of the Southern Ocean 
has recently benefited from a significant coordinated and interna-
tional effort with the emergence of oceanographic campaigns and 
international scientific programs such as the International Polar 
Year (IPY 2007– 2008), the Census of Antarctic Marine Life (CAML 
2005– 2010) or the Scientific Committee on Antarctic Research, 
Evolution and Biodiversity in Antarctica (SCAR- EBA 2006– 2013) 
(nonexhaustive list) (De Broyer et al., 2014; Schiaparelli et al., 2013). 
Several studies have used correlative approaches to characterize 
the relationship between environmental conditions and the distribu-
tion of Southern Ocean species (Bombosch et al., 2014; Fabri- Ruiz 
et al., 2019; Freer, 2018; Pinkerton et al., 2010) or used physiologi-
cal models to evaluate the influence of environmental conditions on 
organisms' physiological performances (Agüera et al., 2015; Agüera 
et al., 2017; Jager & Ravagnan, 2015) and population dynamics 
(Arnould- Pétré et al., 2020; Goedegebuure et al., 2018; Groeneveld 
et al., 2015). However, surprisingly, no study has used integrated 
modelling approaches despite their considerable potential for ana-
lysing dynamic, complex and ill- known systems.

In this study, we used data from ongoing research on a sea urchin 
species, Abatus cordatus (Verrill, 1876), in the Baie du Morbihan, the 
most visited area of the otherwise highly remote archipelago of the 
Kerguelen Islands (French sub- Antarctic islands). We tested the per-
formance of integrated modelling approaches to deal with a study 
on a Southern Ocean marine species and compared model outputs 
with other ‘classic’ correlative (SDM) and mechanistic (Dynamic 
Energy Budgets) approaches. In addition, we assessed the effect of 
environmental changes (i.e. related to two periods with contrasting 
conditions), a fundamental feature of ecosystem functioning in high 
latitudes and a key to understand the functioning of marine life in 
the Southern Ocean. Dealing with two different dates was here cho-
sen to test the performance of different modelling procedures in an 
environmentally dynamic context.

2  |  MATERIAL AND METHODS

2.1  |  Overview/conceptualization

In this study, we aim at improving correlative models (‘Classic’ 
Species Distribution Modelling, SDM) with physiological informa-
tion for a sub- Antarctic marine species example. This physiological 
information is integrated as an a priori knowledge in the SDM and 
represented by a physiological submodel that describes the relation-
ship between growth performance and food availability. This physio-
logical submodel was calculated from the DEB model of the species.

The a priori information was integrated inside the SDM using 
two approaches: (1) by integrating the spatial projection of the 

DEB model as an environmental predictor in the SDM or (2) using 
a Bayesian inference procedure. For the latter, the parameters that 
fit the physiological submodel were added to the initial matrix of 
parameters that compose the SDM.

Methods are detailed step by step in the following paragraphs 
and are completed with the summarizing flowchart in Figure 1. R 
codes developed for this study are available at https://github.com/
charl enegu illau mot/THESIS.

2.2  |  Study species

In this study, the heart urchin A. cordatus (Verrill, 1876) was selected 
as the study example as it constitutes a relatively well- documented 
species compared with other Southern Ocean species. A. cordatus 
is a shallow deposit- feeder and sediment swallower restrained to 
soft sediment habitats (De Ridder & Lawrence, 1982; Poulin, 1996) 
(Appendix S1). Endemic to the Kerguelen Plateau, the species is 
distributed from shallow subtidal (<2 m depth) to deep shelf areas 
exceeding 500 m depth (Poulin, 1996). In coastal zones, populations 
of A. cordatus can locally reach densities of up to 280 individuals 
per square meter (Magniez, 1980; Poulin, 1996). High population 
densities along with the species endemicity were interpreted as a 
consequence of the species reproduction strategy and direct devel-
opment that includes no dispersal larval stage (Mespoulhé, 1992; 
Poulin & Féral, 1995). Females brood their young on the aboral side 
of the test, inside four brood chambers formed by the sunken paired 
ambulacra, until juveniles exit the pouch and reach the sea bottom 
in the proximity of their mothers (Appendix S1, Magniez, 1983). In 
most places of the Baie du Morbihan, individuals invest energy into 
the growth of gonads in March, when food is the most abundant 
(Magniez, 1983). Once fertilized, the eggs are brooded in the fe-
male incubating chambers for almost 9 months (a period of low food 
availability and low temperature) before the young are released 
and settle on the seabed (Schatt & Féral, 1996) or live sheltered be-
tween holdfasts of the giant kelp Macrocystis pyrifera (Poulin, 1996). 
The reproduction cycle of A. cordatus is constant across years for 
a given place (Magniez, 1983). However, it was observed that the 
reproduction period can shift from a few months between sites 
(Mespoulhé, 1992; Poulin, 1996; Schatt & Féral, 1991), which was 
explained by spatial and temporal variations in food availability and 
sediment enrichment in nutrients (Schatt & Féral, 1991).

Depth, temperature and primary production were identified 
as major environmental drivers of the distribution of A. cordatus 
(Poulin, 1996). Sediment granulometry and hydrodynamics were 
also shown to be important drivers of population densities in A. cor-
datus (Poulin & Féral, 1995). These two key factors cannot, however, 
be included in our models as they are not available for the Baie du 
Morbihan. In shallow- water areas, the species was shown to be toler-
ant to environmental stressors induced by high variations in salinity, 
as a result of fresh- water runoffs (Guille & Lasserre, 1979), and sud-
den temperature shifts including heat waves in the austral summer 
(Motreuil et al., 2018).

https://github.com/charleneguillaumot/THESIS
https://github.com/charleneguillaumot/THESIS
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3  |  BIODIVERSIT Y DATA , DATA 
PARTITIONING , STUDY ARE A AND 
ENVIRONMENTAL DATA

3.1  |  Biodiversity data and data partitioning

A set of 26 presence- only records of A. cordatus sampled from 
1898 to 2015 in the Baie du Morbihan was compiled by Guillaumot 
et al. (2016). Most of the data were collected after 1975 (Guillaumot 
et al., 2016; Guillaumot, Martin, et al., 2018) and the temporal het-
erogeneity of data sampling was proved to barely influence the 
results of SDM predictions (Guillaumot, Martin, et al., 2018). No 
absence data could have been gathered due to the difficulties in fre-
quently accessing the area. Presence- only records from Guillaumot 
et al. (2016) were checked for georeferencing errors and comple-
mented with data from Poulin and Féral (1995) (Figure 2a).

Data are homogeneously distributed in the area with a Moran's 
I score of −0.01 (p- value = .15). Consequently, background records 
were randomly sampled in the area without any targeted sampling 
approach as the effect of spatial autocorrelation was not significant 
(Guillaumot, Martin, et al., 2018; Phillips et al., 2009). In order to 
sample environmental conditions prevailing in the study area as pre-
cisely as possible, while being close to the number of presence- only 
records available, 200 background records were sampled across the 
entire projection area (Barbet- Massin et al., 2012).

3.2  |  Study area

The study area focusses on the Baie du Morbihan, a 700 km2 silled basin 
50 m deep on average, located in the east of the Kerguelen Islands 
(sub- Antarctic) (Appendix S1 and Figure 2a). Since the 1960s, the area 

F I G U R E  1  Flowchart of the 
methodological framework. The DEB 
model developed for A. cordatus is used 
both for spatially projecting species 
physiological performances on the 
Baie du Morbihan and for assessing the 
relationship between species growth 
performance and food availability. These 
products are then used to enrich the 
classic species distribution model (SDM) 
by (1) addition of the spatial DEB layers to 
the initial environmental layers (integrated 
SDM- DEB model) or (2) addition of the 
a priori physiological parameters into 
the SDM equation (integrated Bayesian 
procedure).
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has been recurrently studied by marine ecologists who conducted re-
search programs in biological oceanography including studies of mi-
cro-  and macrobenthic communities (Delille et al., 1996; Poulin, 1996).

Depth, sea surface temperature and primary production were 
used as environmental predictors of the distribution of A. cordatus. 
‘Seasonality’ was assumed by focussing on environmental contrasts 
between the austral summer and the austral winter. Monthly values 
over the 2002– 2021 period were studied (Appendix S2). Two dates 
were selected to represent seasonal conditions: 2017/02/09 for the 
summer period (warm temperatures and medium chlorophyll- a con-
centration) and 2017/08/20 for the winter period (colder tempera-
tures and low chlorophyll- a concentration). These dates have also 
suitable satellite images that could be processed for the study and 
belong to the same year, which is appreciable to limit uncertainties 
associated with temporal heterogeneities in species distribution mod-
elling (Guillaumot et al., 2018).

By selecting these two dates, we aim at comparing the contrasts 
between model predictions as a mean of evaluation of the influence 
of environmental conditions on species likelihood of distribution. In 
any case, we could assume that generated model projections repre-
sent the true distribution of the species at the two considered dates, 
given the lack of precision in our datasets.

3.3  |  Environmental data: Bathymetry, 
chlorophyll- a concentration and seawater 
temperature

The bathymetric chart was obtained from Beaman and 
O'Brien (2011), available at https://resea rchda ta.edu.au/kergu elen- 
plate au- bathy metri c- grid- 2010/1927758 (Figure 2a), with a resolu-
tion of 0.001*0.001 arc- degree grid- cell pixels (equivalent to about 

F I G U R E  2  (top) Specimen of 
Abatus cordatus half buried into the 
sand with aboral side emerging from 
the sediment surface. (a) Bathymetry 
(in meters, red dots show presence 
records of A. cordatus). (b) Sea surface 
temperature in February, on 2017/02/09, 
and (c) in August, on 2017/08/20. (d) 
Food availability (scaled between 0 and 
1) in February, on 2017/02/09, and (e) 
in August, on 2017/08/20, in the Baie 
du Morbihan. Water is colder in August 
(temperatures range between 2.7 
and 3.3°C) and food availability much 
lower than in February, with the richest 
environments located nearshore.

https://researchdata.edu.au/kerguelen-plateau-bathymetric-grid-2010/1927758
https://researchdata.edu.au/kerguelen-plateau-bathymetric-grid-2010/1927758
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100 m). It was updated by Sexton (2005) using new single beam 
echosounder data from commercial fishing and research voyages, 
and some new multibeam swath bathymetry data. Satellite- derived 
datasets were used to provide island topography and to fill in no data 
areas (see Beaman & O'Brien, 2011).

As a deposit- feeder, A. cordatus feeds upon organic grain coat-
ings and particles present in sediments (Pascal et al., 2021). Seawater 
chlorophyll- a concentration was used as a proxy of food availability 
because data on the exact organic content of sediments are not avail-
able at the scale of the entire bay (Arnould- Pétré et al., 2020). Values 
were retrieved using imagery from Operational Land Imager (OLI) and 
Thermal InfraRed Sensor (TIRS) of Landsat 8 obtained from USGS 
(United States Geological Survey, 2019, https://earth explo rer.usgs.
gov/, accessed on May 2020). Chlorophyll- a concentration was de-
rived from OLI data using the Case- 2 Regional Coast Colour processor 
(C2RCC) (Brockmann et al., 2016) for the SentiNel Application Platform 
(SNAP 2020). Main processing steps are described in Appendix S3. Due 
to the near- permanent cloud cover, only images taken on 2017/02/09 
and 2017/08/20 could be retained to depict the contrasting conditions 
prevailing in the austral summer and winter, respectively; assuming that 
these 2 days are each representative of overall seasonal conditions.

We used satellite- derived sea surface temperature (SST) 
data from the level 4 Multi- Scale Ultra- High- Resolution Global 
Foundation Sea Surface Temperature Analysis (MUR MEaSUREs 
Project JPL, 2015). The MUR SST v4.1 data are based upon night-
time skin and subskin SST observations from several instruments 
and are interpolated on a global 0.01 degree grid. Data are pro-
duced by the Group for High- Resolution Sea Surface Temperature 
(GHRSST) and were downloaded from The Physical Oceanography 
Distributed Active Archive Center (PO.DAAC, https://world view.
earth data.nasa.gov, accessed May 2020).

SST data were downloaded for 2017/02/09 and 2017/08/20, the 
two dates retained for chlorophyll- a concentration data. The accu-
racy of satellite- derived SST data was verified by the close similarity 
obtained with local in situ measurements performed at five distant 
stations of the bay (program PROTEKER, Appendix S3). The spatial 
resolution of satellite- derived chlorophyll- a and SST data was resa-
mpled at 0.001° (from initial resolutions of 30 m and 4 km, respec-
tively) by a neighbour- joining approach to fit with the resolution of 
the bathymetric chart.

4  |  MODEL FIT TING

4.1  |  Dynamic energy budget (DEB) model

The DEB theory defines individuals as dynamic systems and provides 
a mathematical framework for the life cycle of an organism, from the 
start of the embryo development to the death. It describes the physi-
ological processes with four primary state variables: reserve, structure, 
maturity and reproduction buffer (the latter for adults only), directly 
linked to mass and energy flows and influenced by two forcing en-
vironmental variables: temperature and food resources availability 

(Appendix S4, Kooijman, 2010). DEB theory relies on key concepts 
such as first laws of thermodynamics for conservation of mass, energy 
and time (Jusup et al., 2017) and assumes that the various energetic 
processes, such as assimilation and maintenance rates are dependent 
either on surface area or on body volume (van der Meer, 2006, more 
details given in Appendix S4).

The model was specifically built for A. cordatus using zero- 
variate (single data) and uni- variate (x ~ y relationship data) datasets 
extracted from the literature or obtained from experiments set up 
purposely for the DEB model. These data were recorded at differ-
ent life stages of the individual with food and temperature condi-
tions recorded and informed in the model (list of data available in 
Guillaumot, 2019; Arnould- Pétré et al., 2020 and summarized in 
Appendix S5). This description of these lifelong parameters is a DEB 
standard method that enables to characterize the linear evolution of 
species metabolism (Kooijman, 2010).

4.1.1  |  Spatial projection of the DEB model

Outputs of the DEB model were projected over the entire bay area 
by estimating the species physiological performance for each pixel of 
the map, using pixel- specific values of food availability and tempera-
ture (Fabri- Ruiz et al., 2021; Thomas & Bacher, 2018). Reproduction 
and survival capacities were estimated by comparing somatic main-
tenance ̇pM and maturation maintenance ṗJ costs over the total 
energy available from the reserve compartment ̇pC (Appendix S4). 
According to DEB theory, the somatic maintenance ̇pM has priority 
over growth and reproduction to ensure survival. Maturity main-
tenance ṗJ has priority over reproduction (Kooijman, 2010). These 
conditions imply that if the energy available in the reserve compart-
ment ̇pC is not sufficient to pay for the required maintenance costs 
( ̇pC < ̇pM + ṗJ), the organism cannot reproduce, and will progres-
sively starve and die.

4.1.2  |  Physiological submodel based on food 
availability

Using DEB equations and parameters (Equation 1), average growth 
rates were calculated for individuals measuring from 2.5 to 4.5 cm, 
according to food availability (for all values available in the projection 
area, Figure 2a– e) and a random selection of temperatures within the 
range of values of the considered date (Appendix S6). This constitutes 
the ‘physiological submodel’ that therefore takes into account both 
food availability and temperature. Twenty- five replicates of individual 
sizes and temperature selection were performed. The growth rate was 
calculated with the following DEB equation (Kooijman, 2010):

with kap being the fraction of energy directed towards complex-
ity (−), ̇pC the mobilization flux (energy.time−1), ̇pM the somatic 

(1)̇pG =
(

kap∗ ̇pC − ̇pM
)

∕ ̇kM∕TC

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://worldview.earthdata.nasa.gov
https://worldview.earthdata.nasa.gov
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maintenance rate (energy.time−1), ̇kM the somatic maintenance rate 
coefficient (time−1) and TC the temperature correction factor (−) (see 
Appendix S4 for more details).

Concretely, the physiological submodel was built by generat-
ing a Bayesian beta regression, with food availability as a predictor 
and growth performance probability as a response. A total of 4000 
MCMC (Markov Chain Monte Carlo) samples were used for burn- in 
and the posterior distribution was estimated using 4000 additional 
samples. The physiological submodel coefficients were initiated 
with Gaussian priors, with the mean taken from the maximum like-
lihood estimation to improve convergence and a vague prior set on 
the variance (set at 1000).

4.2  |  ‘Classic’ species distribution modelling (SDM)

A Generalized linear model (GLM) was used to relate species oc-
currences with the three environmental predictors previously de-
scribed (depth, food availability, sea surface temperature and their 
square forms, Figures 1 and 2), in order to fit the equation with the 
equation y = b0 + b1*depth + b2*food + b3*temperature + b4*tempe
rature2 + b5*f2. In this approach, presence and background data are 
treated as Bernoulli trials, where p is the relative likelihood of find-
ing A. cordatus. A non- informative normal prior distribution (μ = 0, 
sigma = 10,000) (i.e. a prior distribution, which provides little in-
formation relative to the true distribution, Gamliel et al., 2020) was 
used as a prior for the regression coefficients. The model was run 
using a burn- in period of 4000 samples, followed by 4000 additional 
MCMC samples to estimate the posterior distribution of regression 
coefficients. The procedure was replicated for 50 replicates of 200 
background records sampled, and the average relative likelihood of 
occurrence was predicted on a map. Fitted parameters were saved 
and used afterwards to initiate the ‘integrated Bayesian’ approach.

Model extrapolation areas were defined using the Multivariate 
Environmental Similarity Surface index (MESS, Elith et al., 2010). 
Extrapolation areas correspond to all grid- cell pixels where descrip-
tor values are not contained within the range of environmental con-
ditions for which presence- only data are recorded. Extrapolation is 
defined for negative values of MESS, and the environmental predic-
tor responsible for extrapolation was evaluated (for further details 
see Elith et al., 2010; Guillaumot et al., 2020).

4.3  |  Integrated ‘SDM- DEB’ model

Integrating correlative and mechanistic models were first tested by 
using the spatial projection of the DEB model as an environmen-
tal predictor in the SDM (Buckley et al., 2011; Elith et al., 2010; 
Mathewson et al., 2016; Rodríguez et al., 2019). The procedure is 
similar to the ‘classic’ SDM model approach, except that the DEB 
layer (i.e. ‘ ̇pC > ( ̇pM + ṗJ)?’) was added to the initial set of environ-
mental predictors (depth, temperature, food availability). Similarly, 
the procedure was replicated for 50 samplings of background 

records, and the average relative likelihood of occurrence was pre-
dicted on a map.

4.4  |  Integrated Bayesian model

The method developed by Talluto et al. (2016), and applied by 
Gamliel et al. (2020) was used to develop an ‘integrated Bayesian 
model’. For this purpose, the ‘classic SDM’ was combined with the 
physiological information brought by the physiological submodel 
(detailed above). This combination was performed with a Bayesian 
approach by using the posterior distributions of the physiological 
submodel (i.e. fitted parameters) as priors for the SDM to create ‘in-
tegrated Bayesian model’ coefficients (see also the detailed method 
in Talluto et al. (2016) Appendix S1). These fitted parameters were 
used as priors to represent food availability f and its square form f2 in 
the ‘integrated Bayesian model’ (Figure 1). As for the other priors (in-
tercept, depth, temperature and temperature2), they have attributed 
to the posterior priors of the ‘classic SDM’, with their variance arbi-
trarily fixed at 100, as we considered them as vague priors (Gamliel 
et al., 2020). The detail of prior values is given in Appendix S10.

5  |  MODEL A SSESSMENT

The DEB model was validated by estimating the goodness of fit using 
the mean relative error (MRE), which quantifies the overall model 
performance. MRE values can have values from 0 to infinity, with 
0 value meaning that predictions match observation data exactly 
(Marques et al., 2018). The MRE of A. cordatus DEB model is 0.121 
(Arnould- Pétré et al., 2020).

Model relative likelihood of occurrence for all approaches was 
evaluated by measuring the Area Under the Curve (AUC) (Allouche 
et al., 2006; Elith et al., 2006; Fielding & Bell, 1997) using the R 
package ROCR (Sing et al., 2005). In complement, the percentage of 
correctly classified presence data was measured by extracting likeli-
hood values over the position of each presence data and compared 
with the MaxSSS threshold (Maximum Sensitivity plus Specificity 
threshold), highlighted to be the best threshold to characterize pre-
dicted suitable (>MaxSSS value) and unsuitable areas (<MaxSSS 
value) for presence- only models (Liu et al., 2013). Standard devi-
ations of model replicates was used as uncertainty maps (Buisson 
et al., 2010; Swanson et al., 2013).

6  |  MODEL PREDIC TIONS

In all cases, 50 model replicates were generated to represent model 
variability in link with background data resampling. Each group of 50 
model replicates were averaged and plotted for comparison.

Partial dependence plots were used to represent the relationship 
between model predictions and environmental values and compared 
between models. They are built by plotting model likelihood values 
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of each grid- cell pixel (y axis) against the value of the environment 
at the same pixel (x axis; each partial dependence plot is specific to 
a single environmental layer). Partial dependence curves were also 
used as a mean of model evaluation based on expert knowledge.

7  |  RESULTS

7.1  |  Spatial projection of the DEB model

Spatial projections of DEB model outputs show important con-
trasts between the two dates (Figure 3a,b). In February, when tem-
peratures are higher than 6°C and food availability homogeneously 
higher than 0.5 over the entire bay area (Figure 2), high species sur-
vival and reproduction are predicted almost everywhere (Figure 3a), 
except in some areas where food availability is very low (Figure 2). 
Nearly four times more energy is predicted to be contained in the 
reserve compartment of A. cordatus in February compared with 
August (Appendix S7), energy available for individuals' maintenance 
and development.

In contrast, in August, the DEB model predicts maintenance 
costs of up to three times higher than in February while the ener-
getic load available is lower (Appendix S7), leading to reduced re-
production and survival abilities in the majority of the study area. 
Individual survival is modelled to be higher closer to the shoreline 
due to higher food availability (Figure 3b).

7.2  |  Classic species distribution model (SDM)

The overall likelihood of occurrence predicted by ‘classic SDMs’ 
are low (<0.5, Figure 3c,d) for the entire area and both dates, and 

standard deviations are comparatively high (homogeneously close 
to 0.45 for February and more contrasted in space but coastal areas 
reaching 0.45 too for August, Appendix S8), stressing an important 
variability between model replicates.

Average relative likelihood scores are more contrasting in August 
than in February (Figure 3c,d). For August, the model predicts the 
highest relative likelihood of occurrence (around 0.5) near the shore-
line, in shallow- water areas, and the lowest relative likelihood of oc-
currence (around 0.2) in the center of the bay and in Northwestern 
Fjord characterized by deep waters (Figure 3d). In February, the rel-
ative likelihood of occurrence is homogeneous in all the areas and 
close to 0.4 (Figure 3c).

Areas where model extrapolation occurs correspond from 36 (in 
February) to 37.8% (in August) of the total surface of the projec-
tion area and are mainly to be related to depth and to temperature 
in large patches for February (black and light grey patches, respec-
tively, Appendix S8). Extrapolation in link to food availability (dark 
grey patches) is almost fully absent for February, whereas patchy 
and as frequent as extrapolation linked to temperature (light grey 
patches) for August (Appendix S8).

7.3  |  ‘Integrated SDM- DEB’ model

Model relative likelihood scores are highly contrasting between 
February and August according to the ‘integrated SDM- DEB’ model 
(Figure 4a,b, Appendix S9). In February, the relative likelihood of 
occurrence is close to 0.55 over the entire area, except for some 
patches located in the center of the bay and in coastal zones with 
likelihood values of up to 0.85. In contrast, low likelihood values are 
evenly predicted over the entire area for August (0.33 maximum, 
Figure 4b). Standard deviations are higher in August than in February 

F I G U R E  3  Spatial projections of the 
DEB model in February (a) and August 
(b). Reproduction and survival capacity 
is represented by the calculation of ̇pC−

( ̇pM + ṗJ) (energy.Time−1), colour scale is 
given in energy.Time−1, which indicates 
the possibility for reproduction and 
survival for values >0; or no possibility 
for reproduction and survival for 
values <0 (black). Spatial projections 
of the ‘classic SDM’ for February (c) 
and August (d), an average of 50 model 
replicates representing the average 
relative likelihood of occurrence. Relative 
likelihood values (possibly contained 
between 0 and 1) were capped at 0.5 for 
increasing figure readability.
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in coastal areas (0.4 vs. 0.3 for August and February, respectively) 
and reach the same range of values (around 0.3) in the deep central 
area of the Baie du Morbihan (Figure 4c,d).

7.4  |  ‘Integrated Bayesian’ model

‘Integrated Bayesian’ models were implemented using the following 
set of parameters as priors (Appendix S10). The coefficient values 
of f and f2 are high compared to that of the other parameters (av-
erage and tau scores), increasing the influence of food availability in 
final model outputs (Appendix S10). In August, the coefficient value 
of the f parameter is eight times higher than in February (8.43 com-
pared with −0.89), but f2 is twice lower (11.38 compared with 27.78) 
(Appendix S10).

In ‘integrated Bayesian’ models, the relative likelihood of occur-
rence varies within a large range, between 0.1 and 1, a sharp differ-
ence with low relative likelihood of occurrence values (<0.5) obtained 
with the ‘classic SDM’ approach (Figures 3 and 4e,f). The ‘integrated 
Bayesian’ approach also predicts differences between the two sea-
sons but is not as important as the ‘integrated SDM- DEB’ model re-
sults (Figure 4a– d). Overall, the study area is predicted as less suitable 
for A. cordatus in August than in February, when food availability and 
temperatures are higher (Figure 2b,e). More precisely, in August, suit-
able areas are mainly restricted to shallow waters and nearshore zones, 
especially in the west. In February, habitat suitability is more extended 
but remains mainly located close to the coasts (Figure 4e). Standard 
deviation scores (Figure 4g,h) are within the range of values obtained 
for the two other models (0.2– 0.4) and values are similar between the 
two seasons, although high values (around 0.45) cover a broader area 
in August. Compared with February, some patchy areas nearby coasts 
present low values in August (Figure 4h).

In February, most of the areas for which the standard deviation is 
the highest for the ‘integrated Bayesian’ model (Figure 4g) correspond 
to the extrapolation areas of the ‘classic SDM’ maps (Appendix S8). 
This is less clear for the August scenario (Figure 4h, Appendix S8).

7.5  |  Contribution of predictors and model 
performance

Model performance (Table 1) is good for all approaches except for 
the ‘spatial DEB’ approach, for which the percentage of correctly 
predicted presence data is very low in August (38.5%). Among the 
three other approaches, model performance is very similar between 
the two seasons in the ‘integrated Bayesian’ approach. AUC scores 
are significantly the highest (t test with p- values <.001), with val-
ues reaching a minimal score of 0.76 in August with the lowest vari-
ability. The percentage of correctly classified presence data is good 
(>81.7%) for February, significantly higher than in the two other ap-
proaches (compare to 77.8% and 67.3%) but a bit lower for August 
(88.8% compared with 94.8% and 94.4% for the ‘classic SDM’ and 
integrated ‘SDM- DEB’ approaches, respectively).

Partial dependence plots (Figure 5) were generated to evaluate 
the influence of each environmental predictor (depth, food avail-
ability and temperature) on model predictions. Overall, a compari-
son between models shows that integrated modelling approaches 
(‘integrated SDM- DEB and ‘integrated Bayesian) provide more con-
trasting response curves for all three predictors compared with the 
‘classic SDM’ approach, both for February and August (Figure 5).

The ‘integrated Bayesian’ model results (Figure 5) suggest a 
more substantial influence of environmental values on predicted 
relative likelihood of occurrence, with higher temperatures, higher 
food availability and lower depths associated with higher predicted 
habitat suitability. This sensitivity of environmental influence on 
model predictions is confirmed by the higher performance metrics 
observed for the ‘integrated Bayesian’ approach, noteworthy in 
February (Table 1).

8  |  DISCUSSION

8.1  |  Potential and main limitations to the different 
modelling approaches

Correlative approaches (‘classic SDMs’) are aimed at describing the 
correlation between species occurrence records and environmental 
conditions. SDM outputs can provide knowledge on the main envi-
ronmental factors that drive species distribution (Elith et al., 2006; 
Peterson et al., 2011). Because presence records are used as input 
data, SDMs also indirectly integrate the influence of other factors 
such as the effect of biotic interactions (either competition, exclu-
sion or facilitation between species) and the biogeographic context 
(barriers or dispersal vectors) on species distribution, thereby sim-
ply and explicitly assessing the species potential ecological niche 
(Soberón, 2010). However, the relevance of niche estimation often 
constitutes the main limitation to ‘classic SDMs’, because their 
predictive performance strongly relies on sampling completeness 
(Araújo et al., 2005; Broennimann et al., 2007; Holt, 2009; Loehle & 
Leblanc, 1996; Randin et al., 2006; Vaughan & Ormerod, 2003). The 
heterogeneity of presence sampling induces statistical artefacts that 
can bias model predictions (Bahn & McGill, 2007; Currie, 2007), a 
substantial limitation that has already been stressed in former works 
on the Southern Ocean (Guillaumot et al., 2020, 2021; Guillaumot, 
Martin, et al., 2018).

Compared with SDMs, mechanistic models require more data 
(and require a good knowledge of species ecology or physiology) 
for parameter estimation and model implementation (Kearney & 
Porter, 2009). However, if the model can be built, the approach is 
powerful to evaluate the survival capacity of individuals in given 
environmental conditions (Arnould- Pétré et al., 2020; Fabri- 
Ruiz et al., 2021) and can estimate the species fundamental niche 
(Kearney & Porter, 2009).

Combining the merits of both correlative and mechanistic ap-
proaches to fine- tune the estimation of the species potential eco-
logical niche can provide important benefits (Dormann et al., 2012), 



10  |    GUILLAUMOT et al.

as prior information on the influence of the environment on species 
metabolism, given by physiological models, can be used to improve 
correlative models (Feng et al., 2020). This combined approach is 
also valuable to assess the effect of fast- changing environmental 
conditions (e.g. seasonality or future predictions), which generate 
non-equilibrium states (Kearney et al., 2008; Keith et al., 2008) that 
cannot be accurately modelled by static, correlative approaches 

(Fabri- Ruiz et al., 2021; Loehle & Leblanc, 1996; Schouten 
et al., 2020).

In the present study, the comparison of ‘classic SDM’, the most 
commonly used approach in ecological studies of Southern Ocean 
species, with ‘integrated’ approaches, was performed. All approaches 
have good performance statistics (Table 1), except for the ‘spatial DEB’ 
model. Spatial projections of the ‘spatial DEB’ approach are strongly 

F I G U R E  4  Spatial projections of 
the ‘integrated SDM- DEB’ models for 
February (a,c) and August (b,d), averaged 
50 model replicates. Average distribution 
(a,b) and associated standard deviations 
(c,d). The available energy after paying off 
the somatic and maturity maintenances is 
integrated with the model as a predictor 
that assesses for each pixel the value of ̇pC 
− ( ̇pM − ṗJ), with ̇pC the amount of energy 
contained in the reserve compartment, ̇pM 
the amount of energy required for somatic 
maintenance and ṗJ the amount of energy 
required for maturity maintenance. Spatial 
projections of the ‘integrated Bayesian’ 
models for February (e,g) and August (f,h), 
averaged 50 model replicates. Average 
distributions (e,f) and associated standard 
deviations (g,h)

TA B L E  1  Comparison of model performances (percentage of presence data correctly classified and area under the curve, AUC, metric) for 
the two seasons

Spatial DEB Classic SDM Integrated SDM- DEB Integrated Bayesian

% presence of data correctly 
classified

96.15% (Feb.) 77.8 ± 12.8 (Feb.) 67.3 ± 18.1 (Feb.) 81.7 ± 12.1 (Feb.)

38.5% (Aug.) 94.8 ± 1.9 (Aug.) 94.4 ± 6.1 (Aug.) 88.8 ± 7.1 (Aug.)

AUC 0.71 ± 0.03 (Feb.) 0.60 ± 0.12 (Feb.) 0.80 ± 0.02 (Feb.)

0.72 ± 0.03 (Aug.) 0.75 ± 0.04 (Aug.) 0.76 ± 0.02 (Aug.)

Note: Numbers indicate averages and standard deviations of 50 model replicates.
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driven by food availability (strong similarities between Figure 2d,e and 
Figure 3a,b) and provide a biased representation of species distribution 
for August (Table 1), as ‘low food’ areas are simply and systematically 
predicted as unsuitable to the species survival, with no consideration 
for the influence of the other environmental drivers. However, the 
model is interesting because it stresses the link between energetic 
costs and one major environmental driver (Appendix S7), a good com-
plement to physiological submodels, and is interesting to assess the 
environmental conditions that drive species distribution.

‘The classic SDM’ is characterized by good validation scores 
(AUC > 0.71 and percentage of correctly classified presence data 
>77.8%) (Table 1), but the relative likelihood of occurrence is con-
trasting for August compared with February (Figure 3c, d) when 
food concentration is high and evenly distributed in the all bay area 
(Figure 2). As a consequence, the contribution of this variable to 
model predictions is low (Figure 5), an unrealistic prediction that 
contrasts with results obtained with the integrated approaches (‘in-
tegrated SDM- DEB’ and ‘integrated Bayesian’) (Figure 5).

F I G U R E  5  Partial dependence plots, 
representing model predictions (y axis, 
relative likelihood of occurrence between 
0 and 1) aligned with the environmental 
values (x axis). Grey solid line: Classic 
SDM, yellow solid line: Integrated SDM- 
DEB model; blue solid line: Integrated 
Bayesian model. Average prediction 
values of 50 model replicates.
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Using a physiological submodel to inform an SDM has been 
applied in recent works by directly adding a physiological layer 
to the SDM (Buckley et al., 2011; Elith et al., 2010; Mathewson 
et al., 2016; Rodríguez et al., 2019) or by generating absence data 
from the modelled physiological information (Elith et al., 2010; Feng 
& Papeş, 2017). Model outputs are easy to interpret, but the ap-
proach requires the combination of several models, as in any hy-
brid approach, and implies a risk inherent in the addition of biased 
estimations of each individual model (Feng & Papeş, 2017). In the 
present work, predictions of the ‘integrated SDM- DEB’ model are 
similar to results obtained with the ‘spatial DEB’ projections. This 
was expected, especially for the August model with corresponding 
low food concentration conditions (Figure 2), with consequent low 
survival capacities (Figure 3) leading to the predicted low relative 
likelihood of occurrence for the entire area (Figure 3). The DEB 
layer contributes to the model as do environmental predictors (Elith 
et al., 2010) resulting in some inconsistencies, as shown by the lower 
model performances obtained for February (percentage of correctly 
classified presence data = 67.3% and AUC = 0.60) (Table 1), whereas 
relative likelihood scores are the highest in areas where survival and 
reproduction are impossible (i.e. where reserve ̇pC is lower than the 
energy required for overall maintenance ( ̇pM − ṗJ)) (Figure 3). This 
statistical artefact is due to the spatial correlation between the 
occurrence of a high number of presence records in areas nearby 
coasts, where ̇pC − ( ̇pM + ṗJ) values are low (i.e. energy available in 
the reserves ̇pC is barely sufficient to pay for maintenance costs). 
This is shown in Figure 4, where the highest relative likelihood of 
occurrence is associated with low food values. The integration of 
the ‘spatial DEB’ layer into the ‘integrated SDM- DEB’ model led to 
over- estimating the influence of food availability on the prediction 
of species occurrences.

Another noticeable drawback of the ‘integrated SDM- DEB’ method 
is that important variations are obtained between model outputs de-
pending on the DEB layer that is added to the SDM (Mathewson 
et al., 2016) (Figure 4, Appendix S9). The choice of the DEB layer to 
be used also influences model extrapolation (Appendix S9) (Rodríguez 
et al., 2019), which must be taken into consideration when interpreting 
model results (Buckley et al., 2011; Elith et al., 2010), and increases the 
complexity of the model calibration. Therefore, the real benefits of add-
ing modelled physiological information to SDMs are case- dependent, 
and the improvement of modelling performances is not certain (Buckley 
et al., 2011; Rodríguez et al., 2019). However, the method can prove 
helpful for future predictions and analyses of non- equilibrium states, 
which constitutes the main limitation of the SDM approach (Buckley 
et al., 2011; Elith et al., 2010; Martínez et al., 2015; Mathewson 
et al., 2016). When there are few data available and the causal relation-
ship between organism physiology and environment drivers difficult to 
model in a robust way, using the ‘integrated SDM- DEB’ approach can 
be problematic, and model outputs must be interpreted with caution.

Bayesian methods are increasingly used in marine sciences 
(Colloca et al., 2009; Gamliel et al., 2020; Muñoz et al., 2013; Pennino 
et al., 2014; Roos et al., 2015). They were proved to have several 
advantages compared with other methods, including (1) a more 

accurate and realistic estimation of uncertainty as observations 
and model parameters are both used as random variables in model 
predictions (Robert, 2007) and (2) the possibility to integrate infor-
mation from different sources, scales or nature (Hartig et al., 2012; 
Hobbs & Ogle, 2011; Peters et al., 2004) with the inclusion of a priori 
knowledge to improve model goodness of fit and more accurate un-
certainty estimates (Van Dongen, 2006).

In the present work, the highest AUC scores and correctly clas-
sified presence data were obtained with the ‘integrated Bayesian’ 
approach. Models performed well in representing uncertain areas, 
compared with other approaches (Figures 3 and 4), as the areas pre-
dicted with the highest standard deviation scores by the ‘integrated 
Bayesian’ approach (Figure 4) strongly overlap with the extrapolation 
areas estimated for the ‘classic SDMs’ (Figure 3). The influence of 
environmental variations on model likelihood values is more marked 
(Figure 5), with a better fit of the species response to environmental 
variations, and prediction performances show less contrast in eval-
uation scores between February and August (Table 1). This suggests 
that the ‘integrative Bayesian’ approach is the best among the three 
tested approaches, at estimating the potential ecological niche of 
A. cordatus.

8.2  |  Environmental changes (seasonality) and 
predicted distribution of A. cordatus

In all model predictions, the relative likelihood of occurrence is the 
highest in coastal areas, where populations of A. cordatus were 
known to be the most abundant (Poulin, 1996; Poulin & Féral, 1995). 
Predicted suitable areas for the species perfectly match these con-
ditions of high food availability and high temperature that prevail in 
coastal areas.

Important contrasts, however, were obtained in model predic-
tions between February and August, suggesting that ‘seasonal’ vari-
ations significantly affect the metabolism of A. cordatus as organisms 
face different conditions in terms of food availability and tempera-
ture. By considering two dates with contrasting environmental con-
ditions, we aimed at evaluating whether such differences between 
model outputs could be highlighted, as a mean of evaluation of the 
study methods.

According to the physiological model (‘spatial DEB’, Figure 3, 
Appendix S7), maintenance costs are higher in winter (August) than 
in summer (February) due to lower temperatures that increase the 
demand of energy to maintain the metabolism (Kooijman, 2010). 
Besides, there is less energy available in the reserve compartment to 
compensate for the increased maintenance costs as food availability 
is low in winter too (Appendix S7).

These results are strongly dependent on the assumption that 
metabolism performance (and therefore requested energy) follows 
Arrhenius laws as determined with summer acclimated individu-
als (Motreuil et al., 2018). For some Antarctic sea urchins, such as 
Sterechinus neumayeri (Meissner, 1900) it was reported a sharp met-
abolic switch during winter conditions. During this hypothesized 



    |  13GUILLAUMOT et al.

non- feeding period, metabolic rates are decreasing with lower re-
corded oxygen consumption and slow or absent somatic growth 
(Brockington et al., 2001, 2007; Brockington & Peck, 2001). Such 
seasonal metabolic changes have never been observed nor studied 
for A. cordatus, but, if existing, it could bias the estimation of the 
Arrhenius curve implemented in the model and change some of the 
metabolic estimations.

The lack of occurrence data prevents from perfectly predict-
ing the distribution of A. cordatus in the Baie du Morbihan for these 
two dates. However, observed contrasts in model outputs for these 
two dates highlight that the influence of environmental variations 
on the species metabolic performance and distribution bring valu-
able insights to interpret model predictions and assess the species 
potential ecological niche. Integrating the effect of seasonal vari-
ations in niche modelling, herein assessed as differences between 
February and August 2017, has long been suggested in SDMs (Elith 
& Leathwick, 2009; Franklin, 2009), but it is seldom achieved due to 
limited data availability (Guillaumot, Martin, et al., 2018). Conversely, 
ignoring the effect of seasonality in ecological niche estimation has 
been recently shown to reduce prediction performance (Smeraldo 
et al., 2018). Seasonality is a fundamental feature of environmental 
systems. It is particularly critical to life in temperate and high lati-
tudes, and one key phenomenon to consider for studying both spe-
cies distribution (Morelle & Lejeune, 2015; Zuckerberg et al., 2016) 
and metabolism (Bahlburg et al., 2021).

8.3  |  Study improvements

To generate accurate models, this study focussed on a well- 
documented echinoid species, A. cordatus, which had long been 
studied in the favourable context of a long- term observing system 
of coastal marine life, in the Baie du Morbihan, the most visited area 
of the highly remote archipelago of the Kerguelen Islands. However, 
some limitations were highlighted by our results. (1) The first limi-
tation is the absence of a precise evaluation of food availability for 
A. cordatus in the total area of the Baie du Morbihan. Estimates of 
chlorophyll- a concentration were used as a proxy of food abundance 
and availability, but this constitutes a strong assumption that can 
impact model outputs. Chlorophyll- a concentration in sea surface 
waters is a partial surrogate to the measurement of food availability 
for a benthic species like A. cordatus as the abundance of nutrients 
on the sea bottom depends on the processes of organic matter con-
sumption, degradation and transfer from the water column to the sea 
bottom (Laurenceau- Cornec et al., 2015). Food Availability Models 
could be developed (Jansen et al., 2018) to estimate the proportion 
of organic matter that reaches the seafloor based on the knowledge 
of water currents. It could be also interesting to have some informa-
tion about benthic detritic organic matter that the sea urchins could 
consume (Pascal et al., 2021). These data were, however, not availa-
ble for the study area, but such models offer promising perspectives. 
(2) Detailed information on the link between temperatures and phys-
iological performances is still missing, as we only have and use here 

the results of a survival experiment performed at different tempera-
tures in 2018 (Motreuil et al., 2018). DEB modelling has the potential 
to include five Arrhenius parameters to precisely characterize the 
link between temperature and metabolism (Kooijman, 2010; Thomas 
& Bacher, 2018), but available experimental data on A. cordatus do 
not permit measuring them with precision. More data are still needed 
for our case study to reach this precision and improve the perfor-
mance of the DEB model. (3) Finally, there is a lack of presence data 
to correctly calibrate the model, to validate it and to accurately con-
sider model predictions as accurate likelihood of species distribu-
tion. Generating ecological models with small datasets was indeed 
shown to reduce modelling performances (Liu et al., 2019; Stockwell 
& Peterson, 2002) as it truncates predicted distribution and niche 
definition (El- Gabbas & Dormann, 2018; Hortal et al., 2008), and 
may lead to a reduction in model accuracy because the presence and 
background datasets would not differ markedly (Luoto et al., 2005) 
and constrain the evaluation process (Pearson et al., 2007) (reviewed 
in Guillaumot et al., 2021). Therefore, common validation approaches 
such as the cross- validation method (that uses a part of the data-
set to train the model and another part to test it independently, 
Hijmans, 2012; Guillaumot et al., 2019) could not have been used for 
our study, which limited the power of our model evaluation.

9  |  CONCLUSIONS

Our results suggest good performances of ‘integrated Bayesian’ ap-
proaches to estimate species potential ecological niche, compared 
with single correlative approaches or ‘integrated SDM- DEB’ ap-
proaches that might be biased by the subjective choice of the DEB 
layer used as an input into the SDM. More data are still necessary to 
better evaluate the model, to more accurately establish the relation-
ship between the environmental conditions and the species physiol-
ogy and to better represent the whole environment. However, this 
study showed the possibility to apply the method for a data- poor case 
study, which opens perspectives for future applications to a broad 
panel of natural examples, noteworthy in the context of decision mak-
ing and conservation management. Indeed, better simulating the eco-
logical range of species, including environmental changes and species 
physiological tolerance might constitute interesting approaches for 
future conservation issues on ecosystems facing global change.
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